Transcriptome of Sphaerospora molnari (Cnidaria, Myxosporea) blood stages provides proteolytic arsenal as potential therapeutic targets against sphaerosporosis in common carp
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
634429
European Commission Horizon 2020 Research and Innovation Action
19-28399X
Grantová Agentura České Republiky
NN124220
Hungarian National Research, Development and Innovation Office
PubMed
32546190
PubMed Central
PMC7296530
DOI
10.1186/s12864-020-6705-y
PII: 10.1186/s12864-020-6705-y
Knihovny.cz E-zdroje
- Klíčová slova
- Aquaculture, Drug targets, In silico screening, Myxozoa, Parasite, Proteases,
- MeSH
- antiparazitární látky farmakologie terapeutické užití MeSH
- faktory virulence MeSH
- fylogeneze MeSH
- kapři mikrobiologie MeSH
- Myxozoa genetika růst a vývoj MeSH
- nemoci ryb parazitologie terapie MeSH
- objevování léků MeSH
- parazitární nemoci u zvířat parazitologie terapie MeSH
- proteasy genetika MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiparazitární látky MeSH
- faktory virulence MeSH
- proteasy MeSH
BACKGROUND: Parasites employ proteases to evade host immune systems, feed and replicate and are often the target of anti-parasite strategies to disrupt these interactions. Myxozoans are obligate cnidarian parasites, alternating between invertebrate and fish hosts. Their genes are highly divergent from other metazoans, and available genomic and transcriptomic datasets are limited. Some myxozoans are important aquaculture pathogens such as Sphaerospora molnari replicating in the blood of farmed carp before reaching the gills for sporogenesis and transmission. Proliferative stages cause a massive systemic lymphocyte response and the disruption of the gill epithelia by spore-forming stages leads to respiratory problems and mortalities. In the absence of a S. molnari genome, we utilized a de novo approach to assemble the first transcriptome of proliferative myxozoan stages to identify S. molnari proteases that are upregulated during the first stages of infection when the parasite multiplies massively, rather than in late spore-forming plasmodia. Furthermore, a subset of orthologs was used to characterize 3D structures and putative druggable targets. RESULTS: An assembled and host filtered transcriptome containing 9436 proteins, mapping to 29,560 contigs was mined for protease virulence factors and revealed that cysteine proteases were most common (38%), at a higher percentage than other myxozoans or cnidarians (25-30%). Two cathepsin Ls that were found upregulated in spore-forming stages with a presenilin like aspartic protease and a dipeptidyl peptidase. We also identified downregulated proteases in the spore-forming development when compared with proliferative stages including an astacin metallopeptidase and lipases (qPCR). In total, 235 transcripts were identified as putative proteases using a MEROPS database. In silico analysis of highly transcribed cathepsins revealed potential drug targets within this data set that should be prioritised for development. CONCLUSIONS: In silico surveys for proteins are essential in drug discovery and understanding host-parasite interactions in non-model systems. The present study of S. molnari's protease arsenal reveals previously unknown proteases potentially used for host exploitation and immune evasion. The pioneering dataset serves as a model for myxozoan virulence research, which is of particular importance as myxozoan diseases have recently been shown to emerge and expand geographically, due to climate change.
