Proteases as Therapeutic Targets Against the Parasitic Cnidarian Ceratonova shasta: Characterization of Molecules Key to Parasite Virulence In Salmonid Hosts
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
35071050
PubMed Central
PMC8777295
DOI
10.3389/fcimb.2021.804864
Knihovny.cz E-zdroje
- Klíčová slova
- 3D protein structure, aminopeptidase, aspartic protease, cysteine protease, gene expression, homologous search, myxozoa, stefin,
- MeSH
- Cnidaria * MeSH
- nemoci ryb * parazitologie MeSH
- Oncorhynchus mykiss * parazitologie MeSH
- parazitární nemoci u zvířat * MeSH
- proteasy MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- proteasy MeSH
Proteases and their inhibitors play critical roles in host-parasite interactions and in the outcomes of infections. Ceratonova shasta is a myxozoan pathogen that causes enteronecrosis in economically important salmonids from the Pacific Northwest of North America. This cnidarian parasite has host-specific genotypes with varying virulence, making it a powerful system to decipher virulence mechanisms in myxozoans. Using C. shasta genome and transcriptome, we identified four proteases of different catalytic types: cathepsin D (aspartic), cathepsin L and Z-like (cysteine) and aminopeptidase-N (metallo); and a stefin (cysteine protease inhibitor), which implied involvement in virulence and hence represent target molecules for the development of therapeutic strategies. We characterized, annotated and modelled their 3D protein structure using bioinformatics and computational tools. We quantified their expression in C. shasta genotype 0 (low virulence, no mortality) and IIR (high virulence and mortality) in rainbow trout Oncorhynchus mykiss, to demonstrate that there are major differences between the genotypes during infection and parasite development. High proliferation of genotype IIR was associated with high expression of the cathepsin D and the stefin, likely correlated with high nutrient demands and to regulate cell metabolism, with upregulation preceding massive proliferation and systemic dispersion. In contrast, upregulation of the cathepsin L and Z-like cysteine proteases may have roles in host immune evasion in genotype 0 infections, which are associated with low proliferation, low inflammation and non-destructive development. In contrast to the other proteases, C. shasta aminopeptidase-N appears to have a prominent role in nematocyst formation in both genotypes, but only during sporogenesis. Homology searches of C. shasta proteases against other myxozoan transcriptomes revealed a high abundance of cathepsin L and aminopeptidase homologs suggesting common gene requirements across species. Our study identified molecules of potential therapeutic significance for aquaculture and serves as a baseline for future research aimed at functional characterisation of these targets.
Department of Microbiology Oregon State University Corvallis OR United States
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czechia
Zobrazit více v PubMed
