The cnidarian parasite Ceratonova shasta utilizes inherited and recruited venom-like compounds during infection

. 2021 ; 9 () : e12606. [epub] 20211215

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35003924

BACKGROUND: Cnidarians are the most ancient venomous organisms. They store a cocktail of venom proteins inside unique stinging organelles called nematocysts. When a cnidarian encounters chemical and physical cues from a potential threat or prey animal, the nematocyst is triggered and fires a harpoon-like tubule to penetrate and inject venom into the prey. Nematocysts are present in all Cnidaria, including the morphologically simple Myxozoa, which are a speciose group of microscopic, spore-forming, obligate parasites of fish and invertebrates. Rather than predation or defense, myxozoans use nematocysts for adhesion to hosts, but the involvement of venom in this process is poorly understood. Recent work shows some myxozoans have a reduced repertoire of venom-like compounds (VLCs) relative to free-living cnidarians, however the function of these proteins is not known. METHODS: We searched for VLCs in the nematocyst proteome and a time-series infection transcriptome of Ceratonova shasta, a myxozoan parasite of salmonid fish. We used four parallel approaches to detect VLCs: BLAST and HMMER searches to preexisting cnidarian venom datasets, the machine learning tool ToxClassifier, and structural modeling of nematocyst proteomes. Sequences that scored positive by at least three methods were considered VLCs. We then mapped their time-series expressions in the fish host and analyzed their phylogenetic relatedness to sequences from other venomous animals. RESULTS: We identified eight VLCs, all of which have closely related sequences in other myxozoan datasets, suggesting a conserved venom profile across Myxozoa, and an overall reduction in venom diversity relative to free-living cnidarians. Expression of the VLCs over the 3-week fish infection varied considerably: three sequences were most expressed at one day post-exposure in the fish's gills; whereas expression of the other five VLCs peaked at 21 days post-exposure in the intestines, coinciding with the formation of mature parasite spores with nematocysts. Expression of VLC genes early in infection, prior to the development of nematocysts, suggests venoms in C. shasta have been repurposed to facilitate parasite invasion and proliferation within the host. Molecular phylogenetics suggested some VLCs were inherited from a cnidarian ancestor, whereas others were more closely related to sequences from venomous non-Cnidarian organisms and thus may have gained qualities of venom components via convergent evolution. The presence of VLCs and their differential expression during parasite infection enrich the concept of what functions a "venom" can have and represent targets for designing therapeutics against myxozoan infections.

Zobrazit více v PubMed

Adachi K, Miyake H, Kuramochi T, Mizusawa K, Okumura S-I. Genome size distribution in phylum Cnidaria. Fisheries Science. 2017;83:107–112. doi: 10.1007/s12562-016-1050-4. DOI

Alama-Bermejo G, Holzer AS, Bartholomew JL. Myxozoan adhesion and virulence: Ceratonova shasta on the move. Microorganisms. 2019;7(10):397. doi: 10.3390/microorganisms7100397. PubMed DOI PMC

Alama-Bermejo G, Meyer E, Atkinson SD, Holzer AS, Wiśniewska MM, Kolísko M, Bartholomew JL. Transcriptome-wide comparisons and virulence gene polymorphisms of host-associated genotypes of the cnidarian parasite Ceratonova shasta in Salmonids. Genome Biology and Evolution. 2020;12:1258–1276. doi: 10.1093/gbe/evaa109. PubMed DOI PMC

Americus B, Lotan T, Bartholomew JL, Atkinson SD. A comparison of the structure and function of nematocysts in free-living and parasitic cnidarians (Myxozoa) International Journal for Parasitology. 2020;50:763–769. doi: 10.1016/j.ijpara.2020.04.012. PubMed DOI

Barrett D, Bartholomew JL. A tale of two fish: comparative transcriptomics of resistant and susceptible steelhead following exposure to Ceratonova shasta highlights differences in parasite recognition. PLOS ONE. 2021;16(2):e0234837. doi: 10.1371/journal.pone.0234837. PubMed DOI PMC

Beckmann A, Özbek S. The nematocyst: a molecular map of the cnidarian stinging organelle. The International Journal of Developmental Biology. 2012;56:577–582. doi: 10.1387/ijdb.113472ab. PubMed DOI

