Diffraction data from aerosolized Coliphage PR772 virus particles imaged with the Linac Coherent Light Source
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu dataset, časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
5R01GM117342
U.S. Department of Health & Human Services | National Institutes of Health (NIH) - International
1551489
National Science Foundation (NSF) - International
DE-SC0002164
U.S. Department of Energy (DOE) - International
R01 GM117342
NIGMS NIH HHS - United States
701647
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions) - International
HRSF-0002/18-41-06001
Helmholtz Association - International
NSF-1231306
National Science Foundation (NSF) - International
1231306
National Science Foundation (NSF) - International
PubMed
33214568
PubMed Central
PMC7678860
DOI
10.1038/s41597-020-00745-2
PII: 10.1038/s41597-020-00745-2
Knihovny.cz E-zdroje
- MeSH
- částice - urychlovače * MeSH
- difrakce rentgenového záření MeSH
- kolifágy * MeSH
- lasery * MeSH
- virion * MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Single Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited. The diffraction data were collected at the Atomic, Molecular and Optical Science Instrument (AMO) of the LCLS in 4 experimental beam times during a period of four years. The photon energy was either 1.2 or 1.7 keV and the pulse energy was between 2 and 4 mJ in a focal spot of about 1.3 μm x 1.7 μm full width at half maximum (FWHM). The X-ray laser pulses captured the particles in random orientations. The data offer insight into aerosolised virus particles in the gas phase, contain information relevant to improving experimental parameters, and provide a basis for developing algorithms for image analysis and reconstruction.
Arizona State University 1001S McAllister Avenue Tempe AZ 85287 USA
Brookhaven National Laboratory Bldg 535B Upton NY 11973 USA
Center for Free Electron Laser Science DESY Notkestrasse 85 22607 Hamburg Germany
Centre for Ultrafast Imaging Luruper Chaussee 149 22761 Hamburg Germany
DESY Photon Science Notkestrasse 85 22607 Hamburg Germany
Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 0DE United Kingdom
European XFEL Holzkoppel 4 22869 Schenefeld Germany
Koc University Rumelifeneri Sariyer Rumeli Feneri Yolu 34450 Sariyer Istanbul Turkey
Lawrence Livermore National Laboratory 7000 East Avenue L 452 Livermore California 94550 USA
NRNU MEPhI Kashirskoe shosse 31 115409 Moscow Russia
Photon Science Division Paul Scherrer Institute CH 5232 Villigen PSI Switzerland
Physics Department Stanford University 450 Serra Mall Stanford California 94305 USA
SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park California 94025 USA
Stanford PULSE Institute 2575 Sand Hill Road Menlo Park California 94025 USA
University of Wisconsin Milwaukee 3135N Maryland Ave Milwaukee Wisconsin 53211 USA
Zobrazit více v PubMed
Aquila A, et al. The linac coherent light source single particle imaging road map. Structural Dynamics. 2015;2:041701. doi: 10.1063/1.4918726. PubMed DOI PMC
Seibert MM, et al. Single mimivirus particles intercepted and imaged with an x-ray laser. Nature. 2011;470:78–81. doi: 10.1038/nature09748. PubMed DOI PMC
Ekeberg T, et al. Single-shot diffraction data from the mimivirus particle using an x-ray free-electron laser. Scientific Data. 2016;3:160060. doi: 10.1038/sdata.2016.60. PubMed DOI PMC
Benner WH, et al. Non-destructive characterization and alignment of aerodynamically focused particle beams using single particle charge detection. Journal of Aerosol Science. 2008;39:917–928. doi: 10.1016/j.jaerosci.2008.05.008. DOI
Hantke MF, et al. High-throughput imaging of heterogeneous cell organelles with an x-ray laser. Nature Photonics. 2014;8:943–949. doi: 10.1038/nphoton.2014.270. DOI
Reddy HK, et al. Coherent soft x-ray diffraction imaging of coliphage pr772 at the linac coherent light source. Scientific data. 2017;4:170079. doi: 10.1038/sdata.2017.79. PubMed DOI PMC
Morgan AJ. 2020. Diffraction data from aerosolized coliphage pr772 virus particles imaged with the linac coherent light source. Coherent X-ray Imaging Data Bank. PubMed DOI PMC
Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J. Potential for biomolecular imaging with femtosecond x-ray pulses. Nature. 2000;406:752–757. doi: 10.1038/35021099. PubMed DOI
DePonte DP, et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. Journal of Physics D: Applied Physics. 2008;41:195505. doi: 10.1088/0022-3727/41/19/195505. DOI
Weierstall U, Spence JCH, Doak RB. Injector for scattering measurements on fully solvated biospecies. Review of Scientific Instruments. 2012;83:035108. doi: 10.1063/1.3693040. PubMed DOI
Nazari R, et al. 3d printing of gas-dynamic virtual nozzles and optical characterization of high-speed microjets. Optics Express. 2020;28:21749. doi: 10.1364/OE.390131. PubMed DOI PMC
Ferguson KR, et al. The atomic, molecular and optical science instrument at the linac coherent light source. Journal of Synchrotron Radiation. 2015;22:492–497. doi: 10.1107/S1600577515004646. PubMed DOI PMC
Osipov T, et al. The lamp instrument at the linac coherent light source free-electron laser. Review of Scientific Instruments. 2018;89:035112. doi: 10.1063/1.5017727. PubMed DOI
Bozek JD. Amo instrumentation for the lcls x-ray fel. The European Physical Journal Special Topics. 2009;169:129–132. doi: 10.1140/epjst/e2009-00982-y. DOI
Moeller, S. et al. Photon beamlines and diagnostics at lcls. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 635, S6–S11, 10.1016/j.nima.2010.10.125 PhotonDiag 2010. (2011).
Strüder L, et al. Large-format, high-speed, x-ray pnccds combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2010;614:483–496. doi: 10.1016/j.nima.2009.12.053. DOI
Meidinger, N. et al. pnccd for photon detection from near-infrared to x-rays. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 565, 251–257, 10.1016/j.nima.2006.05.006, Proceedings of the International Workshop on Semiconductor Pixel Detectors for Particles and Imaging (2006).
Philipp HT, Koerner LJ, Hromalik MS, Tate MW, Gruner SM. Femtosecond radiation experiment detector for x-ray free-electron laser (xfel) coherent x-ray imaging. IEEE Transactions on Nuclear Science. 2010;57:3795–3799.
Damiani D, et al. Linac coherent light source data analysis using psana. Journal of Applied Crystallography. 2016;49:672–679. doi: 10.1107/S1600576716004349. DOI
Thayer J, et al. Data systems for the linac coherent light source. Advanced structural and chemical imaging. 2017;3:3. doi: 10.1186/s40679-016-0037-7. PubMed DOI PMC
Maia FRNC. The coherent x-ray imaging data bank. Nature Methods. 2012;9:854–855. doi: 10.1038/nmeth.2110. PubMed DOI