Ahmad F., Debes P. V., Pukk L., Kahar S., Hartikainen H., Gross R., et al. . (2021). Know Your Enemy - Transcriptome of Myxozoan Tetracapsuloides bryosalmonae Reveals Potential Drug Targets Against Proliferative Kidney Disease in Salmonids. Parasitology 148 (6), 726–739. doi: 10.1017/S003118202100010X PubMed DOI PMC
Alama-Bermejo G., Holzer A. S. (2021). Advances and Discoveries in Myxozoan Genomics. Trends Parasitol. 37 (6), 552–568. doi: 10.1016/j.pt.2021.01.010 PubMed DOI
Alama-Bermejo G., Holzer A. S., Bartholomew J. L. (2019). Myxozoan Adhesion and Virulence: Ceratonova shasta on the Move. Microorganisms 7 (10):397. doi: 10.3390/microorganisms7100397 PubMed DOI PMC
Alama-Bermejo G., Meyer E., Atkinson S. D., Holzer A. S., Wiśniewska M. M., Kolísko M., et al. . (2020). Transcriptome-Wide Comparisons and Virulence Gene Polymorphisms of Host-Associated Genotypes of the Cnidarian Parasite Ceratonova shasta in Salmonids. Genome Biol. Evol. 12 (8), 1258–1276. doi: 10.1093/gbe/evaa109 PubMed DOI PMC
Alsford S., Currier R. B., Guerra-Assunção J. A., Clark T. G., Horn D. (2014). Cathepsin-L can Resist Lysis by Human Serum in Trypanosoma brucei Brucei . PLoS Pathog. 10 (5), e1004130. doi: 10.1371/journal.ppat.1004130 PubMed DOI PMC
Americus B., Lotan T., Bartholomew J. L., Atkinson S. D. (2020). A Comparison of the Structure and Function of Nematocysts in Free-Living and Parasitic Cnidarians (Myxozoa). Int. J. Parasitol. 50 (10-11), 763–769. doi: 10.1016/j.ijpara.2020.04.012 PubMed DOI
Atkinson S. D., Bartholomew J. L. (2010). Disparate Infection Patterns of Ceratomyxa shasta (Myxozoa) in Rainbow Trout (Oncorhynchus mykiss) and Chinook Salmon (Oncorhynchus tshawytscha) Correlate With Internal Transcribed Spacer-1 Sequence Variation in the Parasite. Int. J. Parasitol. 40 (5), 599–604. doi: 10.1016/j.ijpara.2009.10.010 PubMed DOI
Atkinson S. D., Hallett S. L., Bartholomew J. L. (2018). Genotyping of Individual Ceratonova shasta (Cnidaria: Myxosporea) Myxospores Reveals Intra-Spore ITS-1 Variation and Invalidates the Distinction of Genotypes II and III. Parasitology 145 (12), 1588–1593. doi: 10.1017/S0031182018000422 PubMed DOI
Barrett D. E., Bartholomew J. L. (2021). A Tale of Two Fish: Comparative Transcriptomics of Resistant and Susceptible Steelhead Following Exposure to Ceratonova shasta Highlights Differences in Parasite Recognition. PLoS One 16 (2), e0234837. doi: 10.1371/journal.pone.0234837 PubMed DOI PMC
Bartošová-Sojková P., Kyslík J., Alama-Bermejo G., Hartigan A., Atkinson S. D., Bartholomew J. L., et al. . (2021). Evolutionary Analysis of Cystatins of Early-Emerging Metazoans Reveals a Novel Subtype in Parasitic Cnidarians. Biology 10 (2):110. doi: 10.3390/biology10020110 PubMed DOI PMC
Bird P. I., Trapani J. A., Villadangos J. A. (2009). Endolysosomal Proteases and Their Inhibitors in Immunity. Nat. Rev. Immunol. 9 (12), 871–882. doi: 10.1038/nri2671 PubMed DOI
Bjork S. J., Bartholomew J. L. (2010). Invasion of Ceratomyxa shasta (Myxozoa) and Comparison of Migration to the Intestine Between Susceptible and Resistant Fish Hosts. Int. J. Parasitol. 40 (9), 1087–1095. doi: 10.1016/j.ijpara.2010.03.005 PubMed DOI