Ben-David J, Atkinson SD, Pollak Y, Yossifon G, Shavit U, Bartholomew JL, Lotan T. Myxozoan polar tubules display structural and functional variation. Parasites & Vectors. 2016;9:549. doi: 10.1186/s13071-016-1819-4. PubMed DOI PMC

Bjarnason JB, Fox JW. Snake venom metalloendopeptidases: reprolysins. Methods in Enzymology. 1995;248:345–368. doi: 10.1016/0076-6879(95)48023-4. PubMed DOI

Bjork SJ, Bartholomew JL. Invasion of Ceratomyxa shasta (Myxozoa) and comparison of migration to the intestine between susceptible and resistant fish hosts. International Journal for Parasitology. 2010;40:1087–1095. doi: 10.1016/j.ijpara.2010.03.005. PubMed DOI

Brinkman DL, Aziz A, Loukas A, Potriquet J, Seymour J, Mulvenna J. Venom proteome of the box jellyfish Chironex fleckeri. PLOS ONE. 2012;7:e47866. doi: 10.1371/journal.pone.0047866. PubMed DOI PMC

Brinkman DL, Jia X, Potriquet J, Kumar D, Dash D, Kvaskoff D, Mulvenna J. Transcriptome and venom proteome of the box jellyfish Chironex fleckeri. BMC Genomics. 2015;16:407. doi: 10.1186/s12864-015-1568-3. PubMed DOI PMC

Cannon Q, Wagner E. Comparison of discharge mechanisms of Cnidarian cnidae and Myxozoan polar capsules. Reviews in Fisheries Science. 2003;11(3):185–219. doi: 10.1080/10641260390244305. DOI

Chang ES, Neuhof M, Rubinstein ND, Diamant A, Philippe H, Huchon D, Cartwright P. Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proceedings of The National Academy of Sciences. 2015;112:14912–14917. doi: 10.1073/pnas.1511468112. PubMed DOI PMC

Ching ATC, Paes Leme AF, Zelanis A, Rocha MMT, de Furtado MFD, Silva DA, Trugilho MRO, da Rocha SLG, Perales J, Ho PL, Serrano SMT, Junqueira-de-Azevedo ILM. Venomics profiling of Thamnodynastes strigatus unveils matrix metalloproteinases and other novel proteins recruited to the toxin arsenal of rear-fanged snakes. Journal of Proteome Research. 2012;11:1152–1162. doi: 10.1021/pr200876c. PubMed DOI

Cid-Uribe JI, Santibáñez-López CE, Meneses EP, Batista CVF, Jiménez-Vargas JM, Ortiz E, Possani LD. The diversity of venom components of the scorpion species Paravaejovis schwenkmeyeri (Scorpiones: Vaejovidae) revealed by transcriptome and proteome analyses. Toxicon. 2018;151:47–62. doi: 10.1016/j.toxicon.2018.06.085. PubMed DOI

D’Ambra I, Lauritano C. A review of toxins from Cnidaria. Marine Drugs. 2020;18(10):507. doi: 10.3390/md18100507. PubMed DOI PMC

Domínguez-Pérez D, Campos A, Alexei Rodríguez A, Turkina MV, Ribeiro T, Osorio H, Vasconcelos V, Antunes A. Proteomic analyses of the unexplored sea anemone Bunodactis verrucosa. Marine Drugs. 2018;16(2):42. doi: 10.3390/md16020042. PubMed DOI PMC

Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113. doi: 10.1186/1471-2105-5-113. PubMed DOI PMC

Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics. 2006;7:191. doi: 10.1186/1471-2105-7-191. PubMed DOI PMC

Eszterbauer E, Sipos D, Kaján GL, Szegő D, Fiala I, Holzer AS, Bartošová-Sojková P. Genetic diversity of serine protease inhibitors in Myxozoan (Cnidaria, Myxozoa) fish parasites. Microorganisms. 2020;8(10):1502. doi: 10.3390/microorganisms8101502. PubMed DOI PMC

Eszterbauer E, Szegő D, Ursu K, Sipos D, Gellért Á. Serine protease inhibitors of the whirling disease parasite Myxobolus cerebralis (Cnidaria, Myxozoa): expression profiling and functional predictions. PLOS ONE. 2021;16:e0249266. doi: 10.1371/journal.pone.0249266. PubMed DOI PMC