Zobrazit více v PubMed
Culley FJ, Brown A, Conroy DM, Sabroe I, Pritchard DL, Williams TJ. Eotaxin is specifically cleaved by hookworm metalloproteases preventing its action in vitro and in vivo. J Immunol. 2000;165(11):6447–6453. PubMed
Isnard A, Shio MT, Olivier M. Impact of Leishmania metalloprotease GP63 on macrophage signaling. Front Cell Infect Microbiol. 2012;2:72. PubMed PMC
Schmid-Hempel P. Immune defence, parasite evasion strategies and their relevance for 'macroscopic phenomena' such as virulence. Philos Trans R Soc Lond Ser B Biol Sci. 2008;364(1513):85–98. PubMed PMC
McKerrow JH, Caffrey C, Kelly B, Loke P, Sajid M. Proteases in parasitic diseases. Annu Rev Pathol. 2006;1:497–536. PubMed
Doyle MA, Gasser RB, Woodcraft BJ, Hall RS, Ralph SA. Drug target prediction and prioritization: using orthology to predict essentiality in parasite genomes. BMC Genomics. 2010;11:222. PubMed PMC
Steverding D, Sexton DW, Wang X, Gehrke SS, Wagner GK, Caffrey CR. Trypanosoma brucei: Chemical evidence that cathepsin L is essential for survival and a relevant drug target. Int J Parasitol. 2012;42(5):481–488. PubMed
Gluzman IY, Francis SE, Oksman A, Smith CE, Duffin KL, Goldberg DE. Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. J Clin Invest. 1994;93:1602–1608. PubMed PMC
Müller J, Hemphill A. Drug target identification in protozoan parasites. Expert Opin Drug Discovery. 2016;11(8):815–824. PubMed PMC
Funk VA, Olafson RW, Raap M, Smith D, Aitken L, Haddow JD, Wang D, Dawson-Coates JA, Burke RD, Miller KM. Identification, characterization and deduced amino acid sequence of the dominant protease from Kudoa paniformis and K. thyrsites: A unique cytoplasmic cysteine protease. Comp Biochem Physiol B Biochem Mol Biol. 2008;149(3):477–489. PubMed
Shin SP, Zenke K, Yokoyama H. Characterization of proteases isolated from Kudoa septempunctata. J Vet Res. 2015;55(3):175–179.
Chang ES, Neuhof M, Rubinstein ND, Diamant A, Philippe H, Huchon D, Cartwright P. Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proc Natl Acad Sci U S A. 2015;112(48):14912–14917. PubMed PMC
Yang Y, Xiong J, Zhou Z, Huo F, Miao W, Ran C, Liu Y, Zhang J, Feng J, Wang M, Wang M, Wang L, Yao B. The genome of the myxosporean Thelohanellus kitauei shows adaptations to nutrient acquisition within its fish host. Genome Biol Evo. 2014;12:3182–3198. PubMed PMC
Feist SW, Morris DJ, Alama-Bermejo G, Holzer AS. In: Okamura B, Gruhl A, Bartholomew JL, editors. Cellular process in myxozoans in Myxozoa Evolution. Ecology and Development. Cham: Springer International Publishing; 2015.
Schmidt-Posthaus H, Wahli T. Host and environmental influences on development of disease. In: Okamura B, Gruhl A, Bartholomew J, editors. Myxozoan evolution, ecology and development. Cham: Springer; 2015.
Lom J, Dyková I. Protozoan parasites of fishes. Amsterdam: Elsevier Science Publishers; 1992.
Okamura B, Gruhl A, Reft AJ. Myxozoan evolution, ecology and development. Cham: Springer; 2015. Cnidarian origins of the Myxozoa; pp. 45–68.
Holzer AS, Bartošová-Sojková P, Born-Torrijos A, Lövy A, Hartigan A, Fiala I. The joint evolution of the Myxozoa and their alternate hosts: a cnidarian recipe for success and vast biodiversity. Mol Ecol. 2018;27:1651–1666. PubMed
Wolf K, Markiw ME. Biology contravenes taxonomy in the Myxozoa: New discoveries show alternation of invertebrate and vertebrate hosts. Science. 1984;225(4669):1449–1452. doi: 10.1126/science.225.4669.1449. PubMed DOI
Eszterbauer E, Atkinson S, Diamant A, Morris D, El-Matbouli M, Hartikainen H. Myxozoan evolution, ecology and development. Cham: Springer; 2015. Myxozoan life cycles: practical approaches and insights; pp. 175–198.
Arthur JR, Lom J. Sphaerospora araii n. sp. (Myxosporea: Sphaerosporidae) from the kidney of a longnose skate (Raja rhina Jordan and Gilbert) from the Pacific Ocean off Canada. Can J Zool. 1985;63:2902–2906.
Bartošová P, Fiala I, Jirků M, Cinková M, Caffara M, Fioravanti ML, Atkinson SD, Bartholomew JL, Holzer AS. Sphaerospora sensu stricto: Taxonomy, diversity and evolution of a unique lineage of myxosporeans (Myxozoa) Mol Phylogenet Evol. 2013;68(1):93–105. PubMed
Desser SS, Lom J, Dyková I. Developmental stages of Sphaerospora ohlmacheri (Whinery, 1893) n.comb. (Myxozoa: Myxosporea) in the renal tubules of bullfrog tadpoles, Rana catesbeiana, from Lake of Two Rivers, Algonquin Park, Ontario. Can J Zool. 2011;64:2213–2217.