Blum J. S., Wearsch P. A., Cresswell P. (2013). Pathways of Antigen Processing. Annu. Rev. Immunol. 31, 443–473. doi: 10.1146/annurev-immunol-032712-095910 PubMed DOI PMC
Brekhman V., Lalzar M., Atkinson S. D., Alama-Bermejo G., Maor-Landaw K., Malik A., et al. . (2021). Proteomic Analysis of the Parasitic Cnidarian Ceratonova shasta (Cnidaria: Myxozoa) Reveals Diverse Roles of Actin in Motility and Spore Formation. Front. Mar. Sci. 8, 3389. doi: 10.3389/fmars.2021.632700 DOI
Breyta R., Atkinson S. D., Bartholomew J. L. (2020). Evolutionary Dynamics of Ceratonova Species (Cnidaria: Myxozoa) Reveal Different Host Adaptation Strategies. Infect. Genet. Evol. 78, 104081. doi: 10.1016/j.meegid.2019.104081 PubMed DOI
Brown T., Rodriguez-Lanetty M. (2015). Defending Against Pathogens - Immunological Priming and its Molecular Basis in a Sea Anemone, Cnidarian. Sci. Rep. 5, 17425. doi: 10.1038/srep17425 PubMed DOI PMC
Bruchhaus I., Loftus B. J., Hall N., Tannich E. (2003). The Intestinal Protozoan Parasite Entamoeba histolytica Contains 20 Cysteine Protease Genes, of Which Only a Small Subset is Expressed During In Vitro Cultivation. Eukaryot. Cell 2 (3), 501–509. doi: 10.1128/EC.2.3.501-509.2003 PubMed DOI PMC
Cameron P., McGachy A., Anderson M., Paul A., Coombs G. H., Mottram J. C., et al. . (2004). Inhibition of Lipopolysaccharide-Induced Macrophage IL-12 Production by Leishmania mexicana Amastigotes: The Role of Cysteine Peptidases and the NF-kappaB Signaling Pathway. J. Immunol. 173 (5), 3297–3304. doi: 10.4049/jimmunol.173.5.3297 PubMed DOI
Carmona C., Dowd A. J., Smith A. M., Dalton J. P. (1993). Cathepsin L Proteinase Secreted by Fasciola hepatica In Vitro Prevents Antibody-Mediated Eosinophil Attachment to Newly Excysted Juveniles. Mol. Biochem. Parasitol. 62 (1), 9–17. doi: 10.1016/0166-6851(93)90172-t PubMed DOI
Cassone A., Vecchiarelli A., Hube B. (2016). Aspartyl Proteinases of Eukaryotic Microbial Pathogens: From Eating to Heating. PLoS Pathog. 12 (12), e1005992. doi: 10.1371/journal.ppat.1005992 PubMed DOI PMC
Chang E. S., Neuhof M., Rubinstein N. D., Diamant A., Philippe H., Huchon D., et al. . (2015). Genomic Insights Into the Evolutionary Origin of Myxozoa Within Cnidaria. Proc. Natl. Acad. Sci. U. S. A. 112 (48), 14912–14917. doi: 10.1073/pnas.1511468112 PubMed DOI PMC
Coombs G. H., Goldberg D. E., Klemba M., Berry C., Kay J., Mottram J. C. (2001). Aspartic Proteases of Plasmodium falciparum and Other Parasitic Protozoa as Drug Targets. Trends Parasitol. 17 (11), 532–537. doi: 10.1016/s1471-4922(01)02037-2 PubMed DOI
Dalal S., Klemba M. (2007). Roles for Two Aminopeptidases in Vacuolar Hemoglobin Catabolism in Plasmodium falciparum . J. Biol. Chem. 282 (49), 35978–35987. doi: 10.1074/jbc.M703643200 PubMed DOI
Dalton J. P., Neill S. O., Stack C., Collins P., Walshe A., Sekiya M., et al. . (2003). Fasciola hepatica Cathepsin L-Like Proteases: Biology, Function, and Potential in the Development of First Generation Liver Fluke Vaccines. Int. J. Parasitol. 33 (11), 1173–1181. doi: 10.1016/s0020-7519(03)00171-1 PubMed DOI
