Immune responses in carp strains with different susceptibility to carp edema virus disease
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37465154
PubMed Central
PMC10351508
DOI
10.7717/peerj.15614
PII: 15614
Knihovny.cz E-zdroje
- Klíčová slova
- Carp edema virus, Common carp, Gene expression, Immune related genes, Mucosal response,
- MeSH
- edém MeSH
- imunita MeSH
- infekce vyvolané poxviry * MeSH
- interleukin-10 MeSH
- kapři * genetika MeSH
- nemoci ryb * genetika MeSH
- Poxviridae * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interleukin-10 MeSH
Carp edema virus disease (CEVD), also known as koi sleepy disease (KSD), represents a serious threat to the carp industry. The expression of immune-related genes to CEV infections could lead to the selection of crucial biomarkers of the development of the disease. The expression of a total of eleven immune-related genes encoding cytokines (IL-1β, IL-10, IL-6a, and TNF-α2), antiviral response (Mx2), cellular receptors (CD4, CD8b1, and GzmA), immunoglobulin (IgM), and genes encoding-mucins was monitored in gills of four differently KSD-susceptible strains of carp (Amur wild carp, Amur Sasan, AS; Ropsha scaly carp, Rop; Prerov scaly carp, PS; and koi) on days 6 and 11 post-infection. Carp strains were infected through two cohabitation infection trials with CEV genogroups I or IIa. The results showed that during the infection with both CEV genogroups, KSD-susceptible koi induced an innate immune response with significant up-regulation (p < 0.05) of IL-1β, IL-10, IL-6a, and TNF-α2 genes on both 6 and 11 days post-infection (dpi) compared to the fish sampled on day 0. Compared to koi, AS and Rop strains showed up-regulation of IL-6a and TNF-α2 but no other cytokine genes. During the infection with CEV genogroup IIa, Mx2 was significantly up-regulated in all strains and peaked on 6 dpi in AS, PS, and Rop. In koi, it remained high until 11 dpi. With genogroup I infection, Mx2 was up-expressed in koi on 6 dpi and in PS on both 6 and 11 dpi. No significant differences were noticed in selected mucin genes expression measured in gills of any carp strains exposed to both CEV genogroups. During both CEV genogroups infections, the expression levels of most of the genes for T cell response, including CD4, CD8b1, and GzmA were down-regulated in AS and koi at all time points compared to day 0 control. The expression data for the above experimental trials suggest that both CEV genogroups infections in common carp strains lead to activation of the same expression pattern regardless of the fish's susceptibility towards the virus. The expression of the same genes in AS and koi responding to CEV genogroup IIa infection in mucosal tissues such as gill, gut, and skin showed the significant up-regulation of all the cytokine genes in gill and gut tissues from koi carp at 5 dpi. Significant down-regulation of CD4 and GzmA levels were only detected in koi gill on 5 dpi but not in other tissues. AS carp displayed significant up-expression of Mx2 gene in all mucosal tissues on 5 dpi, whereas in koi, it was up-regulated in gill and gut only. In both carp strains, gill harbored a higher virus load on 5 dpi compared to the other tissues. The results showed that resistance to CEV could not be linked with the selected immune responses measured. The up-regulation of mRNA expression of most of the selected immune-related genes in koi gill and gut suggests that CEV induces a more systemic mucosal immune response not restricted to the target tissue of gills.