Jirků M, Fiala I, Modrý D. Tracing the genus Sphaerospora: rediscovery, redescription and phylogeny of the Sphaerospora ranae (Morelle,) n. comb. (Myxosporea, Sphaerosporidae), with emendation of the genus Sphaerospora. Parasitol. 2007;134(12):1727–1739. PubMed
Patra S, Bartošová-Sojková P, Pecková H, Fiala I, Eszterbauer E, Holzer AS. Biodiversity and host-parasite cophylogeny of Sphaerospora (sensu stricto) (Cnidaria: Myxozoa) Parasit Vectors. 2018;11(1):347. PubMed PMC
Baska F, Molnár K. Blood stages of Sphaerospora spp. (Myxosporea) in cyprinid fishes. Dis Aq Org. 1988;5:23–28.
Lom J, Dyková I, Pavlásková M, Grupcheva G. Sphaerospora molnari sp. nov. (Myxozoa, Myxosporea), an agent of gill, skin and blood sphaerosporosis of common carp in Europe. Parasitol. 1983;86:529–535.
Lom J, Pavlásková M, Dyková I. Notes on kidney infecting species of the genus Sphaerospora Thelohan (Myxosporea), including a new species Sphaerospora gobionis sp. nov., and on myxosporean life cycle stages in stages in the blood of some freshwater fish. J Fish Dis. 1985;8:221–232.
Hartigan A, Estensoro I, Vancová M, et al. New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa:Myxosporea) blood stages in fish. Sci Rep. 2016;6:39093. PubMed PMC
Korytář T, Wiegertjes G, Zusková E, Tomanová A, Lisnerová M, Patra S, Sieranski V, Šíma R, Born-Torrijos A, Wentzel A, Blasco-Monleon S, Yanes-Roca C, Policar T, Holzer AS. The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari. Parasit Vectors. 2019;2:208. PubMed PMC
Holzer AS, Hartigan A, Patra S, Pecková H, Eszterbauer E. Molecular fingerprinting of the myxozoan community in common carp suffering swim bladder inflammation (SBI) identifies multiple etiological agents. Parasit Vectors. 2014;7:398. PubMed PMC
Simão F, Waterhouse R, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–3212. PubMed
Verma S, Dixit R, Pandey KC. Cysteine proteases: modes of activation and future prospects as pharmacological targets. Front Pharmacol. 2016;7:107. PubMed PMC
Stack CM, Caffrey CR, Donnelly SM, Seshaadri A, Lowther J, Tort JF, Collins PR, Robinson MW, Xu W, McKerrow JH, Craik CS, Geiger SR, Marion R, Brinen LS, Dalton JP. Structural and functional relationships in the virulence-associated cathepsin L proteases of the parasitic liver fluke, Fasciola hepatica. J Biol Chem. 2007;283(15):9896–9908. PubMed PMC
Weihofen A, Binn K, Lemberg MK, Ashman K, Martoglio B. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science. 2002;296:2215–2218. PubMed
Gul IS, Staal J, Hulpiau P, De Keuckelaere E, Kamm K, Deroo T, Sanders E, Staes K, Driege Y, Saeys Y, Beyaert R, Technau U, Schierwater B, van Roy F. GC content of early metazoan genes and its impact on gene expression levels in mammalian cell lines. Genome Biol Evol. 2018;10(3):909–917. PubMed PMC
Yanow SK, Purcell LA, Lee M, Spithill TW. Genomics-based drug design targets the AT-rich malaria parasite: implications for antiparasite chemotherapy. Pharmacogenomics. 2007;8(9):1267–1272. PubMed
Eitel M, Francis WR, Varoqueaux F, Daraspe J, Osigus HJ, Krebs S, Vargas S, Blum H, Williams GA, Schierwater B, Wörheide G. Comparative genomics and the nature of placozoan species. PLoS Biol. 2018;16(7):e2005359. PubMed PMC
Kenny NJ, de Goeij JM, de Bakker DM, Whalen CG, Berezikov E, Riesgo A. Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: a Transcriptomic case study in the Demosponge Halisarca caerulea. Mar Genomics. 2018;37:135–147. PubMed
Celis JS, Wibberg D, Ramírez-Portilla C, Rupp O, Sczyrba A, Winkler A, Kalinowski J, Wilke T. Binning enables efficient host genome reconstruction in cnidarian holobionts. GigaScience. 2018;7:7. PubMed PMC
Pootakham W, Naktang C, Sonthirod C, Yoocha T, Sangsrakru D, Jomchai N, Putchim L, Tangphatsornruang S. Development of a novel reference transcriptome for scleractinian coral Porites lutea using single-molecule long-read isoform sequencing (Iso-Seq). Front Mar Sci. 2018;5 10.3389/fmars.2018.00122.
Bankers L, Neiman M, et al. G3 (Bethseda) 2017;7(3):871–880. PubMed PMC
McNeilly TN, Few D, Burgess STG, Wright H, Bartley DJ, Bartley Y, Nisbet AJ. Niche-specific gene expression in a parasitic nematode; increased expression of immunomodulators in Teladorsagia circumcincta larvae derived from host mucosa. Sci Rep. 2017;7:7214. PubMed PMC
Li W, Liu B, Yang Y, Ren Y, Wang S, Liu C, Zhang N, Qu Z, Yang W, Zhang Y, Yan H, Jiang F, Li L, Li S, Jia W, Yin H, Cai X, Liu T, DP MM, Fan W, Fu B. The genome of tapeworm Taenia multiceps sheds light on understanding parasitic mechanism and control of coenurosis disease. DNA Res. 2018;25(5):499–510. PubMed PMC
Gayral P, Melo-Ferreira J, Glémin S, Bienre N, Carneiro M, Nabholz B, Lourenco JM, Alves PC, Ballenghein M, Faivre N. Reference-free population genomics from next-generation transcriptome data and the vertebrate–invertebrate gap. PLoS Genet. 2013;9:e1003457. PubMed PMC
Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011;12:671. PubMed
Schrul B, Kapp K, Sinning I, Dobberstein B. Signal peptide peptidase (SPP) assembles with substrates and misfolded membrane proteins into distinct oligomeric complexes. Biochem J. 2010;427(3):523–534. PubMed PMC
Voss M, Schröder B, Fluhrer R. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. Biochim Biophys Acta. 2013;1828(12):2828–2839. PubMed
Li X, Chen H, Bahamontes-Rosa N, Kun JFJ, Traore B, Crompton PD, Chishti AH. Plasmodium falciparum signal peptide peptidase is a promising drug target against blood stage malaria. Biochem Biophys Res Commun. 2009;380(3):454–459. PubMed PMC
Lázaro S, Gamarra D, Del Val M. Proteolytic enzymes involved in MHC class I antigen processing: A guerrilla army that partners with the proteasome. Mol Immunol. 2015;68(2):72–76. PubMed
Parvanova I, Epiphanio S, Fauq A, Golde TE, Prudêncio M, Mota MM. A small molecule inhibitor of signal peptide peptidase inhibits Plasmodium development in the liver and decreases malaria severity. PLoS One. 2009;4(4):e5078. PubMed PMC
Harbut MB, Patel BA, Yeung BKS, McNamara CW, Bright AT, Ballard J, Greenbaum DC. Targeting the ERAD pathway via inhibition of signal peptide peptidase for antiparasitic therapeutic design. Proc Natl Acad Sci U S A. 2012;109(52):21486–21491. PubMed PMC
Eggleson KK, Duffin KL, Goldberg DE. Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. J Biol Chem. 1999;274(45):32411–32417. PubMed
Bruschi F, Pinto B. The significance of matrix metalloproteinases in parasitic infections involving the central nervous system. Pathogens. 2013;2(1):105–129. PubMed PMC
McGwire BS, Chang KP, Engman DM. Migration through the extracellular matrix by the parasitic protozoan Leishmania is enhanced by surface metalloprotease gp63. Infect Immun. 2003;71(2):1008–1010. PubMed PMC
Geurts N, Opdenakker G, Van den Steen PE. Matrix metalloproteinases as therapeutic targets in protozoan parasitic infections. Pharmacol Ther. 2012;133(3):257–279. PubMed
Piña-Vázquez C, Reyes-López M, Ortíz-Estrada G, de la Garza M, Serrano-Luna J. Host-parasite interaction: parasite-derived and -induced proteases that degrade human extracellular matrix. J Parasitol Res. 2012;2012:748206. PubMed PMC
Ramos OH, Selistre-de-Araujo HS. Snake venom metalloproteases--structure and function of catalytic and disintegrin domains. Comp Biochem Physiol C Toxicol Pharmacol. 2006;142(3–4):328–346. PubMed