Davis P. H., Schulze J., Stanley S. L., Jr. (2007). Transcriptomic Comparison of Two Entamoeba histolytica Strains With Defined Virulence Phenotypes Identifies New Virulence Factor Candidates and Key Differences in the Expression Patterns of Cysteine Proteases, Lectin Light Chains, and Calmodulin. Mol. Biochem. Parasitol. 151 (1), 118–128. doi: 10.1016/j.molbiopara.2006.10.014 PubMed DOI
Dong G., Liu Y., Wu Y., Tu J., Chen S., Liu N., et al. . (2018). Novel non-Peptidic Small Molecule Inhibitors of Secreted Aspartic Protease 2 (SAP2) for the Treatment of Resistant Fungal Infections. Chem. Commun. (Camb). 54 (96), 13535–13538. doi: 10.1039/c8cc07810f PubMed DOI
Drinkwater N., Lee J., Yang W., Malcolm T. R., McGowan S. (2017). M1 Aminopeptidases as Drug Targets: Broad Applications or Therapeutic Niche? FEBS J. 284 (10), 1473–1488. doi: 10.1111/febs.14009 PubMed DOI PMC
Eszterbauer E., Sipos D., Kaján G. L., Szegő D., Fiala I., Holzer A. S., et al. . (2020). Genetic Diversity of Serine Protease Inhibitors in Myxozoan (Cnidaria, Myxozoa) Fish Parasites. Microorganisms 8 (10), 1502. doi: 10.3390/microorganisms8101502 PubMed DOI PMC
Faber M., Shaw S., Yoon S., de Paiva Alves E., Wang B., Qi Z., et al. . (2021). Comparative Transcriptomics and Host-Specific Parasite Gene Expression Profiles Inform on Drivers of Proliferative Kidney Disease. Sci. Rep. 11 (1), 2149. doi: 10.1038/s41598-020-77881-7 PubMed DOI PMC
Funk V. A., Olafson R. W., Raap M., Smith D., Aitken L., Haddow J. D., et al. . (2008). Identification, Characterization and Deduced Amino Acid Sequence of the Dominant Protease From Kudoa paniformis and K. thyrsites: A Unique Cytoplasmic Cysteine Protease. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 149 (3), 477–489. doi: 10.1016/j.cbpb.2007.11.011 PubMed DOI
Giordanengo L., Guiñazú N., Stempin C., Fretes R., Cerbán F., Gea S. (2002). Cruzipain, a Major Trypanosoma cruzi Antigen, Conditions the Host Immune Response in Favor of Parasite. Eur. J. Immunol. 32 (4), 1003–1011. doi: 10.1002/1521-4141(200204)32:4<1003::AID-IMMU1003>3.0.CO;2-P PubMed DOI
Gras S., Byzia A., Gilbert F. B., McGowan S., Drag M., Silvestre A., et al. . (2014). Aminopeptidase N1 (EtAPN1), an M1 Metalloprotease of the Apicomplexan Parasite Eimeria tenella, Participates in Parasite Development. Eukaryot. Cell. 13 (7), 884–895. doi: 10.1128/EC.00062-14 PubMed DOI PMC
Grote A., Caffrey C. R., Rebello K. M., Smith D., Dalton J. P., Lustigman S. (2018). Cysteine Proteases During Larval Migration and Development of Helminths in Their Final Host. PLoS Negl. Trop. Dis. 12 (8), e0005919. doi: 10.1371/journal.pntd.0005919 PubMed DOI PMC
Hallett S. L., Bartholomew J. L. (2006). Application of a Real-Time PCR Assay to Detect and Quantify the Myxozoan Parasite Ceratomyxa shasta in River Water Samples. Dis. Aquat. Organ. 71 (2), 109–118. doi: 10.3354/dao071109 PubMed DOI
Hallett S. L., Ray R. A., Hurst C. N., Holt R. A., Buckles G. R., Atkinson S. D., et al. . (2012). Density of the Waterborne Parasite Ceratomyxa shasta and its Biological Effects on Salmon. Appl. Environ. Microbiol. 78 (10), 3724–3731. doi: 10.1128/AEM.07801-11 PubMed DOI PMC
