Genetic Diversity of Serine Protease Inhibitors in Myxozoan (Cnidaria, Myxozoa) Fish Parasites

. 2020 Sep 29 ; 8 (10) : . [epub] 20200929

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33003479

Grantová podpora
NN124220 Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

Odkazy

PubMed 33003479
PubMed Central PMC7650755
DOI 10.3390/microorganisms8101502
PII: microorganisms8101502
Knihovny.cz E-zdroje

We studied the genetic variability of serine protease inhibitors (serpins) of Myxozoa, microscopic endoparasites of fish. Myxozoans affect the health of both farmed and wild fish populations, causing diseases and mortalities. Despite their global impact, no effective protection exists against these parasites. Serpins were reported as important factors for host invasion and immune evasion, and as promising targets for the development of antiparasitic therapies. For the first time, we identified and aligned serpin sequences from high throughput sequencing datasets of ten myxozoan species, and analyzed 146 serpins from this parasite group together with those of other taxa phylogenetically, to explore their relationship and origins. High intra- and interspecific variability was detected among the examined serpins. The average sequence identity was 25-30% only. The conserved domains (i.e., motif and signature) showed taxon-level differences. Serpins clustered according to taxonomy rather than to serpin types, and myxozoan serpins seemed to be highly divergent from that of other taxa. None of them clustered with their closest relative free-living cnidarians. The genetic distinction of myxozoan serpins further strengthens the idea of an independent origin of Myxozoa, and may indicate novel protein functions potentially related to parasitism in this animal group.

Zobrazit více v PubMed

Okamura B., Gruhl A., Bartholomew J.L. Myxozoan Evolution, Ecology and Development. Springer International Publishing; Cham, Switzerland: 2015. p. 441.

Forró B., Eszterbauer E. Correlation between host specificity and genetic diversity for the muscle-dwelling fish parasite Myxobolus pseudodispar: Examples of myxozoan host-shift? Folia Parasitol. 2016;63:2016.019. doi: 10.14411/fp.2016.019. PubMed DOI

Holzer A.S., Bartošová-Sojková P., Born-Torrijos A., Lövy A., Hartigan A., Fiala I. The joint evolution of the Myxozoa and their alternate hosts: A cnidarian recipe for success and vast biodiversity. Mol. Ecol. 2018;27:1651–1666. doi: 10.1111/mec.14558. PubMed DOI

Lisnerová M., Fiala I., Cantatore D., Irigoitia M., Timi J., Pecková H., Bartošová-Sojková P., Sandoval C.M., Luer C., Morris J., et al. Mechanisms and Drivers for the Establishment of Life Cycle Complexity in Myxozoan Parasites. Biology. 2020;9:10. doi: 10.3390/biology9010010. PubMed DOI PMC

Eszterbauer E., Kallert D.M., Grabner D., El-Matbouli M. Differentially expressed parasite genes involved in host recognition and invasion of the triactinomyxon stage of Myxobolus cerebralis (Myxozoa) Parasitology. 2009;136:367–377. doi: 10.1017/S0031182008005398. PubMed DOI

Hartigan A., Estensoro I., Vancová M., Bílý T., Patra S., Eszterbauer E., Holzer A.S. New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa:Myxosporea) blood stages in fish. Sci. Rep. 2016;6:39093. doi: 10.1038/srep39093. PubMed DOI PMC

Feist S.W., Morris D.J., Alama-Bermejo G., Holzer A.S. Myxozoan Evolution, Ecology and Development. Springer International Publishing; Cham, Switzerland: 2015. Cellular Processes in Myxozoans; pp. 139–154.

Alama-Bermejo G., Holzer A.S., Bartholomew J.L. Myxozoan Adhesion and Virulence: Ceratonova shasta on the Move. Microorganisms. 2019;7:397. doi: 10.3390/microorganisms7100397. PubMed DOI PMC

Irving J.A., Pike R.N., Lesk A.M., Whisstock J.C. Phylogeny of the Serpin Superfamily: Implications of Patterns of Amino Acid Conservation for Structure and Function. Genome Res. 2000;10:1845–1864. doi: 10.1101/gr.GR-1478R. PubMed DOI

Silverman G.A., Bird P.I., Carrell R.W., Church F.C., Coughlin P.B., Gettins P.G.W., Irving J.A., Lomas D.A., Luke C.J., Moyer R.W., et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J. Biol. Chem. 2001;276:33293–33296. doi: 10.1074/jbc.R100016200. PubMed DOI

Mulenga A., Sugino M., Nakajima M., Sugimoto C., Onuma M. Tick-encoded serine proteinase inhibitors (Serpins); Potential target antigens for tick vaccine development. J. Vet. Med. Sci. 2001;63:1063–1069. doi: 10.1292/jvms.63.1063. PubMed DOI

