Myxozoan Adhesion and Virulence: Ceratonova shasta on the Move
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
14-28784P
Grantová Agentura České Republiky
19-28399X
Grantová Agentura České Republiky
APOSTD/2013/087
Consellería de Educación, Investigación, Cultura y Deporte, Valencia, Spain
LM2015062
Ministry of Education, Youth and Sports of the Czech Republic
CZ.1.05/2.1.00/01.0017
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
31561529
PubMed Central
PMC6843538
DOI
10.3390/microorganisms7100397
PII: microorganisms7100397
Knihovny.cz E-zdroje
- Klíčová slova
- blebbing, cell protrusion, integrin beta, motility factors, myxozoan adhesion, rainbow trout,
- Publikační typ
- časopisecké články MeSH
Motility factors are fundamental for parasite invasion, migration, proliferation and immune evasion and thus can influence parasitic disease pathogenesis and virulence. Salmonid enteronecrosis is caused by a myxozoan (Phylum Cnidarian) parasite, Ceratonova shasta. Three parasite genotypes (0, I, II) occur, with varying degrees of virulence in its host, making it a good model for examining the role of motility in virulence. We compare C. shasta cell motility between genotypes and describe how the cellular protrusions interact with the host. We support these observations with motility gene expression analyses. C. shasta stages can move by single or combined used of filopodia, lamellipodia and blebs, with different behaviors such as static adhesion, crawling or blebbing, some previously unobserved in myxozoans. C. shasta stages showed high flexibility of switching between different morphotypes, suggesting a high capacity to adapt to their microenvironment. Exposure to fibronectin showed that C. shasta stages have extraordinary adhesive affinities to glycoprotein components of the extracellular matrix (ECM). When comparing C. shasta genotypes 0 (low virulence, no mortality) and IIR (high virulence, high mortality) infections in rainbow trout, major differences were observed with regard to their migration to the target organ, gene expression patterns and proliferation rate in the host. IIR is characterized by rapid multiplication and fast amoeboid bleb-based migration to the gut, where adhesion (mediated by integrin-β and talin), ECM disruption and virulent systemic dispersion of the parasite causes massive pathology. Genotype 0 is characterized by low proliferation rates, slow directional and early adhesive migration and localized, non-destructive development in the gut. We conclude that parasite adhesion drives virulence in C. shasta and that effectors, such as integrins, reveal themselves as attractive therapeutic targets in a group of parasites for which no effective treatments are known.
Zobrazit více v PubMed
Friedl P., Wolf K. Plasticity of cell migration: A multiscale tuning model. J. Exp. Med. 2010;207:11–19. doi: 10.1084/JEM2071OIA4. PubMed DOI PMC
Petrie R.J., Yamada K.M. At the leading edge of three-dimensional cell migration. J. Cell Sci. 2012;125:5917–5926. doi: 10.1242/jcs.093732. PubMed DOI PMC
Petrie R.J., Yamada K.M. Multiple Mechanisms of 3D Migration: The Origins of Plasticity. Curr. Opin. Cell Boil. 2016;42:7–12. doi: 10.1016/j.ceb.2016.03.025. PubMed DOI PMC
Barragan A., Sibley L.D. Transepithelial Migration of Toxoplasma gondii is Linked to Parasite Motility and Virulence. J. Exp. Med. 2002;195:1625–1633. doi: 10.1084/jem.20020258. PubMed DOI PMC
Marie C., Petri W.A., Jr. Regulation of Virulence of Entamoeba histolytica. Annu. Rev. Microbiol. 2014;68:493–520. doi: 10.1146/annurev-micro-091313-103550. PubMed DOI PMC
Heaslip A.T., Nishi M., Stein B., Hu K. The Motility of a Human Parasite, Toxoplasma gondii, is Regulated by a Novel Lysine Methyltransferase. PLoS Pathog. 2011;7:1002201. doi: 10.1371/journal.ppat.1002201. PubMed DOI PMC
McCammick E.M., McVeigh P., McCusker P., Timson D.J., Morphew R.M., Brophy P.M., Marks N.J., Mousley A., Maule A.G. Calmodulin disruption impacts growth and motility in juvenile liver fluke. Parasites Vectors. 2016;9:46. doi: 10.1186/s13071-016-1324-9. PubMed DOI PMC
Mejia P., Diez-Silva M., Kamena F., Lu F., Fernandes S.M., Seeberger P.H., Davis A.E., III, Mitchell J.R. Human C1-Inhibitor Suppresses Malaria Parasite Invasion and Cytoadhesion via Binding to Parasite Glycosylphosphatidylinositol and Host Cell Receptors. J. Infect. Dis. 2016;213:80–89. doi: 10.1093/infdis/jiv439. PubMed DOI PMC
Liu J., Pan T., You X., Xu Y., Liang J., Limpanont Y., Sun X., Okanurak K., Zheng H., Wu Z., et al. SjCa8, a calcium-binding protein from Schistosoma japonicum, inhibits cell migration and suppresses nitric oxide release of RAW264.7 macrophages. Parasites Vectors. 2015;8:513. doi: 10.1186/s13071-015-1119-4. PubMed DOI PMC
Feist S.W., Morris D.J., Alama-Bermejo G., Holzer A.S. Cellular Processes in Myxozoans. In: Okamura B., Gruhl A., Bartholomew J., editors. Myxozoan Evolution, Ecology and Development. Springer; Cham, Switzerland: 2015.
Gruhl A., Okamura B. Development and myogenesis of the vermiform Buddenbrockia (Myxozoa) and implications for cnidarian body plan evolution. EvoDevo. 2012;3:10. doi: 10.1186/2041-9139-3-10. PubMed DOI PMC
Alama-Bermejo G., Bron J.E., Raga J.A., Holzer A.S. 3D Morphology, Ultrastructure and Development of Ceratomyxa puntazzi Stages: First Insights into the Mechanisms of Motility and Budding in the Myxozoa. PLoS ONE. 2012;7:e32679. doi: 10.1371/journal.pone.0032679. PubMed DOI PMC
Noble E.R. Nuclear cycles in the life history of the protozoan genus Ceratomyxa. J. Morphol. 1941;69:455–479. doi: 10.1002/jmor.1050690304. DOI
Meglitsch P. Some coelozoic myxosporidia from New Zealand fishes I. General, and family Ceratomyxidae. Trans. Proc. R. Soc. N. Z. 1960;88:265–356.
Sitjà-Bobadilla A., Palenzuela O., Alvarez-Pellitero P. Ceratomyxa sparusaurati n. sp. (Myxosporea: Bivalvulida), a new parasite from cultured gilthead seabream (Sparus aurata L.) (Teleostei: Sparidae): Light and electron microscopic description. J. Eukaryot. Microbiol. 1995;42:529–539. doi: 10.1111/j.1550-7408.1995.tb05901.x. DOI
Cho J.B., Kwon S.R., Kim S.K., Nam Y.K., Kim K.H. Ultrastructure and development of Ceratomyxa protopsettae Fujita, 1923 (Myxosporea) in the gallbladder of cultured olive flounder, Paralichthys olivaceus. Acta Protozool. 2004;43:241–250.
Hartigan A., Estensoro I., Vancová M., Bílý T., Patra S., Eszterbauer E., Holzer A.S. New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa:Myxosporea) blood stages in fish. Sci. Rep. 2016;6:39093. doi: 10.1038/srep39093. PubMed DOI PMC
Adriano E., Okamura B. Motility, morphology and phylogeny of the plasmodial worm, Ceratomyxa vermiformis n. sp. (Cnidaria: Myxozoa: Myxosporea) Parasitology. 2017;144:158–168. doi: 10.1017/S0031182016001852. PubMed DOI
Bjork S.J., Bartholomew J.L. Invasion of Ceratomyxa shasta (Myxozoa) and comparison of migration to the intestine between susceptible and resistant fish hosts. Int. J. Parasitol. 2010;40:1087–1095. doi: 10.1016/j.ijpara.2010.03.005. PubMed DOI
Bartholomew J.L., Whipple M.J., Stevens D.G., Fryer J.L. The Life Cycle of Ceratomyxa shasta, a Myxosporean Parasite of Salmonids, Requires a Freshwater Polychaete as an Alternate Host. J. Parasitol. 1997;83:859. doi: 10.2307/3284281. PubMed DOI
Atkinson S.D., Bartholomew J.L. Disparate infection patterns of Ceratomyxa shasta (Myxozoa) in rainbow trout (Oncorhynchus mykiss) and Chinook salmon (Oncorhynchus tshawytscha) correlate with internal transcribed spacer-1 sequence variation in the parasite. Int. J. Parasitol. 2010;40:599–604. doi: 10.1016/j.ijpara.2009.10.010. PubMed DOI
Atkinson S.D., Bartholomew J.L. Spatial, temporal and host factors structure the Ceratomyxa shasta (Myxozoa) population in the Klamath River basin. Infect. Genet. Evol. 2010;10:1019–1026. doi: 10.1016/j.meegid.2010.06.013. PubMed DOI
Hurst C.N., Bartholomew J.L. Ceratomyxa shasta genotypes cause differential mortality in their salmonid hosts. J. Fish Dis. 2012;35:725–732. doi: 10.1111/j.1365-2761.2012.01407.x. PubMed DOI
Stinson M.E.T., Atkinson S.D., Bartholomew J.L. Widespread Distribution of Ceratonova shasta (Cnidaria: Myxosporea) Genotypes Indicates Evolutionary Adaptation to its Salmonid Fish Hosts. J. Parasitol. 2018;104:645–650. doi: 10.1645/18-79. PubMed DOI
Ibarra A., Gall G., Hedrick R. Susceptibility of two strains of rainbow trout Oncorhynchus mykiss to experimentally induced infections with the myxosporean Ceratomyxa Shasta. Dis. Aquat. Org. 1991;10:191–194. doi: 10.3354/dao010191. DOI
Stocking R.W., Holt R.A., Foott J.S., Bartholomew J.L. Spatial and Temporal Occurrence of the Salmonid Parasite Ceratomyxa shasta in the Oregon–California Klamath River Basin. J. Aquat. Anim. Health. 2006;18:194–202. doi: 10.1577/H05-036.1. DOI
Hallett S., Bartholomew J. Application of a real-time PCR assay to detect and quantify the myxozoan parasite Ceratomyxa shasta in river water samples. Dis. Aquat. Org. 2006;71:109–118. doi: 10.3354/dao071109. PubMed DOI
Hallett S.L., Ray R.A., Hurst C.N., Holt R.A., Buckles G.R., Atkinson S.D., Bartholomew J.L. Density of the Waterborne Parasite Ceratomyxa shasta and Its Biological Effects on Salmon. Appl. Environ. Microbiol. 2012;78:3724–3731. doi: 10.1128/AEM.07801-11. PubMed DOI PMC
Atkinson S.D., Hallett S.L., Bartholomew J.L. Genotyping of individual Ceratonova shasta (Cnidaria: Myxosporea) myxospores reveals intra-spore ITS-1 variation and invalidates the distinction of genotypes II and III. Parasitology. 2018;145:1588–1593. doi: 10.1017/S0031182018000422. PubMed DOI
Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC
Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI
Paluch E.K., Raz E. The role and regulation of blebs in cell migration. Curr. Opin. Cell Boil. 2013;25:582–590. doi: 10.1016/j.ceb.2013.05.005. PubMed DOI PMC
Charras G., Paluch E. Blebs lead the way: How to migrate without lamellipodia. Nat. Rev. Mol. Cell Boil. 2008;9:730–736. doi: 10.1038/nrm2453. PubMed DOI
Maugis B., Brugues J., Nassoy P., Guilĺen N., Sens P., Amblard F. Dynamic instability of the intracellular pressure drives bleb-based motility. J. Cell Sci. 2010;123:3884–3892. doi: 10.1242/jcs.065672. PubMed DOI
Charras G., Charras G. A short history of blebbing. J. Microsc. 2008;231:466–478. doi: 10.1111/j.1365-2818.2008.02059.x. PubMed DOI
Johnson K.E. Circus movements and blebbing locomotion in dissociated embryonic cells of an amphibian, Xenopus laevis. J. Cell Sci. 1976;22:575–583. PubMed
Olson E.C.E. Onset of Electrical Excitability during a Period of Circus Plasma Membrane Movements in Differentiating Xenopus neurons. J. Neurosci. 1996;16:5117–5129. doi: 10.1523/JNEUROSCI.16-16-05117.1996. PubMed DOI PMC
Mattila P.K., Lappalainen P. Filopodia: Molecular architecture and cellular functions. Nat. Rev. Mol. Cell Boil. 2008;9:446–454. doi: 10.1038/nrm2406. PubMed DOI
Paňková K., Rösel D., Novotný M., Brábek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell. Mol. Life Sci. 2010;67:63–71. doi: 10.1007/s00018-009-0132-1. PubMed DOI PMC
Galbraith C.G., Yamada K., Galbraith J.A. Polymerizing Actin Fibers Position Integrins Primed to Probe for Adhesion Sites. Science. 2007;315:992–995. doi: 10.1126/science.1137904. PubMed DOI
Diz-Muñoz A., Romanczuk P., Yu W., Bergert M., Ivanovitch K., Salbreux G., Heisenberg C.-P., Paluch E.K. Steering cell migration by alternating blebs and actin-rich protrusions. BMC Boil. 2016;14:523. doi: 10.1186/s12915-016-0294-x. PubMed DOI PMC
Fackler O.T., Grosse R. Cell motility through plasma membrane blebbing. J. Cell Boil. 2008;181:879–884. doi: 10.1083/jcb.200802081. PubMed DOI PMC
Casadevall A., Pirofski L. Host-Pathogen Interactions: The Attributes of Virulence. J. Infect. Dis. 2001;184:337–344. doi: 10.1086/322044. PubMed DOI
Hurst C., Alexander J., Dolan B., Jia L., Bartholomew J. Outcome of within-host competition demonstrates that parasite virulence doesn’t equal success in a myxozoan model system. Int. J. Parasitol. Parasites Wildl. 2019;9:25–35. doi: 10.1016/j.ijppaw.2019.03.008. PubMed DOI PMC
Bunnell T.M., Burbach B.J., Shimizu Y., Ervasti J.M. β-Actin specifically controls cell growth, migration, and the G-actin pool. Mol. Boil. Cell. 2011;22:4047–4058. doi: 10.1091/mbc.e11-06-0582. PubMed DOI PMC
Gandhi M., Goode B.L. Coronin: The Double-Edged Sword of Actin Dynamics. In: Clemen C.S., Eichinger L., Rybakin V., editors. The Coronin Family of Proteins. Subcellular Biochemistry vol 48. Springer; New York, NY, USA: 2008. PubMed
Hou X., Katahira T., Ohashi K., Mizuno K., Sugiyama S., Nakamura H. Coactosin accelerates cell dynamism by promoting actin polymerization. Dev. Boil. 2013;379:53–63. doi: 10.1016/j.ydbio.2013.04.006. PubMed DOI
Petrie R.J., Gavara N., Chadwick R.S., Yamada K.M. Nonpolarized signaling reveals two distinct modes of 3D cell migration. J. Cell Boil. 2012;197:439–455. doi: 10.1083/jcb.201201124. PubMed DOI PMC
Watanabe K., Petri W.A. Molecular biology research to benefit patients with Entamoeba histolytica infection. Mol. Microbiol. 2015;98:208–217. doi: 10.1111/mmi.13131. PubMed DOI
Rikitake Y., Takai Y. Chapter three—Directional Cell Migration: Regulation by Small G Proteins, Nectin-like Molecule-5, and Afadin. In: Jeon K.W., editor. International Review of Cell and Molecular Biology. Volume 287. Academic Press; Cambridge, MA, USA: 2011. pp. 97–143. PubMed DOI
Ridley A.J. Rho GTPase signalling in cell migration. Curr. Opin. Cell Boil. 2015;36:103–112. doi: 10.1016/j.ceb.2015.08.005. PubMed DOI PMC
Lo C.M., Buxton D.B., Chua G.C., Dembo M., Adelstein R.S., Wang Y.L. Nonmuscle myosin IIb is involved in the guidance of fibroblast migration. Mol. Boil. Cell. 2004;15:982–989. doi: 10.1091/mbc.e03-06-0359. PubMed DOI PMC
Fenix A.M., Burnette D.T. A small part of myosin IIB takes on a big role in cell polarity. J. Cell Boil. 2015;209:11–12. doi: 10.1083/jcb.201503079. PubMed DOI PMC
Tovy A., Hertz R., Siman-Tov R., Syan S., Faust D., Guillén N., Ankri S. Glucose Starvation Boosts Entamoeba histolytica Virulence. PLoS Negl. Trop. Dis. 2011;5:e1247. doi: 10.1371/journal.pntd.0001247. PubMed DOI PMC
Lamb C.A., O’Byrne S., Keir M.E., Butcher E.C. Gut-Selective Integrin-Targeted Therapies for Inflammatory Bowel Disease. J. Crohn Colitis. 2018;12:S653–S668. doi: 10.1093/ecco-jcc/jjy060. PubMed DOI
RNAi-directed knockdown in the cnidarian fish blood parasite Sphaerospora molnari
Ceratonova shasta: a cnidarian parasite of annelids and salmonids
To React or Not to React: The Dilemma of Fish Immune Systems Facing Myxozoan Infections
Genetic Diversity of Serine Protease Inhibitors in Myxozoan (Cnidaria, Myxozoa) Fish Parasites