Hartigan A., Kosakyan A., Pecková H., Eszterbauer E., Holzer A. S. (2020). Transcriptome of Sphaerospora molnari (Cnidaria, Myxosporea) Blood Stages Provides Proteolytic Arsenal as Potential Therapeutic Targets Against Sphaerosporosis in Common Carp. BMC Genomics 21 (1), 404. doi: 10.1186/s12864-020-6705-y PubMed DOI PMC
Holzer A. S., Bartošová-Sojková P., Born-Torrijos A., Lövy A., Hartigan A., Fiala I. (2018). The Joint Evolution of the Myxozoa and Their Alternate Hosts: A Cnidarian Recipe for Success and Vast Biodiversity. Mol. Ecol. 27 (7), 1651–1666. doi: 10.1111/mec.14558 PubMed DOI
Kanehisa M., Sato Y., Morishima K. (2016). BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 428 (4), 726–731. doi: 10.1016/j.jmb.2015.11.006 PubMed DOI
Kelley G. O., Adkison M. A., Leutenegger C. M., Hedrick R. P. (2003). Myxobolus cerebralis: Identification of a Cathepsin Z-Like Protease Gene (MyxCP-1) Expressed During Parasite Development in Rainbow Trout, Oncorhynchus mykiss . Exp. Parasitol. 105 (3-4), 201–210. doi: 10.1016/j.exppara.2003.12.004 PubMed DOI
Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. (2015). The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis. Nat. Protoc. 10 (6), 845–858. doi: 10.1038/nprot.2015.053 PubMed DOI PMC
Kelley G. O., Zagmutt-Vergara F. J., Leutenegger C. M., Adkison M. A., Baxa D. V., Hedrick R. P. (2004). Identification of a Serine Protease Gene Expressed by Myxobolus cerebralis During Development in Rainbow Trout Oncorhynchus mykiss . Dis. Aquat. Organ. 59 (3), 235–248. doi: 10.3354/dao059235 PubMed DOI
Kissoon-Singh V., Mortimer L., Chadee K. (2011). Entamoeba histolytica Cathepsin-Like Enzymes: Interactions With the Host Gut. Adv. Exp. Med. Biol. 712, 62–83. doi: 10.1007/978-1-4419-8414-2_5 PubMed DOI
Klotz C., Ziegler T., Daniłowicz-Luebert E., Hartmann S. (2011). Cystatins of Parasitic Organisms. Adv. Exp. Med. Biol. 712, 208–221. doi: 10.1007/978-1-4419-8414-2_13 PubMed DOI
Kopitar-Jerala N. (2012). The Role of Cysteine Proteinases and Their Inhibitors in the Host-Pathogen Cross Talk. Curr. Protein Pept. Sci. 13 (8), 767–775. doi: 10.2174/138920312804871102 PubMed DOI PMC
Laskowski R. A., MacArthur M. W., Moss D. S., Thornton J. M. (1993). PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures. J. Appl. Crystallogr. 26, 283–291. doi: 10.1107/S0021889892009944 DOI
Lee J. Y., Song S. M., Moon E. K., Lee Y. R., Jha B. K., Danne D. B., et al. . (2013). Cysteine Protease Inhibitor (AcStefin) Is Required for Complete Cyst Formation of Acanthamoeba. Eukaryot. Cell. 12 (4), 567–574. doi: 10.1128/EC.00308-12 PubMed DOI PMC
Liu J., Svärd S. G., Klotz C. (2019). Giardia intestinalis Cystatin is a Potent Inhibitor of Papain, Parasite Cysteine Proteases and, to a Lesser Extent, Human Cathepsin B. FEBS Lett. 593, 1313–1325. doi: 10.1002/1873-3468.13433 PubMed DOI
Martone C. B., Spivak E., Busconi L., Folco E. J. E., Sanchez J. J. (1999). A Cysteine Protease From Myxosporean Degrades Host Myofibrils In Vitro. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 123, 267–272. doi: 10.1016/S0305-0491(99)00062-0 DOI
McKerrow J. H., Caffrey C., Kelly B., Loke P., Sajid M. (2006). Proteases in Parasitic Diseases. Annu. Rev. Pathol. 1, 497–536. doi: 10.1146/annurev.pathol.1.110304.100151 PubMed DOI
