Myxozoan Adhesion and Virulence: Ceratonova shasta on the Move

. 2019 Sep 26 ; 7 (10) : . [epub] 20190926

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31561529

Grantová podpora
14-28784P Grantová Agentura České Republiky
19-28399X Grantová Agentura České Republiky
APOSTD/2013/087 Consellería de Educación, Investigación, Cultura y Deporte, Valencia, Spain
LM2015062 Ministry of Education, Youth and Sports of the Czech Republic
CZ.1.05/2.1.00/01.0017 Ministry of Education, Youth and Sports of the Czech Republic

Odkazy

PubMed 31561529
PubMed Central PMC6843538
DOI 10.3390/microorganisms7100397
PII: microorganisms7100397
Knihovny.cz E-zdroje

Motility factors are fundamental for parasite invasion, migration, proliferation and immune evasion and thus can influence parasitic disease pathogenesis and virulence. Salmonid enteronecrosis is caused by a myxozoan (Phylum Cnidarian) parasite, Ceratonova shasta. Three parasite genotypes (0, I, II) occur, with varying degrees of virulence in its host, making it a good model for examining the role of motility in virulence. We compare C. shasta cell motility between genotypes and describe how the cellular protrusions interact with the host. We support these observations with motility gene expression analyses. C. shasta stages can move by single or combined used of filopodia, lamellipodia and blebs, with different behaviors such as static adhesion, crawling or blebbing, some previously unobserved in myxozoans. C. shasta stages showed high flexibility of switching between different morphotypes, suggesting a high capacity to adapt to their microenvironment. Exposure to fibronectin showed that C. shasta stages have extraordinary adhesive affinities to glycoprotein components of the extracellular matrix (ECM). When comparing C. shasta genotypes 0 (low virulence, no mortality) and IIR (high virulence, high mortality) infections in rainbow trout, major differences were observed with regard to their migration to the target organ, gene expression patterns and proliferation rate in the host. IIR is characterized by rapid multiplication and fast amoeboid bleb-based migration to the gut, where adhesion (mediated by integrin-β and talin), ECM disruption and virulent systemic dispersion of the parasite causes massive pathology. Genotype 0 is characterized by low proliferation rates, slow directional and early adhesive migration and localized, non-destructive development in the gut. We conclude that parasite adhesion drives virulence in C. shasta and that effectors, such as integrins, reveal themselves as attractive therapeutic targets in a group of parasites for which no effective treatments are known.

Zobrazit více v PubMed

Friedl P., Wolf K. Plasticity of cell migration: A multiscale tuning model. J. Exp. Med. 2010;207:11–19. doi: 10.1084/JEM2071OIA4. PubMed DOI PMC

Petrie R.J., Yamada K.M. At the leading edge of three-dimensional cell migration. J. Cell Sci. 2012;125:5917–5926. doi: 10.1242/jcs.093732. PubMed DOI PMC

Petrie R.J., Yamada K.M. Multiple Mechanisms of 3D Migration: The Origins of Plasticity. Curr. Opin. Cell Boil. 2016;42:7–12. doi: 10.1016/j.ceb.2016.03.025. PubMed DOI PMC

Barragan A., Sibley L.D. Transepithelial Migration of Toxoplasma gondii is Linked to Parasite Motility and Virulence. J. Exp. Med. 2002;195:1625–1633. doi: 10.1084/jem.20020258. PubMed DOI PMC

Marie C., Petri W.A., Jr. Regulation of Virulence of Entamoeba histolytica. Annu. Rev. Microbiol. 2014;68:493–520. doi: 10.1146/annurev-micro-091313-103550. PubMed DOI PMC

Heaslip A.T., Nishi M., Stein B., Hu K. The Motility of a Human Parasite, Toxoplasma gondii, is Regulated by a Novel Lysine Methyltransferase. PLoS Pathog. 2011;7:1002201. doi: 10.1371/journal.ppat.1002201. PubMed DOI PMC

McCammick E.M., McVeigh P., McCusker P., Timson D.J., Morphew R.M., Brophy P.M., Marks N.J., Mousley A., Maule A.G. Calmodulin disruption impacts growth and motility in juvenile liver fluke. Parasites Vectors. 2016;9:46. doi: 10.1186/s13071-016-1324-9. PubMed DOI PMC

Mejia P., Diez-Silva M., Kamena F., Lu F., Fernandes S.M., Seeberger P.H., Davis A.E., III, Mitchell J.R. Human C1-Inhibitor Suppresses Malaria Parasite Invasion and Cytoadhesion via Binding to Parasite Glycosylphosphatidylinositol and Host Cell Receptors. J. Infect. Dis. 2016;213:80–89. doi: 10.1093/infdis/jiv439. PubMed DOI PMC

Liu J., Pan T., You X., Xu Y., Liang J., Limpanont Y., Sun X., Okanurak K., Zheng H., Wu Z., et al. SjCa8, a calcium-binding protein from Schistosoma japonicum, inhibits cell migration and suppresses nitric oxide release of RAW264.7 macrophages. Parasites Vectors. 2015;8:513. doi: 10.1186/s13071-015-1119-4. PubMed DOI PMC

Feist S.W., Morris D.J., Alama-Bermejo G., Holzer A.S. Cellular Processes in Myxozoans. In: Okamura B., Gruhl A., Bartholomew J., editors. Myxozoan Evolution, Ecology and Development. Springer; Cham, Switzerland: 2015.