Evans NM, Holder MT, Barbeitos MS, Okamura B, Cartwright P. The phylogenetic position of Myxozoa: exploring conflicting signals in phylogenomic and ribosomal data sets. Molecular Biology and Evolution. 2010;27(12):2733–2746. doi: 10.1093/molbev/msq159. PubMed DOI

Fautin DG. Structural diversity, systematics, and evolution of cnidae. Toxicon. 2009;54(8):1054–1064. doi: 10.1016/j.toxicon.2009.02.024. PubMed DOI

Foox J, Ringuette M, Desser SS, Siddall ME. In silico hybridization enables transcriptomic illumination of the nature and evolution of Myxozoa. BMC Genomics. 2015;16(1):840. doi: 10.1186/s12864-015-2039-6. PubMed DOI PMC

Frost RJA, Engelhardt S. A secretion trap screen in yeast identifies protease inhibitor 16 as a novel antihypertrophic protein secreted from the heart. Circulation. 2007;116(16):1768–1775. doi: 10.1161/CIRCULATIONAHA.107.696468. PubMed DOI

Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JDA, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RCR. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annual Review of Genomics and Human Genetics. 2009;10(1):483–511. doi: 10.1146/annurev.genom.9.081307.164356. PubMed DOI

Gacesa R, Barlow DJ, Long PF. Machine learning can differentiate venom toxins from other proteins having non-toxic physiological functions. PeerJ Computer Science. 2016;2:e90. doi: 10.7717/peerj-cs.90. DOI

Gerdol M, Cervelli M, Mariottini P, Oliverio M, Dutertre S, Modica MV. A recurrent motif: diversity and evolution of ShKT domain containing proteins in the vampire snail. Toxins. 2019;11(2):106. doi: 10.3390/toxins11020106. PubMed DOI PMC

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols. 2013;8(8):1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC

Hartigan A, Jaimes-Becerra A, Okamura B, Doonan LB, Ward M, Marques AC, Long PF. Recruitment of toxin-like proteins with ancestral venom function supports endoparasitic lifestyles of Myxozoa. PeerJ. 2021;9(10–11):e11208. doi: 10.7717/peerj.11208. PubMed DOI PMC

Hazell GGJ, Peachey AMG, Teasdale JE, Sala-Newby GB, Angelini GD, Newby AC, White SJ. PI16 is a shear stress and inflammation-regulated inhibitor of MMP2. Scientific Reports. 2016;6(1):5. doi: 10.1038/srep39553. PubMed DOI PMC

Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16:169. doi: 10.1186/s12859-015-0611-3. PubMed DOI PMC

Holm L, Laakso LM. Dali server update. Nucleic Acids Research. 2016;44(W1):W351–W355. doi: 10.1093/nar/gkw357. PubMed DOI PMC

Ibragimov A, Raikova E. Nematocysts of Polypodium hydriforme, a cnidarian parasite of acipenseriform fishes. Hydrobiologia. 2004;530–531(1–3):165–171. doi: 10.1007/s10750-004-2651-y. DOI

Jaimes-Becerra A, Chung R, Morandini AC, Weston AJ, Padilla G, Gacesa R, Ward M, Long PF, Marques AC. Comparative proteomics reveals recruitment patterns of some protein families in the venoms of Cnidaria. Toxicon. 2017;137(e90):19–26. doi: 10.1016/j.toxicon.2017.07.012. PubMed DOI

Jouiaei M, Yanagihara AA, Madio B, Nevalainen TJ, Alewood PF, Fry BG. Ancient venom systems: a review on Cnidaria toxins. Toxins. 2015;7(6):2251–2271. doi: 10.3390/toxins7062251. PubMed DOI PMC

Junqueira-de-Azevedo ILM, Campos PF, Ching ATC, Mackessy SP. Colubrid venom composition: an -omics perspective. Toxins. 2016;8(8):230. doi: 10.3390/toxins8080230. PubMed DOI PMC