Nielsen H. (2017). Predicting Secretory Proteins With SignalP. Methods Mol. Biol. 1611, 59–73. doi: 10.1007/978-1-4939-7015-5_6 PubMed DOI
Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C. (2004). UCSF Chimera–a Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 25 (13), 1605–1612. doi: 10.1002/jcc.20084 PubMed DOI
Piña-Vázquez C., Reyes-López M., Ortíz-Estrada G., de la Garza M., Serrano-Luna J. (2012). Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix. J. Parasitol. Res. 2012, 748206. doi: 10.1155/2012/748206 PubMed DOI PMC
Piriatinskiy G., Atkinson S. D., Park S., Morgenstern D., Brekhman V., Yossifon G., et al. . (2017). Functional and Proteomic Analysis of Ceratonova shasta (Cnidaria: Myxozoa) Polar Capsules Reveals Adaptations to Parasitism. Sci. Rep. 7 (1), 9010. doi: 10.1038/s41598-017-09955-y PubMed DOI PMC
Ranasinghe S. L., McManus D. P. (2017). Protease Inhibitors of Parasitic Flukes: Emerging Roles in Parasite Survival and Immune Defence. Trends Parasitol. 33 (5), 400–413. doi: 10.1016/j.pt.2016.12.013 PubMed DOI
Rawlings N. D., Barrett A. J., Thomas P. D., Huang X., Bateman A., Finn R. D. (2018). The MEROPS Database of Proteolytic Enzymes, Their Substrates and Inhibitors in 2017 and a Comparison With Peptidases in the PANTHER Database. Nucleic Acids Res. 46 (D1), D624–D632. doi: 10.1093/nar/gkx1134 PubMed DOI PMC
Ray R. A., Alexander J. D., De Leenheer P., Bartholomew J. L. (2015). “Modeling the Effects of Climate Change on Disease Severity: A Case Study of Ceratonova (Syn Ceratomyxa) shasta in the Klamath River,” in Myxozoan Evolution, Ecology and Development. Eds. Okamura B., Gruhl A., Bartholomew J. L. Switzerland: Springer. p. 363–378.
Rombel I. T., Sykes K. F., Rayner S., Johnston S. A. (2002). ORF-FINDER: A Vector for High-Throughput Gene Identification. Gene 282 (1-2), 33–41. doi: 10.1016/s0378-1119(01)00819-8 PubMed DOI
Salzet M., Deloffre L., Breton C., Vieau D., Schoofs L. (2001). The Angiotensin System Elements in Invertebrates. Brain Res. Brain Res. Rev. 36 (1), 35–45. doi: 10.1016/s0165-0173(01)00063-7 PubMed DOI
Schaller M., Korting H. C., Borelli C., Hamm G., Hube B. (2005). Candida albicans-Secreted Aspartic Proteinases Modify the Epithelial Cytokine Response in an In Vitro Model of Vaginal Candidiasis. Infect. Immun. 73 (5), 2758–2765. doi: 10.1128/IAI.73.5.2758-2765.2005 PubMed DOI PMC
Schmittgen T. D., Livak K. J. (2008). Analyzing Real-Time PCR Data by the Comparative C(T) Method. Nat. Protoc. 3 (6), 1101–1108. doi: 10.1038/nprot.2008.73 PubMed DOI
Serrano-Luna J., Piña-Vázquez C., Reyes-López M., Ortiz-Estrada G., de la Garza M. (2013). Proteases From Entamoeba spp. And Pathogenic Free-Living Amoebae as Virulence Factors. J. Trop. Med. 2013, 890603. doi: 10.1155/2013/890603 PubMed DOI PMC
Siqueira-Neto J. L., Debnath A., McCall L. I., Bernatchez J. A., Ndao M., Reed S. L., et al. . (2018). Cysteine Proteases in Protozoan Parasites. PLoS Negl. Trop. Dis. 12 (8), e0006512. doi: 10.1371/journal.pntd.0006512 PubMed DOI PMC
Sojka D., Hartmann D., Bartošová-Sojková P., Dvořák J. (2016). Parasite Cathepsin D-Like Peptidases and Their Relevance as Therapeutic Targets. Trends Parasitol. 32 (9), 708–723. doi: 10.1016/j.pt.2016.05.015 PubMed DOI
Steverding D., Rushworth S. A., Florea B. I., Overkleeft H. S. (2020). Trypanosoma brucei: Inhibition of Cathepsin L is Sufficient to Kill Bloodstream Forms. Mol. Biochem. Parasitol. 235, 111246. doi: 10.1016/j.molbiopara.2019.111246 PubMed DOI
Stinson M., Atkinson S. D., Bartholomew J. L. (2018). Widespread Distribution of Ceratonova shasta (Cnidaria: Myxosporea) Genotypes Indicates Evolutionary Adaptation to its Salmonid Fish Hosts. J. Parasitol. 104 (6), 645–650. doi: 10.1645/18-79 PubMed DOI
Strepparava N., Segner H., Ros A., Hartikainen H., Schmidt-Posthaus H., Wahli T. (2018). Temperature-Related Parasite Infection Dynamics: The Case of Proliferative Kidney Disease of Brown Trout. Parasitology 145 (3), 281–291. doi: 10.1017/S0031182017001482 PubMed DOI
Taggart-Murphy L., Alama-Bermejo G., Dolan B., Takizawa F., Bartholomew J. (2021). Differences in Inflammatory Responses of Rainbow Trout Infected by Two Genotypes of the Myxozoan Parasite Ceratonova shasta. Dev. Comp. Immunol. 114:103829. doi: 10.1016/j.dci.2020.103829 PubMed DOI PMC
Tarasuk M., Vichasri Grams S., Viyanant V., Grams R. (2009). Type I Cystatin (Stefin) Is a Major Component of Fasciola gigantica Excretion/Secretion Product. Mol. Biochem. Parasitol. 167 (1), 60–71. doi: 10.1016/j.molbiopara.2009.04.010 PubMed DOI
Turk V., Stoka V., Turk D. (2008). Cystatins: Biochemical and Structural Properties, and Medical Relevance. Front. Biosci. 13, 5406–5420. doi: 10.2741/3089 PubMed DOI
Turk V., Stoka V., Vasiljeva O., Renko M., Sun T., Turk B., et al. . (2012). Cysteine Cathepsins: From Structure, Function and Regulation to New Frontiers. Biochim. Biophys. Acta 1824 (1), 68–88. doi: 10.1016/j.bbapap.2011.10.002 PubMed DOI PMC
Videira M., Velasco M., Malcher C. S., Santos P., Matos P., Matos E. (2016). An Outbreak of Myxozoan Parasites in Farmed Freshwater Fish Colossoma Macropomum (Cuvier 1818) (Characidae, Serrasalminae) in the Amazon Region, Brazil. Aquac. Rep. 3, 31–34. doi: 10.1016/j.aqrep.2015.11.004 DOI
Ximénez C., González E., Nieves M., Magaña U., Morán P., Gudiño-Zayas M., et al. . (2017). Differential Expression of Pathogenic Genes of Entamoeba histolytica vs E. dispar in a Model of Infection Using Human Liver Tissue Explants. PLoS One 12 (8), e0181962. doi: 10.1371/journal.pone.0181962 PubMed DOI PMC
Yahalomi D., Atkinson S. D., Neuhof M., Chang E. S., Philippe H., Cartwright P. (2020). A Cnidarian Parasite of Salmon (Myxozoa: Henneguya) Lacks a Mitochondrial Genome. Proc. Natl. Acad. Sci. U. S. A. 117 (10), 5358–5363. doi: 10.1073/pnas.1909907117 PubMed DOI PMC
Yang Y., Xiong J., Zhou Z., Huo F., Miao W., Ran C., et al. . (2014). The Genome of the Myxosporean Thelohanellus kitauei Shows Adaptations to Nutrient Acquisition Within its Fish Host. Genome Biol. Evol. 6 (12), 3182–3198. doi: 10.1093/gbe/evu247 PubMed DOI PMC
Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T. L. (2012). Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinf. 13, 134. doi: 10.1186/1471-2105-13-134 PubMed DOI PMC