Zobrazit více v PubMed
Adamek M, Baska F, Vincze B, Steinhagen D. Carp edema virus from three genogroups is present in common carp in Hungary. Journal of Fish Diseases. 2018;41(3):463–468. doi: 10.1111/jfd.12744. PubMed DOI
Adamek M, Hazerli D, Matras M, Teitge F, Reichert M, Steinhagen D. Viral infections in common carp lead to a disturbance of mucin expression in mucosal tissues. Fish and Shellfish Immunology. 2017a;71:353–358. doi: 10.1016/j.fsi.2017.10.029. PubMed DOI
Adamek M, Matras M, Dawson A, Piackova V, Gela D, Kocour M, Adamek J, Kaminski R, Rakus K, Bergmann SM, Stachnik M, Reichert M, Steinhagen D. Type I interferon responses of common carp strains with different levels of resistance to koi herpesvirus disease during infection with CyHV-3 or SVCV. Fish and Shellfish Immunology. 2019;87:809–819. doi: 10.1016/j.fsi.2019.02.022. PubMed DOI
Adamek M, Matras M, Jung-Schroers V, Teitge F, Heling M, Bergmann SM, Reichert M, Way K, Stone DM, Steinhagen D. Comparison of PCR methods for the detection of genetic variants of carp edema virus. Diseases of Aquatic Organisms. 2017b;126(1):75–81. doi: 10.3354/dao03152. PubMed DOI
Adamek M, Matras M, Rebl A, Stachnik M, Falco A, Bauer J, Miebach AC, Teitge F, Jung-Schroers V, Abdullah M, Krebs T, Schröder L, Fuchs W, Reichert M, Steinhagen D. Don’t let it get under your skin!—vaccination protects the skin barrier of common carp from disruption caused by cyprinid herpesvirus 3. Frontiers in Immunology. 2022a;13:1–19. doi: 10.3389/fimmu.2022.787021. PubMed DOI PMC
Adamek M, Oschilewski A, Wohlsein P, Jung-Schroers V, Teitge F, Dawson A, Gela D, Piackova V, Kocour M, Adamek J, Bergmann SM, Steinhagen D. Experimental infections of different carp strains with the carp edema virus (CEV) give insights into the infection biology of the virus and indicate possible solutions to problems caused by koi sleepy disease (KSD) in carp aquaculture. Veterinary Research. 2017c;48(1):12. doi: 10.1186/s13567-017-0416-7. PubMed DOI PMC
Adamek M, Rakus K, Brogden G, Matras M, Chyb J, Hirono I, Kondo H, Aoki T, Irnazarow I, Steinhagen D. Interaction between type I interferon and cyprinid herpesvirus 3 in two genetic lines of common carp Cyprinus carpio. Diseases of Aquatic Organisms. 2014;111(2):107–118. doi: 10.3354/dao02773. PubMed DOI
Adamek M, Rebl A, Matras M, Lodder C, El Rahman S, Stachnik M, Rakus K, Bauer J, Falco A, Jung-Schroers V, Piewbang C, Techangamsuwan S, Surachetpong W, Reichert M, Tetens J, Steinhagen D. Immunological insights into the resistance of Nile tilapia strains to an infection with tilapia lake virus. Fish and Shellfish Immunology. 2022b;124:118–133. doi: 10.1016/j.fsi.2022.03.027. PubMed DOI
Adamek M, Syakuri H, Harris S, Rakus K, Brogden G, Matras M, Irnazarow I, Steinhagen D. Cyprinid herpesvirus 3 infection disrupts the skin barrier of common carp (Cyprinus carpio L.) Veterinary Microbiology. 2013;162(2–4):456–470. doi: 10.1016/j.vetmic.2012.10.033. PubMed DOI