Kallert DM, Ponader S, Eszterbauer E, El-Matbouli M, Haas W. Myxozoan transmission via actinospores: new insights into mechanisms and adaptations for host invasion. Parasitology. 2007;134(12):1741–1750. doi: 10.1017/S0031182007003290. PubMed DOI

Kayal E, Bentlage B, Sabrina Pankey M, Ohdera AH, Medina M, Plachetzki DC, Collins AG, Ryan JF. Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evolutionary Biology. 2018;18(1):139. doi: 10.1186/s12862-018-1142-0. PubMed DOI

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols. 2015;10:845–858. doi: 10.1038/nprot.2015.053. PubMed DOI PMC

Kim H-M, Weber JA, Lee N, Park SG, Cho YS, Bhak Y, Lee N, Jeon Y, Jeon S, Luria V, Karger A, Kirschner MW, Jo YJ, Woo S, Shin K, Chung O, Ryu J-C, Yim H-S, Lee J-H, Edwards JS, Manica A, Bhak J, Yum S. The genome of the giant Nomura’s jellyfish sheds light on the early evolution of active predation. BMC Biology. 2019;17:28. doi: 10.1186/s12915-019-0643-7. PubMed DOI PMC

Klompen AML, Macrander J, Reitzel AM, Stampar SN. Transcriptomic analysis of four cerianthid (Cnidaria, Ceriantharia) venoms. Marine Drugs. 2020;18(8):413. doi: 10.3390/md18080413. PubMed DOI PMC

Kosakyan A, Alama-Bermejo G, Bartošová-Sojková P, Born-Torrijos A, Šíma R, Nenarokova A, Eszterbauer E, Bartholomew J, Holzer AS. Selection of suitable reference genes for gene expression studies in myxosporean (Myxozoa, Cnidaria) parasites. Scientific Reports. 2019;9:15073. doi: 10.1038/s41598-019-51479-0. PubMed DOI PMC

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Lee H, Jung E-S, Kang C, Yoon WD, Kim J-S, Kim E. Scyphozoan jellyfish venom metalloproteinases and their role in the cytotoxicity. Toxicon. 2011;58:277–284. doi: 10.1016/j.toxicon.2011.06.007. PubMed DOI

Leonardi A, Biass D, Kordiš D, Stöcklin R, Favreau P, Križaj I. Conus consors snail venom proteomics proposes functions, pathways, and novel families involved in its venomic system. Journal of Proteome Research. 2012;11:5046–5058. doi: 10.1021/pr3006155. PubMed DOI

Lewis Ames C, Ryan JF, Bely AE, Cartwright P, Collins AG. A new transcriptome and transcriptome profiling of adult and larval tissue in the box jellyfish Alatina alata: an emerging model for studying venom, vision and sex. BMC Genomics. 2016;17:650. doi: 10.1186/s12864-016-2944-3. PubMed DOI PMC

Lotan A, Fishman L, Loya Y, Zlotkin E. Delivery of a nematocyst toxin. Nature. 1995;375:456. doi: 10.1038/375456a0. PubMed DOI

Loukas A, Mullin NP, Tetteh KK, Moens L, Maizels RM. A novel C-type lectin secreted by a tissue-dwelling parasitic nematode. Current Biology: CB. 1999;9:825–828. doi: 10.1016/s0960-9822(99)80366-2. PubMed DOI

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Macrander J, Brugler MR, Daly M. A RNA-seq approach to identify putative toxins from acrorhagi in aggressive and non-aggressive Anthopleura elegantissima polyps. BMC Genomics. 2015;16:221. doi: 10.1186/s12864-015-1417-4. PubMed DOI PMC

Macrander J, Broe M, Daly M. Tissue-specific venom composition and differential gene expression in Sea Anemones. Genome Biology and Evolution. 2016;8:2358–2375. doi: 10.1093/gbe/evw155. PubMed DOI PMC

Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH. CDD: NCBI’s conserved domain database. Nucleic Acids Research. 2015;43(D1):D222–6. doi: 10.1093/nar/gku1221. PubMed DOI PMC

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic Era. Molecular Biology and Evolution. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC

Moran Y, Genikhovich G, Gordon D, Wienkoop S, Zenkert C, Ozbek S, Technau U, Gurevitz M. Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones. Proceedings. Biological Sciences/The Royal Society. 2012;279(1732):1351–1358. doi: 10.1098/rspb.2011.1731. PubMed DOI PMC