Xu T., Lew-Tabor A., Rodriguez-Valle M. Effective inhibition of thrombin by Rhipicephalus microplus serpin-15 (RmS-15) obtained in the yeast Pichia pastoris. Ticks Tick Borne Dis. 2016;7:180–187. doi: 10.1016/j.ttbdis.2015.09.007. PubMed DOI

Tirloni L., Reck J., Terra R.M.S., Martins J.R., Mulenga A., Sherman N.E., Fox J.W., Yates J.R., Termignoni C., Pinto A.F.M., et al. Proteomic Analysis of Cattle Tick Rhipicephalus (Boophilus) microplus Saliva: A Comparison between Partially and Fully Engorged Females. PLoS ONE. 2014;9:e94831. doi: 10.1371/journal.pone.0094831. PubMed DOI PMC

Tirloni L., Kim T.K., Coutinho M.L., Ali A., Seixas A., Termignoni C., Mulenga A., da Silva Vaz I. The putative role of Rhipicephalus microplus salivary serpins in the tick-host relationship. Insect Biochem. Mol. Biol. 2016;71:12–28. doi: 10.1016/j.ibmb.2016.01.004. PubMed DOI PMC

Modica M.V., Sunagar K., Holford M., Dutertre S. Editorial: Diversity and Evolution of Animal Venoms: Neglected Targets, Ecological Interactions, Future Perspectives. Front. Ecol. Evol. 2020;8:8. doi: 10.3389/fevo.2020.00065. DOI

Schick C., Pemberton P.A., Shi G.P., Kamachi Y., Çataltepe S., Bartuski A.J., Gornstein E.R., Brömme D., Chapman H.A., Silverman G.A. Cross-class inhibition of the cysteine proteinases cathepsins K, L, and S by the serpin squamous cell carcinoma antigen 1: A kinetic analysis. Biochemistry. 1998;37:5258–5266. doi: 10.1021/bi972521d. PubMed DOI

Huntington J.A., Read R.J., Carrell R.W. Structure of a serpin-protease complex shows inhibition by deformation. Nature. 2000;407:923–926. doi: 10.1038/35038119. PubMed DOI

Law R.H.P., Zhang Q., McGowan S., Buckle A.M., Silverman G.A., Wong W., Rosado C.J., Langendorf C.G., Pike R.N., Bird P.I., et al. An overview of the serpin superfamily. Genome Biol. 2006;7:1–11. doi: 10.1186/gb-2006-7-5-216. PubMed DOI PMC

Gettins P.G.W. Serpin Structure, Mechanism, and Function. Chem. Rev. 2002;102:4751–4804. doi: 10.1021/cr010170+. PubMed DOI

Quezada L.A.L., McKerrow J.H. Schistosome serine protease inhibitors: Parasite defense or homeostasis? An. Acad. Bras. Cienc. 2011;83:663–672. doi: 10.1590/S0001-37652011000200025. PubMed DOI PMC

Valdivieso E., Perteguer M.J., Hurtado C., Campioli P., Rodriguez E., Saborido A., Martinez-Sernandez V., Gomez-Puertas P., Ubeira F.M., Garate T. ANISERP: a new serpin from the parasite Anisakis simplex. Parasit. Vectors. 2015;8:399. doi: 10.1186/s13071-015-1006-z. PubMed DOI PMC

Maizels R.M., Gomez-Escobar N., Gregory W.F., Murray J., Zang X.X. Immune evasion genes from filarial nematodes. Int. J. Parasitol. 2001;31:889–898. doi: 10.1016/S0020-7519(01)00213-2. PubMed DOI

Toubarro D., Lucena-Robles M., Nascimento G., Santos R., Montiel R., Veríssimo P., Pires E., Faro C., Coelho A.V., Simões N. Serine protease-mediated host invasion by the parasitic nematode Steinernema carpocapsae. J. Biol. Chem. 2010;285:30666–30675. doi: 10.1074/jbc.M110.129346. PubMed DOI PMC

Doyle P.S., Zhou Y.M., Hsieh I., Greenbaum D.C., McKerrow J.H., Engel J.C. The trypanosoma cruzi protease cruzain mediates immune evasion. PLoS Pathog. 2011;7:e1002139. doi: 10.1371/journal.ppat.1002139. PubMed DOI PMC

Faria M.S., Reis F.C., Azevedo-Pereira R.L., Morrison L.S., Mottram J.C., Lima A.P. Leishmania inhibitor of serine peptidase 2 prevents TLR4 activation by neutrophil elastase promoting parasite survival in murine macrophages. J. Immunol. 2011;186:411–422. doi: 10.4049/jimmunol.1002175. PubMed DOI PMC