Adamek M, Teitge F, Baumann I, Jung-Schroers V, Rahman SAEl, Paley R, Piackova V, Gela D, Kocour M, Rakers S, Bergmann SM, Ganter M, Steinhagen D. Koi sleepy disease as a pathophysiological and immunological consequence of a branchial infection of common carp with carp edema virus. Virulence. 2021;12(1):1855–1883. doi: 10.1080/21505594.2021.1948286. PubMed DOI PMC
Amita K, Oe M, Matoyama H, Yamaguchi N, Fukuda H. A survey of koi herpesvirus and carp edema virus in colorcarp cultured in Niigata Prefecture, Japan. Fish Pathology. 2002;37(4):197–198. doi: 10.3147/jsfp.37.197. DOI
Amundsen MM, Tartor H, Andersen K, Sveinsson K, Thoen E, Gjessing MC, Dahle MK. Mucosal and systemic immune responses to salmon gill poxvirus infection in Atlantic Salmon are modulated upon hydrocortisone injection. Frontiers in Immunology. 2021;12:689302. doi: 10.3389/fimmu.2021.689302. PubMed DOI PMC
Ángeles Esteban M. An overview of the immunological defenses in fish skin. ISRN Immunology. 2012;2012:1–29. doi: 10.5402/2012/853470. DOI
Andersen MH, Schrama D, Straten PThor, Becker JC. Cytotoxic T cells. Journal of Investigative Dermatology. 2006;126(1):32–41. doi: 10.1038/sj.jid.5700001. PubMed DOI
Boes M. Role of natural and immune IgM antibodies in immune responses. Molecular Immunology. 2000;37(18):1141–1149. doi: 10.1016/S0161-5890(01)00025-6. PubMed DOI
Brown DM, Román E, Swain SL. CD4 T cell responses to influenza infection. Seminars in Immunology. 2004;16(3):171–177. doi: 10.1016/j.smim.2004.02.004. PubMed DOI
Buonocore F, Prugnoli D, Falasca C, Secombes CJ, Scapigliati G. Peculiar gene organisation and incomplete splicing of sea bass (Dicentrarchus labrax L.) interleukin-1β. Cytokine. 2003;21(6):257–264. doi: 10.1016/S1043-4666(03)00095-4. PubMed DOI
Costa MM, Maehr T, Diaz-Rosales P, Secombes CJ, Wang T. Bioactivity studies of rainbow trout (Oncorhynchus mykiss) interleukin-6: effects on macrophage growth and antimicrobial peptide gene expression. Molecular Immunology. 2011;48(15–16):1903–1916. doi: 10.1016/j.molimm.2011.05.027. PubMed DOI
Das BK, Roy P, Rout AK, Sahoo DR, Panda SP, Pattanaik S, Dehury B, Behera BK, Mishra SS. Molecular cloning, GTP recognition mechanism and tissue-specific expression profiling of myxovirus resistance (Mx) protein in Labeo rohita (Hamilton) after Poly I:C induction. Scientific Reports. 2019;9(1):1–19. doi: 10.1038/s41598-019-40323-0. PubMed DOI PMC
Edirisinghe SL, Dananjaya SHS, Nikapitiya C, Liyanage TD, Lee KA, Oh C, Kang DH, De Zoysa M. Novel pectin isolated from Spirulina maxima enhances the disease resistance and immune responses in zebrafish against Edwardsiella piscicida and Aeromonas hydrophila. Fish and Shellfish Immunology. 2019;94:558–565. doi: 10.1016/j.fsi.2019.09.054. PubMed DOI
Fensterl V, Sen GC. Interferons and viral infections. BioFactors. 2009;35(1):14–20. doi: 10.1002/biof.6. PubMed DOI
Fernández-Trujillo MA, García-Rosado E, Alonso MC, Álvarez MC, Béjar J. Synergistic effects in the antiviral activity of the three Mx proteins from gilthead seabream (Sparus aurata) Veterinary Immunology and Immunopathology. 2015;168(1–2):83–90. doi: 10.1016/j.vetimm.2015.08.007. PubMed DOI
Forlenza M. Doctor of Philosophy. 2009. Immune responses of carp: a molecular and cellular approach to infections.
Gao S, Von der Malsburg A, Dick A, Faelber K, Schröder GF, Haller O, Kochs G, Daumke O. Structure of myxovirus resistance protein A reveals intra- and intermolecular domain interactions required for the antiviral function. Immunity. 2011;35(4):514–525. doi: 10.1016/j.immuni.2011.07.012. PubMed DOI
Garcia T, Otto K, Kjelleberg S, Nelson DR. Growth of Vibrio anguillarum in salmon intestinal mucus. Applied and Environmental Microbiology. 1997;63(3):1034–1039. doi: 10.1128/aem.63.3.1034-1039.1997. PubMed DOI PMC
Gomez D, Sunyer JO, Salinas I. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish and Shellfish Immunology. 2013;35(6):1729–1739. doi: 10.1016/j.fsi.2013.09.032. PubMed DOI PMC
Haenen O, Way K, Stone D, Engelsma M. ‘Koi Sleepy Disease’ found for the first time in Koi Carps in the Netherlandse . Abstract 26Tijdschrift Voor Diergeneeskunde. 2014;139(4) PubMed
Howard J, Justus DE, Totmenin AV, Shchelkunov S, Kotwal GJ. Molecular mimicry of the inflammation modulatory proteins (IMPS) of poxviruses: evasion of the inflammatory response to preserve viral habitat. Journal of Leukocyte Biology. 1998;64(1):68–71. doi: 10.1002/jlb.64.1.68. PubMed DOI
Huttenhuis HBT, Romano N, Van Oosterhoud CN, Taverne-Thiele AJ, Mastrolia L, Van Muiswinkel WB, Rombout JHWM. The ontogeny of mucosal immune cells in common carp (Cyprinus carpio L.) Anatomy and Embryology. 2006;211(1):19–29. doi: 10.1007/s00429-005-0062-0. PubMed DOI
Ingerslev HC, Rønneseth A, Pettersen EF, Wergeland HI. Differential expression of immune genes in Atlantic salmon (Salmo salar L.) challenged intraperitoneally or by cohabitation with IPNV. Scandinavian Journal of Immunology. 2009;69(2):90–98. doi: 10.1111/j.1365-3083.2008.02201.x. PubMed DOI
Janeway Jr CA, Travers P, Walport M, Shlomchik MJ. The mucosal immune system. Immunobiology: the immune system in health and disease. Fifth Edition. Garland Science; New York: 2001.
Jung-Schroers V, Adamek M, Teitge F, Hellmann J, Bergmann SM, Schütze H, Kleingeld DW, Way K, Stone D, Runge M, Keller B, Hesami S, Waltzek T, Steinhagen D. Another potential carp killer?: carp edema virus disease in Germany. BMC Veterinary Research. 2015;11(1):1–4. doi: 10.1186/s12917-015-0424-7. PubMed DOI PMC
Kocour M, Gela D, Rodina M, Linhart O. Testing of performance in common carp Cyprinus carpio L. under pond husbandry conditions I: top-crossing with Northern mirror carp. Aquaculture Research. 2005;36(12):1207–1215. doi: 10.1111/j.1365-2109.2005.01340.x. DOI
Kushala KB, Nithin MS, Girisha SK, Dheeraj SB, Sowndarya NS, Puneeth TG, Suresh T, Naveen Kumar BT, Vinay TN. Fish immune responses to natural infection with carp edema virus (Koi sleepy disease): an emerging fish disease in India. Fish & Shellfish Immunology. 2022;130:624–634. doi: 10.1016/j.fsi.2022.09.012. PubMed DOI
Lang T, Alexandersson M, Hansson GC, Samuelsson T. Bioinformatic identification of polymerizing and transmembrane mucins in the puffer fish Fugu rubripes. Glycobiology. 2004;14(6):521–527. doi: 10.1093/glycob/cwh066. PubMed DOI
Langevin C, Aleksejeva E, Passoni G, Palha N, Levraud JP, Boudinot P. The antiviral innate immune response in fish: evolution and conservation of the IFN system. Journal of Molecular Biology. 2013;425(24):4904–4920. doi: 10.1016/j.jmb.2013.09.033. PubMed DOI
Lewisch E, Gorgoglione B, Way K, El-Matbouli M. Carp edema virus/koi sleepy disease: an emerging disease in central-east Europe. Transboundary and Emerging Diseases. 2015;62(1):6–12. doi: 10.1111/tbed.12293. PubMed DOI
Machat R, Pojezdal L, Piackova V, Faldyna M. Carp edema virus and immune response in carp (Cyprinus carpio): current knowledge. Journal of Fish Diseases. 2021;44(4):371–378. doi: 10.1111/jfd.13335. PubMed DOI
Magnadottir B. Immunological control of fish diseases. Marine Biotechnology. 2010;12(4):361–379. doi: 10.1007/s10126-010-9279-x. PubMed DOI
Marcos-López M, Espinosa Ruiz C, Rodger HD, O’Connor I, MacCarthy E, Esteban MÁ. Local and systemic humoral immune response in farmed Atlantic salmon (Salmo salar L.) under a natural amoebic gill disease outbreak. Fish and Shellfish Immunology. 2017;66:207–216. doi: 10.1016/j.fsi.2017.05.029. PubMed DOI
Matras M, Borzym E, Stone D, Way K, Stachnik M, Maj-Paluch J, Palusińska M, Reichert M. Carp edema virus in Polish aquaculture—evidence of significant sequence divergence and a new lineage in common carp Cyprinus carpio (L.) Journal of Fish Diseases. 2017;40(3):319–325. doi: 10.1111/jfd.12518. PubMed DOI
Matějíčková K, Pojezdal Ľ, Pokorová D, Reschová S, Piačková V, Palíková M, Veselý T, Papežíková I. Carp oedema virus disease outbreaks in Czech and Slovak aquaculture. Journal of Fish Diseases. 2020;43(9):971–978. doi: 10.1111/jfd.13179. PubMed DOI
McGuckin MA, Lindén SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nature Reviews Microbiology. 2011;9(4):265–278. doi: 10.1038/nrmicro2538. PubMed DOI
Mehana E, Rahmani A, Aly S. Immunostimulants and fish culture: an overview. Annual Research & Review in Biology. 2015;5(6):477–489. doi: 10.9734/arrb/2015/9558. DOI
Miyazaki T, Isshiki T, Katsuyuki H. Histopathological and electron microscopy studies on sleepy disease of koi Cyprinus carpio koi in Japan. Diseases of Aquatic Organisms. 2005;65(3):197–207. doi: 10.3354/dao065197. PubMed DOI
Mosmann TR, Li L, Sad S. Functions of CD8 T-cell subsets secreting different cytokine patterns. Seminars in Immunology. 1997;9(2):87–92. doi: 10.1006/smim.1997.0065. PubMed DOI
Ono SI, Nagai A, Sugai N. A histopathological study on juvenile colorcarp, Cyprinus carpio, showing edema. Fish Pathology. 1986;21(3):167–175. doi: 10.3147/jsfp.21.167. DOI
Ouyang P, Zhou Y, Yang R, Yang Z, Wang K, Geng Y, Lai W, Huang X, Chen D, Fang J, Chen Z, Tang L, Huang C, Yin L. Outbreak of carp edema virus disease in cultured ornamental koi in a lower temperature in China. Aquaculture International. 2020;28(2):525–537. doi: 10.1007/s10499-019-00476-1. DOI
Oyamatsu T, Hata N, Yamada K, Sano T, Fukuda H. An etiological study on mass mortality of cultured colorcarp juveniles showing edema. Fish Pathology. 1997;32(2):81–88. doi: 10.3147/jsfp.32.81. DOI
Piačková V, Flajšhans M, Pokorová D, Reschová S, Gela D, Čížek A, Veselý T. Sensitivity of common carp, Cyprinus carpio L. strains and crossbreeds reared in the Czech Republic to infection by cyprinid herpesvirus 3 (CyHV-3; KHV) Journal of Fish Diseases. 2013;36(1):75–80. doi: 10.1111/jfd.12007. PubMed DOI
Pretto T, Manfrin A, Ceolin C, Dalla Pozza M, Zelco S, Quartesan R, Abbadi M, Panzarin V, Toffan A. First isolation of koi herpes virus (KHV) in Italy from imported koi (Cyprinus carpio koi) Bulletin of the European Association of Fish Pathologists. 2013;33(4):126–133.
Rai KR, Shrestha P, Yang B, Chen Y, Liu S, Maarouf M, Chen JL. Acute infection of viral pathogens and their innate immune escape. Frontiers in Microbiology. 2021;12:1–12. doi: 10.3389/fmicb.2021.672026. PubMed DOI PMC
Raida MK, Buchmann K. Development of adaptive immunity in rainbow trout, Oncorhynchus mykiss (Walbaum) surviving an infection with Yersinia ruckeri. Fish and Shellfish Immunology. 2008;25(5):533–541. doi: 10.1016/j.fsi.2008.07.008. PubMed DOI
Rakus KŁ, Irnazarow I, Adamek M, Palmeira L, Kawana Y, Hirono I, Kondo H, Matras M, Steinhagen D, Flasz B, Brogden G, Vanderplasschen A, Aoki T. Gene expression analysis of common carp (Cyprinus carpio L.) lines during Cyprinid herpesvirus 3 infection yields insights into differential immune responses. Developmental and Comparative Immunology. 2012;37(1):65–76. doi: 10.1016/j.dci.2011.12.006. PubMed DOI
Rakus K, Wiegertjes GF, Adamek M, Siwicki AK, Lepa A, Irnazarow I. Resistance of common carp (Cyprinus carpio L.) to Cyprinid herpesvirus-3 is influenced by major histocompatibility (MH) class II B gene polymorphism. Fish and Shellfish Immunology. 2009;26(5):737–743. doi: 10.1016/j.fsi.2009.03.001. PubMed DOI
Robinson N, Baranski M, Mahapatra KD, Saha JN, Das S, Mishra J, Das P, Kent M, Arnyasi M, Sahoo PK. A linkage map of transcribed single nucleotide polymorphisms in rohu (Labeo rohita) and QTL associated with resistance to Aeromonas hydrophila. BMC Genomics. 2014;15(1):1–23. doi: 10.1186/1471-2164-15-541. PubMed DOI PMC
Rombout JHWM, Huttenhuis HBT, Picchietti S, Scapigliati G. Phylogeny and ontogeny of fish leucocytes. Fish and Shellfish Immunology. 2005;19(5 SPEC. ISS):441–455. doi: 10.1016/j.fsi.2005.03.007. PubMed DOI
Roussel P, Delmotte P. The diversity of epithelial secreted mucins. Current Organic Chemistry. 2005;8(5):413–437. doi: 10.2174/1385272043485846. DOI
Sadler AJ, Williams BRG. Interferon-inducible antiviral effectors. Nature Reviews Immunology. 2008;8(7):559–568. doi: 10.1038/nri2314. PubMed DOI PMC
Salinas I, Zhang YA, Sunyer JO. Mucosal immunoglobulins and B cells of teleost fish. Developmental and Comparative Immunology. 2011;35(12):1346–1365. doi: 10.1016/j.dci.2011.11.009. PubMed DOI PMC
Secombes CJ, Zou J. Evolution of interferons and interferon receptors. Frontiers in Immunology. 2017;8:2–11. doi: 10.3389/fimmu.2017.00209. PubMed DOI PMC
Shapira Y, Magen Y, Zak T, Kotler M, Hulata G, Levavi-Sivan B. Differential resistance to koi herpes virus (KHV)/carp interstitial nephritis and gill necrosis virus (CNGV) among common carp (Cyprinus carpio L.) strains and crossbreds. Aquaculture. 2005;245(1–4):1–11. doi: 10.1016/j.aquaculture.2004.11.038. DOI
Smith SA, Kotwal GJ. Immune response to poxvirus infections in various animals. Critical Reviews in Microbiology. 2002;28(3):149–185. doi: 10.1080/1040-840291046722. PubMed DOI
Soulliere C, Dixon B. Reference module in life sciences. Elsevier Ltd.; 2017. Immune system organs of bony fishes. DOI
Syakuri H, Adamek M, Brogden G, Rakus KT, Matras M, Irnazarow I, Steinhagen D. Intestinal barrier of carp (Cyprinus carpio L.) during a cyprinid herpesvirus 3-infection: Molecular identification and regulation of the mRNA expression of claudin encoding genes. Fish and Shellfish Immunology. 2013;34(1):305–314. doi: 10.1016/j.fsi.2012.11.010. PubMed DOI
Tadmor-Levi R, Doron-Faigenboim A, Marcos-Haddad J, Petit J, Hulata G, Forlenza M, Wiegertjes G, David L. Different transcriptional response between susceptible and resistant common carp (Cyprinus carpio) fish hints on the mechanism of CyHV-3 disease resistance. BMC Genomics. 2019;20:1–17. doi: 10.21203/rs.2.16693/v1. PubMed DOI PMC
Taechavasonyoo A, Hirono I, Kondo H. The immune-adjuvant effect of Japanese flounder Paralichthys olivaceus IL-1β. Developmental and Comparative Immunology. 2013;41(4):564–568. doi: 10.1016/j.dci.2013.07.003. PubMed DOI
Tafalla C, Figueras A, Novoa B. Viral hemorrhagic septicemia virus alters turbot Scophthalmus maximus macrophage nitric oxide production. Diseases of Aquatic Organisms. 2001;47(2):101–107. doi: 10.3354/dao047101. PubMed DOI
Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL. Viral subversion of the immune system. Annual Review of Immunology. 2000;18:861–926. doi: 10.1146/annurev.immunol.18.1.861. PubMed DOI
Tumang JR, Francés R, Yeo SG, Rothstein TL. Cutting edge: spontaneously Ig-secreting B-1 cells violate the accepted paradigm for expression of differentiation-associated transcription factors. The Journal of Immunology. 2005;174(6):3173–3177. doi: 10.4049/jimmunol.174.6.3173. PubMed DOI
Van der Marel M, Adamek M, Gonzalez SF, Frost P, Rombout JHWM, Wiegertjes GF, Savelkoul HFJ, Steinhagen D. Molecular cloning and expression of two β-defensin and two mucin genes in common carp (Cyprinus carpio L.) and their up-regulation after β-glucan feeding. Fish and Shellfish Immunology. 2012;32(3):494–501. doi: 10.1016/j.fsi.2011.12.008. PubMed DOI
Wang Y, Wang Q, Baoprasertkul P, Peatman E, Liu Z. Genomic organization, gene duplication, and expression analysis of interleukin-1β in channel catfish (Ictalurus punctatus) Molecular Immunology. 2006;43(10):1653–1664. doi: 10.1016/j.molimm.2005.09.024. PubMed DOI
Way K, Stone D. Emergence of carp edema virus-like (CEV-like) disease in the UK. CEFAS Finfish News; 2013. pp. 32–34.
Wei X, Li B, Wu L, Yin X, Zhong X, Li Y, Wang Y, Guo Z, Ye J. Interleukin-6 gets involved in response to bacterial infection and promotes antibody production in Nile tilapia (Oreochromis niloticus) Developmental and Comparative Immunology. 2018;89:141–151. doi: 10.1016/j.dci.2018.08.012. PubMed DOI
Whyte SK. The innate immune response of finfish—a review of current knowledge. Fish and Shellfish Immunology. 2007;23(6):1127–1151. doi: 10.1016/j.fsi.2007.06.005. PubMed DOI
Yamaguchi T, Takizawa F, Furihata M, Soto-Lampe V, Dijkstra JM, Fischer U. Teleost cytotoxic T cells. Fish and Shellfish Immunology. 2019;95:422–439. doi: 10.1016/j.fsi.2019.10.041. PubMed DOI
Zamoyska R. CD4 and CD8: Modulators of T-cell receptor recognition of antigen and of immune responses? Current Opinion in Immunology. 1998;10(1):82–87. doi: 10.1016/S0952-7915(98)80036-8. PubMed DOI
Zhang X, Ni Y, Ye J, Xu H, Hou Y, Luo W, Shen W. Carp edema virus, an emerging threat to the carp (Cyprinus carpio) industry in China. Aquaculture. 2017;474(900):34–39. doi: 10.1016/j.aquaculture.2017.03.033. DOI
Zou J, Secombes CJ. The function of fish cytokines. Biology. 2016;5(2):23. doi: 10.3390/biology5020023. PubMed DOI PMC