Gruhl A., Okamura B. Development and myogenesis of the vermiform Buddenbrockia (Myxozoa) and implications for cnidarian body plan evolution. EvoDevo. 2012;3:10. doi: 10.1186/2041-9139-3-10. PubMed DOI PMC

Alama-Bermejo G., Bron J.E., Raga J.A., Holzer A.S. 3D Morphology, Ultrastructure and Development of Ceratomyxa puntazzi Stages: First Insights into the Mechanisms of Motility and Budding in the Myxozoa. PLoS ONE. 2012;7:e32679. doi: 10.1371/journal.pone.0032679. PubMed DOI PMC

Noble E.R. Nuclear cycles in the life history of the protozoan genus Ceratomyxa. J. Morphol. 1941;69:455–479. doi: 10.1002/jmor.1050690304. DOI

Meglitsch P. Some coelozoic myxosporidia from New Zealand fishes I. General, and family Ceratomyxidae. Trans. Proc. R. Soc. N. Z. 1960;88:265–356.

Sitjà-Bobadilla A., Palenzuela O., Alvarez-Pellitero P. Ceratomyxa sparusaurati n. sp. (Myxosporea: Bivalvulida), a new parasite from cultured gilthead seabream (Sparus aurata L.) (Teleostei: Sparidae): Light and electron microscopic description. J. Eukaryot. Microbiol. 1995;42:529–539. doi: 10.1111/j.1550-7408.1995.tb05901.x. DOI

Cho J.B., Kwon S.R., Kim S.K., Nam Y.K., Kim K.H. Ultrastructure and development of Ceratomyxa protopsettae Fujita, 1923 (Myxosporea) in the gallbladder of cultured olive flounder, Paralichthys olivaceus. Acta Protozool. 2004;43:241–250.

Hartigan A., Estensoro I., Vancová M., Bílý T., Patra S., Eszterbauer E., Holzer A.S. New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa:Myxosporea) blood stages in fish. Sci. Rep. 2016;6:39093. doi: 10.1038/srep39093. PubMed DOI PMC

Adriano E., Okamura B. Motility, morphology and phylogeny of the plasmodial worm, Ceratomyxa vermiformis n. sp. (Cnidaria: Myxozoa: Myxosporea) Parasitology. 2017;144:158–168. doi: 10.1017/S0031182016001852. PubMed DOI

Bjork S.J., Bartholomew J.L. Invasion of Ceratomyxa shasta (Myxozoa) and comparison of migration to the intestine between susceptible and resistant fish hosts. Int. J. Parasitol. 2010;40:1087–1095. doi: 10.1016/j.ijpara.2010.03.005. PubMed DOI

Bartholomew J.L., Whipple M.J., Stevens D.G., Fryer J.L. The Life Cycle of Ceratomyxa shasta, a Myxosporean Parasite of Salmonids, Requires a Freshwater Polychaete as an Alternate Host. J. Parasitol. 1997;83:859. doi: 10.2307/3284281. PubMed DOI

Atkinson S.D., Bartholomew J.L. Disparate infection patterns of Ceratomyxa shasta (Myxozoa) in rainbow trout (Oncorhynchus mykiss) and Chinook salmon (Oncorhynchus tshawytscha) correlate with internal transcribed spacer-1 sequence variation in the parasite. Int. J. Parasitol. 2010;40:599–604. doi: 10.1016/j.ijpara.2009.10.010. PubMed DOI

Atkinson S.D., Bartholomew J.L. Spatial, temporal and host factors structure the Ceratomyxa shasta (Myxozoa) population in the Klamath River basin. Infect. Genet. Evol. 2010;10:1019–1026. doi: 10.1016/j.meegid.2010.06.013. PubMed DOI

Hurst C.N., Bartholomew J.L. Ceratomyxa shasta genotypes cause differential mortality in their salmonid hosts. J. Fish Dis. 2012;35:725–732. doi: 10.1111/j.1365-2761.2012.01407.x. PubMed DOI

Stinson M.E.T., Atkinson S.D., Bartholomew J.L. Widespread Distribution of Ceratonova shasta (Cnidaria: Myxosporea) Genotypes Indicates Evolutionary Adaptation to its Salmonid Fish Hosts. J. Parasitol. 2018;104:645–650. doi: 10.1645/18-79. PubMed DOI

Ibarra A., Gall G., Hedrick R. Susceptibility of two strains of rainbow trout Oncorhynchus mykiss to experimentally induced infections with the myxosporean Ceratomyxa Shasta. Dis. Aquat. Org. 1991;10:191–194. doi: 10.3354/dao010191. DOI

Stocking R.W., Holt R.A., Foott J.S., Bartholomew J.L. Spatial and Temporal Occurrence of the Salmonid Parasite Ceratomyxa shasta in the Oregon–California Klamath River Basin. J. Aquat. Anim. Health. 2006;18:194–202. doi: 10.1577/H05-036.1. DOI

Hallett S., Bartholomew J. Application of a real-time PCR assay to detect and quantify the myxozoan parasite Ceratomyxa shasta in river water samples. Dis. Aquat. Org. 2006;71:109–118. doi: 10.3354/dao071109. PubMed DOI

Hallett S.L., Ray R.A., Hurst C.N., Holt R.A., Buckles G.R., Atkinson S.D., Bartholomew J.L. Density of the Waterborne Parasite Ceratomyxa shasta and Its Biological Effects on Salmon. Appl. Environ. Microbiol. 2012;78:3724–3731. doi: 10.1128/AEM.07801-11. PubMed DOI PMC

Atkinson S.D., Hallett S.L., Bartholomew J.L. Genotyping of individual Ceratonova shasta (Cnidaria: Myxosporea) myxospores reveals intra-spore ITS-1 variation and invalidates the distinction of genotypes II and III. Parasitology. 2018;145:1588–1593. doi: 10.1017/S0031182018000422. PubMed DOI

Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC

Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI

Paluch E.K., Raz E. The role and regulation of blebs in cell migration. Curr. Opin. Cell Boil. 2013;25:582–590. doi: 10.1016/j.ceb.2013.05.005. PubMed DOI PMC

Charras G., Paluch E. Blebs lead the way: How to migrate without lamellipodia. Nat. Rev. Mol. Cell Boil. 2008;9:730–736. doi: 10.1038/nrm2453. PubMed DOI

Maugis B., Brugues J., Nassoy P., Guilĺen N., Sens P., Amblard F. Dynamic instability of the intracellular pressure drives bleb-based motility. J. Cell Sci. 2010;123:3884–3892. doi: 10.1242/jcs.065672. PubMed DOI

Charras G., Charras G. A short history of blebbing. J. Microsc. 2008;231:466–478. doi: 10.1111/j.1365-2818.2008.02059.x. PubMed DOI

Johnson K.E. Circus movements and blebbing locomotion in dissociated embryonic cells of an amphibian, Xenopus laevis. J. Cell Sci. 1976;22:575–583. PubMed

Olson E.C.E. Onset of Electrical Excitability during a Period of Circus Plasma Membrane Movements in Differentiating Xenopus neurons. J. Neurosci. 1996;16:5117–5129. doi: 10.1523/JNEUROSCI.16-16-05117.1996. PubMed DOI PMC

Mattila P.K., Lappalainen P. Filopodia: Molecular architecture and cellular functions. Nat. Rev. Mol. Cell Boil. 2008;9:446–454. doi: 10.1038/nrm2406. PubMed DOI

Paňková K., Rösel D., Novotný M., Brábek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell. Mol. Life Sci. 2010;67:63–71. doi: 10.1007/s00018-009-0132-1. PubMed DOI PMC

Galbraith C.G., Yamada K., Galbraith J.A. Polymerizing Actin Fibers Position Integrins Primed to Probe for Adhesion Sites. Science. 2007;315:992–995. doi: 10.1126/science.1137904. PubMed DOI

Diz-Muñoz A., Romanczuk P., Yu W., Bergert M., Ivanovitch K., Salbreux G., Heisenberg C.-P., Paluch E.K. Steering cell migration by alternating blebs and actin-rich protrusions. BMC Boil. 2016;14:523. doi: 10.1186/s12915-016-0294-x. PubMed DOI PMC

Fackler O.T., Grosse R. Cell motility through plasma membrane blebbing. J. Cell Boil. 2008;181:879–884. doi: 10.1083/jcb.200802081. PubMed DOI PMC

Casadevall A., Pirofski L. Host-Pathogen Interactions: The Attributes of Virulence. J. Infect. Dis. 2001;184:337–344. doi: 10.1086/322044. PubMed DOI

Hurst C., Alexander J., Dolan B., Jia L., Bartholomew J. Outcome of within-host competition demonstrates that parasite virulence doesn’t equal success in a myxozoan model system. Int. J. Parasitol. Parasites Wildl. 2019;9:25–35. doi: 10.1016/j.ijppaw.2019.03.008. PubMed DOI PMC

Bunnell T.M., Burbach B.J., Shimizu Y., Ervasti J.M. β-Actin specifically controls cell growth, migration, and the G-actin pool. Mol. Boil. Cell. 2011;22:4047–4058. doi: 10.1091/mbc.e11-06-0582. PubMed DOI PMC

Gandhi M., Goode B.L. Coronin: The Double-Edged Sword of Actin Dynamics. In: Clemen C.S., Eichinger L., Rybakin V., editors. The Coronin Family of Proteins. Subcellular Biochemistry vol 48. Springer; New York, NY, USA: 2008. PubMed

Hou X., Katahira T., Ohashi K., Mizuno K., Sugiyama S., Nakamura H. Coactosin accelerates cell dynamism by promoting actin polymerization. Dev. Boil. 2013;379:53–63. doi: 10.1016/j.ydbio.2013.04.006. PubMed DOI

Petrie R.J., Gavara N., Chadwick R.S., Yamada K.M. Nonpolarized signaling reveals two distinct modes of 3D cell migration. J. Cell Boil. 2012;197:439–455. doi: 10.1083/jcb.201201124. PubMed DOI PMC

Watanabe K., Petri W.A. Molecular biology research to benefit patients with Entamoeba histolytica infection. Mol. Microbiol. 2015;98:208–217. doi: 10.1111/mmi.13131. PubMed DOI

Rikitake Y., Takai Y. Chapter three—Directional Cell Migration: Regulation by Small G Proteins, Nectin-like Molecule-5, and Afadin. In: Jeon K.W., editor. International Review of Cell and Molecular Biology. Volume 287. Academic Press; Cambridge, MA, USA: 2011. pp. 97–143. PubMed DOI

Ridley A.J. Rho GTPase signalling in cell migration. Curr. Opin. Cell Boil. 2015;36:103–112. doi: 10.1016/j.ceb.2015.08.005. PubMed DOI PMC

Lo C.M., Buxton D.B., Chua G.C., Dembo M., Adelstein R.S., Wang Y.L. Nonmuscle myosin IIb is involved in the guidance of fibroblast migration. Mol. Boil. Cell. 2004;15:982–989. doi: 10.1091/mbc.e03-06-0359. PubMed DOI PMC

Fenix A.M., Burnette D.T. A small part of myosin IIB takes on a big role in cell polarity. J. Cell Boil. 2015;209:11–12. doi: 10.1083/jcb.201503079. PubMed DOI PMC

Tovy A., Hertz R., Siman-Tov R., Syan S., Faust D., Guillén N., Ankri S. Glucose Starvation Boosts Entamoeba histolytica Virulence. PLoS Negl. Trop. Dis. 2011;5:e1247. doi: 10.1371/journal.pntd.0001247. PubMed DOI PMC

Lamb C.A., O’Byrne S., Keir M.E., Butcher E.C. Gut-Selective Integrin-Targeted Therapies for Inflammatory Bowel Disease. J. Crohn Colitis. 2018;12:S653–S668. doi: 10.1093/ecco-jcc/jjy060. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

RNAi-directed knockdown in the cnidarian fish blood parasite Sphaerospora molnari

. 2024 Feb 12 ; 14 (1) : 3545. [epub] 20240212

Ceratonova shasta: a cnidarian parasite of annelids and salmonids

. 2022 Dec ; 149 (14) : 1862-1875. [epub] 20220909

The cnidarian parasite Ceratonova shasta utilizes inherited and recruited venom-like compounds during infection

. 2021 ; 9 () : e12606. [epub] 20211215

To React or Not to React: The Dilemma of Fish Immune Systems Facing Myxozoan Infections

. 2021 ; 12 () : 734238. [epub] 20210916

Proteases as Therapeutic Targets Against the Parasitic Cnidarian Ceratonova shasta: Characterization of Molecules Key to Parasite Virulence In Salmonid Hosts

. 2021 ; 11 () : 804864. [epub] 20220107

Differences in inflammatory responses of rainbow trout infected by two genotypes of the myxozoan parasite Ceratonova shasta

. 2021 Jan ; 114 () : 103829. [epub] 20200823

Genetic Diversity of Serine Protease Inhibitors in Myxozoan (Cnidaria, Myxozoa) Fish Parasites

. 2020 Sep 29 ; 8 (10) : . [epub] 20200929

Transcriptome-Wide Comparisons and Virulence Gene Polymorphisms of Host-Associated Genotypes of the Cnidarian Parasite Ceratonova shasta in Salmonids

. 2020 Aug 01 ; 12 (8) : 1258-1276.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...