Moran Y, Praher D, Schlesinger A, Ayalon A, Tal Y, Technau U. Analysis of soluble protein contents from the nematocysts of a model sea anemone sheds light on venom evolution. Marine Biotechnology. 2013;15(3):329–339. doi: 10.1007/s10126-012-9491-y. PubMed DOI PMC

Morita T. Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities. Toxicon. 2005;45(8):1099–1114. doi: 10.1016/j.toxicon.2005.02.021. PubMed DOI

Okamura B, Gruhl A, Bartholomew JL. An introduction to myxozoan evolution, ecology and development. In: Okamura B, Gruhl A, Bartholomew JL, editors. Myxozoan Evolution, Ecology and Development. Switzerland: Springer International Publishing; 2015. pp. 1–20.

Orts DJB, Moran Y, Cologna CT, Peigneur S, Madio B, Praher D, Quinton L, De Pauw E, Bicudo JEPW, Tytgat J, de Freitas JC. BcsTx3 is a founder of a novel sea anemone toxin family of potassium channel blocker. The FEBS Journal. 2013;280(19):4839–4852. doi: 10.1111/febs.12456. PubMed DOI

Östman C. A guideline to nematocyst nomenclature and classification, and some notes on the systematic value of nematocysts. Scientia Marina. 2000;64(S1):31–46. doi: 10.3989/scimar.2000.64s131. DOI

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods. 2017;14:417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC

Piriatinskiy G, Atkinson SD, Park S, Morgenstern D, Brekhman V, Yossifon G, Bartholomew JL, Lotan T. Functional and proteomic analysis of Ceratonova shasta (Cnidaria: Myxozoa) polar capsules reveals adaptations to parasitism. Scientific Reports. 2017;7:9010. doi: 10.1038/s41598-017-09955-y. PubMed DOI PMC

Podobnik M, Anderluh G. Pore-forming toxins in Cnidaria. Seminars in Cell & Developmental Biology. 2017;72:133–141. doi: 10.1016/j.semcdb.2017.07.026. PubMed DOI

Rachamim T, Morgenstern D, Aharonovich D, Brekhman V, Lotan T, Sher D. The dynamically evolving nematocyst content of an Anthozoan, a scyphozoan, and a hydrozoan. Molecular Biology and Evolution. 2015;32(3):740–753. doi: 10.1093/molbev/msu335. PubMed DOI

Ramírez-Carreto S, Vera-Estrella R, Portillo-Bobadilla T, Licea-Navarro A, Bernaldez-Sarabia J, Rudiño-Piñera E, Verleyen JJ, Rodríguez E, Rodríguez-Almazán C. Transcriptomic and proteomic analysis of the tentacles and mucus of Anthopleura dowii verrill, 1869. Marine Drugs. 2019;17(8):436. doi: 10.3390/md17080436. PubMed DOI PMC

Ranasinghe SL, Fischer K, Gobert GN, McManus DP. Functional expression of a novel Kunitz type protease inhibitor from the human blood fluke Schistosoma mansoni. Parasites & Vectors. 2015;8:408. doi: 10.1186/s13071-015-1022-z. PubMed DOI PMC

Regn M, Laggerbauer B, Jentzsch C, Ramanujam D, Ahles A, Sichler S, Calzada-Wack J, Koenen RR, Braun A, Nieswandt B, Engelhardt S. Peptidase inhibitor 16 is a membrane-tethered regulator of chemerin processing in the myocardium. Journal of Molecular and Cellular Cardiology. 2016;99:57–64. doi: 10.1016/j.yjmcc.2016.08.010. PubMed DOI

Rokyta DR, Wray KP, Margres MJ. The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics. BMC Genomics. 2013;14(1):394. doi: 10.1186/1471-2164-14-394. PubMed DOI PMC

Sachkova MY, Landau M, Surm JM, Macrander J, Singer SA, Reitzel AM, Moran Y. Toxin-like neuropeptides in the sea anemone unravel recruitment from the nervous system to venom. Proceedings of The National Academy of Sciences. 2020;117:27481–27492. doi: 10.1073/pnas.2011120117. PubMed DOI PMC