Decrem Y, Beaufays J, Blasioli V, Lahaye K, Brossard M, Vanhamme L, Godfroid E. A family of putative metalloproteases in the salivary glands of the tick Ixodes ricinus. FEBS J. 2008;275(7):1485–1499. PubMed
Wagner L, Klemann C, Stephan M, von Hörsten S. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin Exp Immunol. 2016;184:265–283. PubMed PMC
Touz MC, Nores MJ, Slavin I, Piacenza L, Acosta D, Carmona C, Lujan HD. Membrane-associated dipeptidyl peptidase IV is involved in encystation-specific gene expression during Giardia differentiation. Biochem J. 2002;364(3):703–710. PubMed PMC
Geldhof P, Knox D. The intestinal contortin structure in Haemonchus contortus: an immobilised anticoagulant? Int J Parasitol. 2008;38:1579–1588. PubMed
Robinson MW, Dalton JP. Cysteine proteases of pathogenic organisms. Landes Bioscience. 2011.
Konagaya S. Studies on the jellied meat of fish, with special reference to that of yellowfin tuna. Bull Tokai Reg Fish Res Lab. 1984;114:1–101.
Martone CB, Spivak E, Busconi L, Folco EJE, Sánchez JJ. A cysteine protease from myxosporean degrades host myofibrils in vitro. Comp Biochem Physiol B Biochem Mol Biol. 1999;123:267–272.
Caffrey CR, Goupil L, Rebello KM, Dalton JP, Smith D. Cysteine proteases as digestive enzymes in parasitic helminths. PLoS Neg Trop Dis. 2018;12(8):e0005840. PubMed PMC
Dalton J, Caffrey CR, Sajid M, Stack C, Donnelly S, Loukas A, Don T, Mckerrow J, Halton DW, Brindley P. Parasitic Flatworms: Molecular biology, Biochemistry, Immunology and Physiology. 2006. Proteases in trematode biology; pp. 348–368.
McKerrow JH. The diverse roles of cysteine proteases in parasites and their suitability as drug targets. PLoS Negl Trop Dis. 2018;12(8):e0005639. PubMed PMC
Selzer PM, Pingel S, Hseih I, Ugele B, Chan VJ, Engel JC, Bogyo M, Russell DG, Sakanari JA, McKerrow JH. Cysteine protease inhibitors as chemotherapy: lessons from a parasite target. Proc Natl Acad Sci U S A. 1999;96(20):11015–11022. PubMed PMC
Siqueira-Neto JL, Debnath A, McCall LI, Bernatchez JA, Ndao M, et al. Cysteine proteases in protozoan parasites. PLoS Negl Trop Dis. 2018;12(8):e0006512. PubMed PMC
Ferraro F, Merlino A, dell’ Oca N, Gil J, Tort JF, Gonzalez M, Cerecetto H, Cabrera M, Corvo I. Identification of chalcones as Fasciola hepatica cathepsin L inhibitors using a comprehensive experimental and computational approach. PLoS Negl Trop Dis. 2016;10(7):e0004834. PubMed PMC
Williamson AL, Lustigman S, Oksov Y, Deumic V, Plieskatt J, Mendez S, Zhan B, Bottazzi ME, Hotez PJ, Loukas A. Ancylostoma caninum MTP-1, an astacin-like metalloprotease secreted by infective hookworm larvae, is involved in tissue migration. Infect Immun. 2006;74(2):961–967. PubMed PMC
International Helminth Genomes Consortium Comparative genomics of the major parasitic worms. Nat Genet. 2018;51(1):163–174. PubMed PMC
Hahn J, Seeber F, Kolodziej H, Ignatius R, Laue M, Aebischer T, Klotz C. High sensitivity of Giardia duodenalis to tetrahydrolipstatin (orlistat) in vitro. PLoS One. 2013;8(8):e71597. PubMed PMC
Shakarian AM, McGugan GC, Joshi MB, Bowers L, Ganim C, Barowski J, Dwyer DM. Identification, characterization, and expression of a unique secretory lipase from the human pathogen Leishmania donovani. Mol Cell Biochem. 2010;341(1–2):17–31. PubMed PMC
Chaves SP, Gomes DCO, De-Simone SG, Rossi-Bergmann B, de Matos HL. Serine proteases and vaccines against Leishmaniasis: a dual role. J Vaccine Vaccin. 2015;6:1.
Stutzer C, Richards SA, Ferreira M, Baron S, Maritz-Olivier C. Metazoan parasite vaccines: present status and future prospects. Front Cell Infect Microbiol. 2018;8:67. PubMed PMC
de Vries E, Bakker N, Krijgsveld J, Knox DP, Heck AJ, Yatsuda AP. An AC-5 cathepsin B-like protease purified from Haemonchus contortus excretory secretory products shows protective antigen potential for lambs. Vet Res. 2009;40(4):1–11. PubMed PMC
Sommerset I, Krossøy B, Biering E, Frost P. Vaccines for fish aquaculture. Expert Rev Vaccines. 2005;4:89–101. doi: 10.1586/14760584.4.1.89. PubMed DOI
Carraro L, Bertuzzo E, Mari L, Fontes I, Hartikainen H, Strepparava N, Schmidt-Posthaus H, Wahli T, Jokela J, Gatto M, Rinaldo A. Integrated field, laboratory, and theoretical study of PKD spread in a Swiss prealpine river. Proc Natl Acad Sci U S A. 2017;114(45):11992–11997. PubMed PMC
Okamura B, Hartikainen H, Schmidt-Posthaus H, Wahli T. Life cycle complexity, environmental change and the emerging status of salmonid proliferative kidney disease. Freshw Biol. 2011;56(4):735–753.
Bruneaux M, Visse M, Gross R, Pukk L, Saks L, Vasemägi A. Parasite infection and decreased thermal tolerance: impact of proliferative kidney disease on a wild salmonid fish in the context of climate change. Funct Ecol. 2017;31(1):216–226.
Debes PV, Gross R, Vasemägi A. Quantitative genetic variation in, and environmental effects on, pathogen resistance and temperature-dependent disease severity in a wild trout. Am Nat. 2017;190(2):244–265. PubMed
Skovgaard A, Buchmann K. Tetracapsuloides bryosalmonae and PKD in juvenile wild salmonids in Denmark. Dis Aq Org. 2012;101(1):33–42. PubMed
Robbins J. The New York Times. 2016. Tiny invader, deadly to fish, shuts down a river in Montana.
Hutchins PR, Sepulveda AJ, Martin RM, Hopper LR. A probe-based quantitative PCR assay for detecting Tetracapsuloides bryosalmonae in fish tissue and environmental DNA water samples. Cons Gen Resource. 2018;10(3):317–319.
Min XJ, Butler G, Storms R, Tsang A. OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Res. 2005;33:W677–W680. PubMed PMC
Li W. Godzik Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–1659. PubMed
Rawlings ND, Waller M, Barrett AJ. Bateman MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2014;42:D503–D509. PubMed PMC
Stefanik DJ, Lubinski TJ, Granger BR, Byrd AL, Reitzel AM, DeFilippo L, Lorenc A, Finnerty JR. Production of a reference transcriptome and transcriptomic database (EdwardsiellaBase) for the lined sea anemone, Edwardsiella lineata, a parasitic cnidarian. BMC Genomics. 2014;15:71. PubMed PMC
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845. PubMed PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. PubMed PMC
RNAi-directed knockdown in the cnidarian fish blood parasite Sphaerospora molnari
Genetic Diversity of Serine Protease Inhibitors in Myxozoan (Cnidaria, Myxozoa) Fish Parasites