Alam A., Bhatnagar R.K., Relan U., Mukherjee P., Chauhan V.S. Proteolytic activity of Plasmodium falciparum subtilisin-like protease 3 on parasite profilin, a multifunctional protein. Mol. Biochem. Parasitol. 2013;191:58–62. doi: 10.1016/j.molbiopara.2013.09.006. PubMed DOI

Yang Y., Xiong J., Zhou Z., Huo F., Miao W., Ran C., Liu Y., Zhang J., Feng J., Wang M., et al. The genome of the myxosporean Thelohanellus kitauei shows adaptations to nutrient acquisition within its fish host. Genome Biol. Evol. 2014;6:3182–3198. doi: 10.1093/gbe/evu247. PubMed DOI PMC

Chang E.S., Neuhof M., Rubinstein N.D., Diamant A., Philippe H., Huchon D., Cartwright P. Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proc. Natl. Acad. Sci. USA. 2015;112:14912–14917. doi: 10.1073/pnas.1511468112. PubMed DOI PMC

Yahalomi D., Atkinson S.D., Neuhof M., Sally Chang E., Philippe H., Cartwright P., Bartholomew J.L., Huchon D. A cnidarian parasite of salmon (Myxozoa: Henneguya) lacks a mitochondrial genome. Proc. Natl. Acad. Sci. USA. 2020;117:5358–5363. doi: 10.1073/pnas.1909907117. PubMed DOI PMC

Foox J., Ringuette M., Desser S.S., Siddall M.E. In silico hybridization enables transcriptomic illumination of the nature and evolution of Myxozoa. BMC Genom. 2015;16:840. doi: 10.1186/s12864-015-2039-6. PubMed DOI PMC

Nesnidal M.P., Helmkampf M., Bruchhaus I., El-Matbouli M., Hausdorf B. Agent of whirling disease meets orphan worm: phylogenomic analyses firmly place Myxozoa in Cnidaria. PLoS ONE. 2013;8:e54576. doi: 10.1371/journal.pone.0054576. PubMed DOI PMC

Alama-Bermejo G., Meyer E., Atkinson S.D., Holzer A.S., Wiśniewska M.M., Kolísko M., Bartholomew J.L. Transcriptome-wide comparisons and virulence gene polymorphisms of host-associated genotypes of the cnidarian parasite Ceratonova shasta in salmonids. Genome Biol. Evol. 2020;12:1258–1276. doi: 10.1093/gbe/evaa109. PubMed DOI PMC

Hartigan A., Kosakyan A., Pecková H., Eszterbauer E., Holzer A.S. Transcriptome of Sphaerospora molnari (Cnidaria, Myxosporea) blood stages provides proteolytic arsenal as potential therapeutic targets against sphaerosporosis in common carp. BMC Genom. 2020;21:404. doi: 10.1186/s12864-020-6705-y. PubMed DOI PMC

Altschul S.F., Madden T.L., Schaffer A.A., Zhang J.H., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Rawlings N.D., Barrett A.J., Thomas P.D., Huang X., Bateman A., Finn R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–D632. doi: 10.1093/nar/gkx1134. PubMed DOI PMC

El-Gebali S., Mistry J., Bateman A., Eddy S.R., Luciani A., Potter S.C., Qureshi M., Richardson L.J., Salazar G.A., Smart A., et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D432. doi: 10.1093/nar/gky995. PubMed DOI PMC

Finn R.D., Clements J., Eddy S.R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37. doi: 10.1093/nar/gkr367. PubMed DOI PMC

Bateman A. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–D515. doi: 10.1093/nar/gky1049. PubMed DOI PMC

Sipos D., Ursu K., Dán Á., Herczeg D., Eszterbauer E. Susceptibility-related differences in the quantity of developmental stages of Myxobolus spp. (Myxozoa) in fish blood. PLoS ONE. 2018;13:e0204437. doi: 10.1371/journal.pone.0204437. PubMed DOI PMC

Eszterbauer E., Atkinson S., Diamant A., Morris D., El-Matbouli Mansour M., Hartikainen H. Myxozoan Evolution, Ecology and Development. Springer International Publishing; Cham, Switzerland: 2015. Myxozoan life cycles: Practical approaches and insights; pp. 175–198.

Korytář T., Wiegertjes G.F., Zusková E., Tomanová A., Lisnerová M., Patra S., Sieranski V., Šíma R., Born-Torrijos A., Wentzel A.S., et al. The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari. Parasit. Vectors. 2019;12:208. doi: 10.1186/s13071-019-3462-3. PubMed DOI PMC

Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Muhire B.M., Varsani A., Martin D.P. SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE. 2014;9:e108277. doi: 10.1371/journal.pone.0108277. PubMed DOI PMC

Darriba D., Posada D., Kozlov A.M., Stamatakis A., Morel B., Flouri T. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 2020;37:291–294. doi: 10.1093/molbev/msz189. PubMed DOI PMC

Le S.Q., Gascuel O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008;25:1307–1320. doi: 10.1093/molbev/msn067. PubMed DOI

Kozlov A.M., Darriba D., Flouri T., Morel B., Stamatakis A. RAxML-NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–4455. doi: 10.1093/bioinformatics/btz305. PubMed DOI PMC

Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Kumar A., Ragg H. Ancestry and evolution of a secretory pathway serpin. BMC Evol. Biol. 2008;8:250. doi: 10.1186/1471-2148-8-250. PubMed DOI PMC

Liu T., Wei W.Y., Wang K.Y., Yang Q., Wang E.L. Pathological and immunological analyses of Thelohanellus kitauei (Myxozoa:Myxosporea) infection in the scattered mirror carp, Cyprinus carpio. Sci. Rep. 2019;9:20014. doi: 10.1038/s41598-019-56752-w. PubMed DOI PMC

Jordan R.E. Antithrombin in vertebrate species: Conservation of the heparin-dependent anticoagulant mechanism. Arch. Biochem. Biophys. 1983;227:587–595. doi: 10.1016/0003-9861(83)90488-5. PubMed DOI

Han X., Fiehler R., Broze G.J. Isolation of a protein Z-dependent plasma protease inhibitor. Proc. Natl. Acad. Sci. USA. 1998;95:9250–9255. doi: 10.1073/pnas.95.16.9250. PubMed DOI PMC

Sitjà-Bobadilla A., Calduch-Giner J., Saera-Vila A., Palenzuela O., Álvarez-Pellitero P., Pérez-Sánchez J. Chronic exposure to the parasite Enteromyxum leei (Myxozoa: Myxosporea) modulates the immune response and the expression of growth, redox and immune relevant genes in gilthead sea bream, Sparus aurata L. Fish Shellfish Immunol. 2008;24:610–619. doi: 10.1016/j.fsi.2008.01.014. PubMed DOI

Sitjà-Bobadilla A., Schmidt-Posthaus H., Wahli T., Holland J.W., Secombes C.J. Myxozoan Evolution, Ecology and Development. Springer International Publishing; Cham, Switzerland: 2015. Fish Immune Responses to Myxozoa; pp. 253–280.

Fiala I., Bartosova P. History of myxozoan character evolution on the basis of rDNA and EF-2 data. BMC Evol. Biol. 2010;10:228. doi: 10.1186/1471-2148-10-228. PubMed DOI PMC

Marciniak S.J., Lomas D.A. Intracellular serpins, firewalls and tissue necrosis. Trends Cell Biol. 2008;18:45–47. doi: 10.1016/j.tcb.2007.11.006. PubMed DOI

AmbuAli A., Monaghan S.J., McLean K., Inglis N.F., Bekaert M., Wehner S., Bron J.E. Identification of proteins from the secretory/excretory products (SEPs) of the branchiuran ectoparasite Argulus foliaceus (Linnaeus, 1758) reveals unique secreted proteins amongst haematophagous ecdysozoa. Parasit Vectors. 2020;13:88. doi: 10.1186/s13071-020-3964-z. PubMed DOI PMC

Putnam N.H., Srivastava M., Hellsten U., Dirks B., Chapman J., Salamov A., Terry A., Shapiro H., Lindquist E., Kapitonov V.V., et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science. 2007;317:86–94. doi: 10.1126/science.1139158. PubMed DOI

Cole E.B., Miller D., Rometo D., Greenberg R.M., Brömme D., Çataltepe S., Pak S.C., Mills D.R., Silverman G.A., Luke C.J. Identification and activity of a lower eukaryotic serine proteinase inhibitor (serpin) from Cyanea capillata: Analysis of a jellyfish serpin, jellypin. Biochemistry. 2004;43:11750–11759. doi: 10.1021/bi049020u. PubMed DOI

Roberts T.H., Hejgaard J., Saunders N.F.W., Cavicchioli R., Curmi P.M.G. Serpins in unicellular Eukarya, Archaea, and Bacteria: Sequence analysis and evolution. J. Mol. Evol. 2004;59:437–447. doi: 10.1007/s00239-004-2635-6. PubMed DOI

Zang X., Maizels R.M. Serine proteinase inhibitors from nematodes and the arms race between host and pathogen. Trends Biochem. Sci. 2001;26:191–197. doi: 10.1016/S0968-0004(00)01761-8. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...