Shi J, Gilbert GE. Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. Blood. 2003;101(7):2628–2636. doi: 10.1182/blood-2002-07-1951. PubMed DOI

Sintsova O, Gladkikh I, Chausova V, Monastyrnaya M, Anastyuk S, Chernikov O, Yurchenko E, Aminin D, Isaeva M, Leychenko E, Kozlovskaya E. Peptide fingerprinting of the sea anemone Heteractis magnifica mucus revealed neurotoxins, Kunitz-type proteinase inhibitors and a new β-defensin α-amylase inhibitor. Journal of Proteomics. 2018;173:12–21. doi: 10.1016/j.jprot.2017.11.019. PubMed DOI

Smith D, Cwiklinski K, Jewhurst H, Tikhonova IG, Dalton JP. An atypical and functionally diverse family of Kunitz-type cysteine/serine proteinase inhibitors secreted by the helminth parasite Fasciola hepatica. Scientific Reports. 2020;10:20657. doi: 10.1038/s41598-020-77687-7. PubMed DOI PMC

Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2015;4:1521. doi: 10.12688/f1000research.7563.2. PubMed DOI PMC

Takeuchi F, Sekizuka T, Ogasawara Y, Yokoyama H, Kamikawa R, Inagaki Y, Nozaki T, Sugita-Konishi Y, Ohnishi T, Kuroda M. The mitochondrial genomes of a Myxozoan genus Kudoa are extremely divergent in Metazoa. PLOS ONE. 2015;10:e0132030. doi: 10.1371/journal.pone.0132030. PubMed DOI PMC

Tu AT, Hendon RR. Characterization of lizard venom hyaluronidase and evidence for its action as a spreading factor. Comparative Biochemistry and Physiology. B, Comparative Biochemistry. 1983;76:377–383. doi: 10.1016/0305-0491(83)90086-x. PubMed DOI

Uspenskaya AV. New data on the life cycle and biology of Myxosporidia. Archiv für Protistenkunde. 1982;126:309–338. doi: 10.1016/S0003-9365(82)80041-9. DOI

Voolstra CR, Li Y, Liew YJ, Baumgarten S, Zoccola D, Flot J-F, Tambutté S, Allemand D, Aranda M. Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. Scientific Reports. 2017;7:17583. doi: 10.1038/s41598-017-17484-x. PubMed DOI PMC

Wang P, Jiang Z, Liu X, Yu K, Wang C, Li H, Zhong L. PI16 attenuates response to sorafenib and represents a predictive biomarker in hepatocellular carcinoma. Cancer Medicine. 2020;9:6972–6983. doi: 10.1002/cam4.3331. PubMed DOI PMC

Whittington CM, Papenfuss AT, Bansal P, Torres AM, Wong ESW, Deakin JE, Graves T, Alsop A, Schatzkamer K, Kremitzki C, Ponting CP, Temple-Smith P, Warren WC, Kuchel PW, Belov K. Defensins and the convergent evolution of platypus and reptile venom genes. Genome Research. 2008;18(6):986–994. doi: 10.1101/gr.7149808. PubMed DOI PMC

Yang W, Feng J, Wang B, Cao Z, Li W, Wu Y, Chen Z. BF9, the first functionally characterized snake toxin peptide with Kunitz-type protease and potassium channel inhibiting properties. Journal of Biochemical and Molecular Toxicology. 2014a;28:76–83. doi: 10.1002/jbt.21538. PubMed DOI

Yang Y, Xiong J, Zhou Z, Huo F, Miao W, Ran C, Liu Y, Zhang J, Feng J, Wang M, Wang M, Wang L, Yao B. The genome of the myxosporean Thelohanellus kitauei shows adaptations to nutrient acquisition within its fish host. Genome Biology and Evolution. 2014b;6:3182–3198. doi: 10.1093/gbe/evu247. PubMed DOI PMC

Zhang M, Fishman Y, Sher D, Zlotkin E. Hydralysin, a novel animal group-selective paralytic and cytolytic protein from a noncnidocystic origin in hydra. Biochemistry. 2003;42(30):8939–8944. doi: 10.1021/bi0343929. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace