Evolutionary Analysis of Cystatins of Early-Emerging Metazoans Reveals a Novel Subtype in Parasitic Cnidarians
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
634429
European Commission under the H2020 Programme - ParaFishControl
19-28399X
Grantová Agentura České Republiky
LTAUSA17201
Ministerstvo Školství, Mládeže a Tělovýchovy
MTA 19-07
Czech Academy of Sciences & Hungarian Academy of Sciences
PubMed
33546310
PubMed Central
PMC7913475
DOI
10.3390/biology10020110
PII: biology10020110
Knihovny.cz E-zdroje
- Klíčová slova
- cysteine protease inhibitor, diversification, parasite, phylogenetic analysis, protein structure, signal peptide, stefin,
- Publikační typ
- časopisecké články MeSH
The evolutionary aspects of cystatins are greatly underexplored in early-emerging metazoans. Thus, we surveyed the gene organization, protein architecture, and phylogeny of cystatin homologues mined from 110 genomes and the transcriptomes of 58 basal metazoan species, encompassing free-living and parasite taxa of Porifera, Placozoa, Cnidaria (including Myxozoa), and Ctenophora. We found that the cystatin gene repertoire significantly differs among phyla, with stefins present in most of the investigated lineages but with type 2 cystatins missing in several basal metazoan groups. Similar to liver and intestinal flukes, myxozoan parasites possess atypical stefins with chimeric structure that combine motifs of classical stefins and type 2 cystatins. Other early metazoan taxa regardless of lifestyle have only the classical representation of cystatins and lack multi-domain ones. Our comprehensive phylogenetic analyses revealed that stefins and type 2 cystatins clustered into taxonomically defined clades with multiple independent paralogous groups, which probably arose due to gene duplications. The stefin clade split between the subclades of classical stefins and the atypical stefins of myxozoans and flukes. Atypical stefins represent key evolutionary innovations of the two parasite groups for which their origin might have been linked with ancestral gene chimerization, obligate parasitism, life cycle complexity, genome reduction, and host immunity.
Department of Life Sciences Natural History Museum London SW7 5BD UK
Department of Microbiology Oregon State University Corvallis OR 97331 USA
Faculty of Science University of South Bohemia 37005 České Budějovice Czech Republic
Fish Pathology Group Instituto de Acuicultura Torre de la Sal 12595 Castellón Spain
Zobrazit více v PubMed
Cancela M., Corvo I., da Silva E., Teichmann A., Roche L., Diaz A., Tort J.F., Ferreira H.B., Zaha A. Functional characterization of single-domain cystatin-like cysteine proteinase inhibitors expressed by the trematode Fasciola hepatica. Parasitology. 2017;144:1695–1707. doi: 10.1017/S0031182017001093. PubMed DOI
Buša M., Matoušková Z., Řezáčová P., Bartošová-Sojková P., Štefanič S., Mareš M. Evolutionary upgrade of stefins for secretion in parasites; Proceedings of the 11th General Meeting of the International Proteolysis Society “Interfaces in Proteolysis”; Mariánské Lázně, Czech Republic. 29 September–4 October 2019.
Siricoon S., Grams S.V., Grams R. Efficient inhibition of cathepsin B by a secreted type 1 cystatin of Fasciola gigantica. Mol. Biochem. Parasit. 2012;186:126–133. doi: 10.1016/j.molbiopara.2012.10.003. PubMed DOI
Tarasuk M., Grams S.V., Viyanant V., Grams R. Type I cystatin (stefin) is a major component of Fasciola gigantica excretion/secretion product. Mol. Biochem. Parasit. 2009;167:60–71. doi: 10.1016/j.molbiopara.2009.04.010. PubMed DOI
Abrahamson M., Alvarez-Fernandez M., Nathanson C. Cystatins. Biochem. Soc. Symp. 2003;70:179–199. PubMed
Turk V., Stoka V., Turk D. Cystatins: Biochemical and structural properties, and medical relevance. Front. Biosci. 2008;13:5406–5420. doi: 10.2741/3089. PubMed DOI
Turk V., Turk D., Dolenc I., Stoka V. Characteristics, structure, and biological role of stefins (type-1 cystatins) of human, other mammals, and parasite origin. Acta Chim. Slov. 2019;66:5–17. doi: 10.17344/acsi.2018.4639. PubMed DOI
Ranasinghe S., McManus D. Protease inhibitors of parasitic flukes: Emerging roles in parasite survival and immune defence. Trends Parasitol. 2017;33:400–413. doi: 10.1016/j.pt.2016.12.013. PubMed DOI
Chmelař J., Kotál J., Langhansová H., Kotsyfakis M. Protease inhibitors in tick saliva: The role of serpins and cystatins in tick-host-pathogen interaction. Front. Cell. Infect. Microbiol. 2017;7:216. doi: 10.3389/fcimb.2017.00216. PubMed DOI PMC
Gregory W.F., Maizels R.M. Cystatins from filarial parasites: Evolution, adaptation and function in the host-parasite relationship. Int. J. Biochem. Cell Biol. 2008;40:1389–1398. doi: 10.1016/j.biocel.2007.11.012. PubMed DOI
Wang Y.J., Wu L.Y., Liu X.C., Wang S., Ehsan M., Yan R.F., Song X.K., Xu L.X., Li X.R. Characterization of a secreted cystatin of the parasitic nematode Haemonchus contortus and its immune-modulatory effect on goat monocytes. Parasit. Vectors. 2017;10:425. doi: 10.1186/s13071-017-2368-1. PubMed DOI PMC
Kotál J., Stergiou N., Buša M., Chlastáková A., Beránková Z., Řezáčová P., Langhansová H., Schwarz A., Calvo E., Kopecký J., et al. The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin. Cell Mol. Life Sci. 2019;76:2003–2013. doi: 10.1007/s00018-019-03034-3. PubMed DOI PMC
Schwarz A., Valdés J.J., Kotsyfakis M. The role of cystatins in tick physiology and blood feeding. Ticks Tick Borne Dis. 2012;3:117–127. doi: 10.1016/j.ttbdis.2012.03.004. PubMed DOI PMC
Klotz C., Ziegler T., Figueiredo A.S., Rausch S., Hepworth M.R., Obsivac N., Sers C., Lang R., Hammerstein P., Lucius R., et al. A helminth immunomodulator exploits host signaling events to regulate cytokine production in macrophages. PLoS Pathog. 2011;7:e1001248. doi: 10.1371/journal.ppat.1001248. PubMed DOI PMC
Maizels R.M., Gomez-Escobar N., Gregory W.F., Murray J., Zang X.X. Immune evasion genes from filarial nematodes. Int. J. Parasitol. 2001;31:889–898. doi: 10.1016/S0020-7519(01)00213-2. PubMed DOI
Klotz C., Ziegler T., Daniłowicz-Luebert E., Hartmann S. Cystatins of parasitic organisms. Adv. Exp. Med. Biol. 2011;712:208–221. PubMed
Khatri V., Chauhan N., Kalyanasundaram R. Parasite cystatin: Immunomodulatory molecule with therapeutic activity against immune mediated disorders. Pathogens. 2020;9:431. doi: 10.3390/pathogens9060431. PubMed DOI PMC
Kopitar-Jerala N. The role of cystatins in cells of the immune system. FEBS Lett. 2006;580:6295–6301. doi: 10.1016/j.febslet.2006.10.055. PubMed DOI
Salát J., Paesen G.C., Rezáčová P., Kotsyfakis M., Kovářová Z., Šanda M., Majtán J., Grunclová L., Horká H., Andersen J.F., et al. Crystal structure and functional characterization of an immunomodulatory salivary cystatin from the soft tick Ornithodoros moubata. Biochem. J. 2010;429:103–112. doi: 10.1042/BJ20100280. PubMed DOI PMC
Hartmann S., Lucius R. Modulation of host immune responses by nematode cystatins. Int. J. Parasitol. 2003;33:1291–1302. doi: 10.1016/S0020-7519(03)00163-2. PubMed DOI
Schierack P., Lucius R., Sonnenburg B., Schilling K., Hartmann S. Parasite-specific immunomodulatory functions of filarial cystatin. Infect. Immun. 2003;71:2422–2429. doi: 10.1128/IAI.71.5.2422-2429.2003. PubMed DOI PMC
Khaznadji E., Collins P., Dalton J.P., Bigot Y., Moire N. A new multi-domain member of the cystatin superfamily expressed by Fasciola hepatica. Int. J. Parasitol. 2005;35:1115–1125. doi: 10.1016/j.ijpara.2005.05.001. PubMed DOI
McKerrow J., Engel J., Caffrey C. Cysteine protease inhibitors as chemotherapy for parasitic infections. Bioorg. Med. Chem. 1999;7:639–644. doi: 10.1016/S0968-0896(99)00008-5. PubMed DOI
Tang B., Liu M., Wang L., Yu S., Shi H., Boireau P., Cozma V., Wu X., Liu X. Characterisation of a high-frequency gene encoding a strongly antigenic cystatin-like protein from Trichinella spiralis at its early invasion stage. Parasit. Vectors. 2015;8:78. doi: 10.1186/s13071-015-0689-5. PubMed DOI PMC
Abdulla M., Lim K., Sajid M., McKerrow J., Caffrey C. Schistosomiasis mansoni: Novel chemotherapy using a cysteine protease inhibitor. PLoS Med. 2007;4:130–138. doi: 10.1371/journal.pmed.0040014. PubMed DOI PMC
Das P., Alam M., Paik D., Karmakar K., De T., Chakrahorti T. Protease inhibitors in potential drug development for leishmaniasis. Indian J. Biochem. Biol. 2013;50:363–376. PubMed
Duschak V. Targets and patented drugs for chemotherapy of Chagas disease in the last 15 years-period. Recent Pat. Antiinfect. Drug Discov. 2016;11:74–173. doi: 10.2174/1574891X11666161024165304. PubMed DOI
Smallwood T.B., Giacomin P.R., Loukas A., Mulvenna J.P., Clark R.J., Miles J.J. Helminth immunomodulation in autoimmune disease. Front. Immunol. 2017;8:453. doi: 10.3389/fimmu.2017.00453. PubMed DOI PMC
Breznik B., Mitrovic A., Lah T.T., Kos J. Cystatins in cancer progression: More than just cathepsin inhibitors. Biochimie. 2019;166:233–250. doi: 10.1016/j.biochi.2019.05.002. PubMed DOI
Kordiš D., Turk V. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. BMC Evol. Biol. 2009;9:266. doi: 10.1186/1471-2148-9-266. PubMed DOI PMC
Martinez M., Diaz I. The origin and evolution of plant cystatins and their target cysteine proteinases indicate a complex functional relationship. BMC Evol. Biol. 2008;8:198. doi: 10.1186/1471-2148-8-198. PubMed DOI PMC
Brown W.M., Dziegielewska K.M. Friends and relations of the cystatin superfamily—New members and their evolution. Protein Sci. 1997;6:5–12. doi: 10.1002/pro.5560060102. PubMed DOI PMC
Rawlings N.D., Barrett A.J. Evolution of proteins of the cystatin superfamily. J. Mol. Evol. 1990;30:60–71. doi: 10.1007/BF02102453. PubMed DOI
Verdes A., Simpson D., Holford M. Are fireworms venomous? Evidence for the convergent evolution of toxin homologs in three species of fireworms (Annelida, Amphinomidae) Genome Biol. Evol. 2018;10:249–268. doi: 10.1093/gbe/evx279. PubMed DOI PMC
Cuesta-Astroz Y., Scholte L.L.S., Pais F.S.M., Oliveira G., Nahum L.A. Evolutionary analysis of the cystatin family in three Schistosoma species. Front. Genet. 2014;5:206. doi: 10.3389/fgene.2014.00206. PubMed DOI PMC
Guo A.J. Comparative analysis of cystatin superfamily in Platyhelminths. PLoS ONE. 2015;10:e0124683. doi: 10.1371/journal.pone.0124683. PubMed DOI PMC
Ilgová J., Jedličková L., Dvořaková H., Benovics M., Mikeš L., Janda L., Vorel J., Roudnický P., Potěšil D., Zdráhal Z., et al. A novel type I cystatin of parasite origin with atypical legumain-binding domain. Sci. Rep. 2017;7:17526. doi: 10.1038/s41598-017-17598-2. PubMed DOI PMC
Dong X.W., Xu J., Song H.Y., Liu Y.C., Wu M.D., Zhang H.J., Jing B., Lai W.M., Gu X.B., Xie Y., et al. Molecular characterization of a Dirofilaria immitis cysteine protease inhibitor (cystatin) and its possible role in filarial immune evasion. Genes. 2019;10:300. doi: 10.3390/genes10040300. PubMed DOI PMC
Santamaria M.E., Hernandez-Crespo P., Ortego F., Grbic V., Grbic M., Diaz I., Martinez M. Cysteine peptidases and their inhibitors in Tetranychus urticae: A comparative genomic approach. BMC Genom. 2012;13:307. doi: 10.1186/1471-2164-13-307. PubMed DOI PMC
Rangel C.K., Parizi L.F., Sabadin G.A., Costa E.P., Romeiro N.C., Isezaki M., Githaka N.W., Seixas A., Logullo C., Konnai S., et al. Molecular and structural characterization of novel cystatins from the taiga tick Ixodes persulcatus. Ticks Tick Borne Dis. 2017;8:432–441. doi: 10.1016/j.ttbdis.2017.01.007. PubMed DOI
Ibelli A.M.G., Hermance M.M., Kim T.K., Gonzalez C.L., Mulenga A. Bioinformatics and expression analyses of the Ixodes scapularis tick cystatin family. Exp. Appl. Acarol. 2013;60:41–53. doi: 10.1007/s10493-012-9613-2. PubMed DOI PMC
Alonso J., Martinez M. Insights into the molecular evolution of peptidase inhibitors in arthropods. PLoS ONE. 2017;12:e0187643. doi: 10.1371/journal.pone.0187643. PubMed DOI PMC
Weinstein S.B., Kuris A.M. Independent origins of parasitism in Animalia. Biol. Lett. 2016;12:20160324. doi: 10.1098/rsbl.2016.0324. PubMed DOI PMC
Dnyansagar R., Zimmermann B., Moran Y., Praher D., Sundberg P., Moller L., Technau U. Dispersal and speciation: The cross Atlantic relationship of two parasitic cnidarians. Mol. Phylogenet. Evol. 2018;126:346–355. doi: 10.1016/j.ympev.2018.04.035. PubMed DOI
Stefanik D.J., Lubinski T.J., Granger B.R., Byrd A.L., Reitzel A.M., DeFilippo L., Lorenc A., Finnerty J.R. Production of a reference transcriptome and transcriptomic database (EdwardsiellaBase) for the lined sea anemone, Edwardsiella lineata, a parasitic cnidarian. BMC Genom. 2014;15:71. doi: 10.1186/1471-2164-15-71. PubMed DOI PMC
Shpirer E., Chang E.S., Diamant A., Rubinstein N., Cartwright P., Huchon D. Diversity and evolution of myxozoan minicollagens and nematogalectins. BMC Evol. Biol. 2014;14:205. doi: 10.1186/s12862-014-0205-0. PubMed DOI PMC
Chang E.S., Neuhof M., Rubinstein N.D., Diamant A., Philippe H., Huchon D., Cartwright P. Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proc. Natl. Acad. Sci. USA. 2015;112:14912–14917. doi: 10.1073/pnas.1511468112. PubMed DOI PMC
Kumar G., Abd-Elfattah A., El-Matbouli M. Identification of differentially expressed genes of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in response to Tetracapsuloides bryosalmonae (Myxozoa) Parasitol. Res. 2015;114:929–939. doi: 10.1007/s00436-014-4258-1. PubMed DOI PMC
Jiménez-Guri E., Philippe H., Okamura B., Holland P.W.H. Buddenbrockia is a cnidarian worm. Science. 2007;317:116–118. doi: 10.1126/science.1142024. PubMed DOI
Alama-Bermejo G., Meyer E., Atkinson S.D., Holzer A.S., Wiśniewska M.M., Kolísko M., Bartholomew J.L. Transcriptome-wide comparisons and virulence gene polymorphisms of host-associated genotypes of the cnidarian parasite Ceratonova shasta in salmonids. Genome Biol. Evol. 2020;12:1258–1276. doi: 10.1093/gbe/evaa109. PubMed DOI PMC
Nesnidal M., Helmkampf M., Bruchhaus I., El-Matbouli M., Hausdorf B. Agent of whirling disease meets orphan worm: Phylogenomic analyses firmly place Myxozoa in Cnidaria. PLoS ONE. 2013;8:e54576. doi: 10.1371/journal.pone.0054576. PubMed DOI PMC
Foox J., Ringuette M., Desser S.S., Siddall M.E. In silico hybridization enables transcriptomic illumination of the nature and evolution of Myxozoa. BMC Genom. 2015;16:840. doi: 10.1186/s12864-015-2039-6. PubMed DOI PMC
Yang Y.L., Xiong J., Zhou Z.G., Huo F.M., Miao W., Ran C., Liu Y.C., Zhang J.Y., Feng J.M., Wang M., et al. The genome of the myxosporean Thelohanellus kitauei shows adaptations to nutrient acquisition within its fish host. Genome Biol. Evol. 2014;6:3182–3198. doi: 10.1093/gbe/evu247. PubMed DOI PMC
Hartigan A., Kosakyan A., Pecková H., Eszterbauer E., Holzer A.S. Transcriptome of Sphaerospora molnari (Cnidaria, Myxosporea) blood stages provides proteolytic arsenal as potential therapeutic targets against sphaerosporosis in common carp. BMC Genom. 2020;21:404. doi: 10.1186/s12864-020-6705-y. PubMed DOI PMC
Evans N.M., Lindner A., Raikova E.V., Collins A.G., Cartwright P. Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria. BMC Evol. Biol. 2008;8:139. doi: 10.1186/1471-2148-8-139. PubMed DOI PMC
Okamura B., Gruhl A. Myxozoan affinities and route to endoparasitism. In: Okamura B., Gruhl A., Bartholomew J.L., editors. Myxozoan Evolution, Ecology and Development. Springer; Cham, Switzerland: 2015. pp. 23–44.
Fiala I., Bartošová-Sojková P., Okamura B., Hartikainen H. Adaptive radiation and evolution within the Myxozoa. In: Okamura B., Gruhl A., Bartholomew J.L., editors. Myxozoan Evolution, Ecology and Development. Springer; Cham, Switzerland: 2015. pp. 69–84.
Feng J.M., Xiong J., Zhang J.Y., Yang Y.L., Yao B., Zhou Z.G., Miao W. New phylogenomic and comparative analyses provide corroborating evidence that Myxozoa is Cnidaria. Mol. Phylogenet. Evol. 2014;81:10–18. doi: 10.1016/j.ympev.2014.08.016. PubMed DOI
Stubbs M., Laber B., Bode W., Huber R., Jerala R., Lenarcic B., Turk V. The refined 2.4A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: A novel type of proteinase inhibitor interaction. EMBO J. 1990;9:1939–1947. doi: 10.1002/j.1460-2075.1990.tb08321.x. PubMed DOI PMC
Rawlings N.D., Alan J., Thomas P.D., Huang X.D., Bateman A., Finn R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–D632. doi: 10.1093/nar/gkx1134. PubMed DOI PMC
Potter S.C., Luciani A., Eddy S.R., Park Y., Lopez R., Finn R.D. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46:W200–W204. doi: 10.1093/nar/gky448. PubMed DOI PMC
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–W235. doi: 10.1093/nar/gkw256. PubMed DOI PMC
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Ceroni A., Passerini A., Vullo A., Frasconi P. DISULFIND: A disulfide bonding state and cysteine connectivity prediction server. Nucleic Acids Res. 2006;34:W177–W181. doi: 10.1093/nar/gkl266. PubMed DOI PMC
Almagro Armenteros J.J., Tsirigos K.D., Sønderby C.K., Petersen T.N., Winther O., Brunak S., von Heijne G., Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019;37:420–423. doi: 10.1038/s41587-019-0036-z. PubMed DOI
Crooks G.E., Hon G., Chandonia J.M., Brenner S.E. WebLogo: A sequence logo generator. Genome Res. 2004;14:1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC
Mao Y.F., Satoh N. A likely ancient genome duplication in the speciose reef-building coral genus, Acropora. Iscience. 2019;13:20–32. doi: 10.1016/j.isci.2019.02.001. PubMed DOI PMC
Kamm K., Osigus H.J., Stadler P.F., DeSalle R., Schierwater B. Trichoplax genomes reveal profound admixture and suggest stable wild populations without bisexual reproduction. Sci. Rep. 2018;8:11168. doi: 10.1038/s41598-018-29400-y. PubMed DOI PMC
Eitel M., Francis W., Varoqueaux F., Daraspe J., Osigus H., Krebs S., Vargas S., Blum H., Williams G., Schierwater B., et al. Comparative genomics and the nature of placozoan species. PLoS Biol. 2018;16:e3000032. doi: 10.1371/journal.pbio.2005359. PubMed DOI PMC
Srivastava M., Begovic E., Chapman J., Putnam N., Hellsten U., Kawashima T., Kuo A., Mitros T., Salamov A., Carpenter M., et al. The Trichoplax genome and the nature of placozoans. Nature. 2008;454:955–960. doi: 10.1038/nature07191. PubMed DOI
Lenarcic B., Ritonja A., Strukelj B., Turk B., Turk V. Equistatin, a new inhibitor of cysteine proteinases from Actinia equina, is structurally related to thyroglobulin type-1 domain. J. Biol. Chem. 1997;272:13899–13903. doi: 10.1074/jbc.272.21.13899. PubMed DOI
Irving J.A., Pike R.N., Dai W.W., Bromme D., Worrall D.M., Silverman G.A., Coetzer T.H.T., Dennison C., Bottomley S.P., Whisstock J.C. Evidence that serpin architecture intrinsically supports papain-like cysteine protease inhibition: Engineering alpha(1)-antitrypsin to inhibit cathepsin proteases. Biochemistry. 2002;41:4998–5004. doi: 10.1021/bi0159985. PubMed DOI
Eszterbauer E., Sipos D., Kaján G.L., Szegö D., Fiala I., Holzer A.S., Bartošová-Sojková P. Genetic diversity of serine protease inhibitors in myxozoan (Cnidaria, Myxozoa) fish parasites. Microorganisms. 2020;8:1502. doi: 10.3390/microorganisms8101502. PubMed DOI PMC
Geadkaew A., Kosa N., Siricoon S., Grams S.V., Grams R. A 170 kDa multi-domain cystatin of Fasciola gigantica is active in the male reproductive system. Mol. Biochem. Parasit. 2014;196:100–107. doi: 10.1016/j.molbiopara.2014.08.004. PubMed DOI
Pol E., Bjork I. Importance of the second binding loop and the C-terminal end of cystatin B (stefin B) for inhibition of cysteine proteinases. Biochemistry. 1999;38:10519–10526. doi: 10.1021/bi990488k. PubMed DOI
Jerala R., Kroon-Zitko L., Kopitar M., Popovic T., Turk V. Deletion of the carboxy terminal part of stefin B does not have a major effect for binding to papain. Biomed. Biochim. Acta. 1991;50:627–629. PubMed
Hewitson J.P., Grainger J.R., Maizels R.M. Helminth immunoregulation: The role of parasite secreted proteins in modulating host immunity. Mol. Biochem. Parasit. 2009;167:1–11. doi: 10.1016/j.molbiopara.2009.04.008. PubMed DOI PMC
Vendelova E., de Lima J.C., Lorenzatto K.R., Monteiro K.M., Mueller T., Veepaschit J., Grimm C., Brehm K., Hrčková G., Lutz M.B., et al. Proteomic analysis of excretory-secretory products of Mesocestoides corti metacestodes reveals potential suppressors of dendritic cell functions. PLoS Negl. Trop. Dis. 2016;10:e0005061. doi: 10.1371/journal.pntd.0005061. PubMed DOI PMC
Di Maggio L.S., Tirloni L., Pinto A.F.M., Diedrich J.K., Yates J.R., Benavides U., Carmona C., Vaz I.D., Berasain P. Across intra-mammalian stages of the liver fluke Fasciola hepatica: A proteomic study. Sci. Rep. 2016;6:32796. doi: 10.1038/srep32796. PubMed DOI PMC
Kang J.M., Lee K.H., Sohn W.M., Na B.K. Identification and functional characterization of CsStefin-1, a cysteine protease inhibitor of Clonorchis sinensis. Mol. Biochem. Parasit. 2011;177:126–134. doi: 10.1016/j.molbiopara.2011.02.010. PubMed DOI
Cantacessi C., Mulvenna J., Young N.D., Kasny M., Horak P., Aziz A., Hofmann A., Loukas A., Gasser R.B. A deep exploration of the transcriptome and “excretory/secretory” proteome of adult Fascioloides magna. Mol. Cell. Proteomics. 2012;11:1340–1353. doi: 10.1074/mcp.M112.019844. PubMed DOI PMC
Zhang F., Yang Y., Gao C., Yao Y., Xia R., Hu J., Ran C., Zhang Z., Zhou Z. Bioinformatics analysis and characterization of a secretory cystatin from Thelohanellus kitauei. AMB Express. 2020;10:116. doi: 10.1186/s13568-020-01052-0. PubMed DOI PMC
Korytář T., Wiegertjes G.F., Zusková E., Tomanová A., Lisnerová M., Patra S., Sieranski V., Šíma R., Born-Torrijos A., Wentzel A.S., et al. The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari. Parasit. Vectors. 2019;12:208. doi: 10.1186/s13071-019-3462-3. PubMed DOI PMC
Bjork S.J., Zhang Y.A., Hurst C.N., Alonso-Naveiro M.E., Alexander J.D., Sunyer J.O., Bartholomew J.L. Defenses of susceptible and resistant Chinook salmon (Onchorhynchus tshawytscha) against the myxozoan parasite Ceratomyxa shasta. Fish Shellfish Immun. 2014;37:87–95. doi: 10.1016/j.fsi.2013.12.024. PubMed DOI PMC
Bailey C., Strepparava N., Wahli T., Segner H. Exploring the immune response, tolerance and resistance in proliferative kidney disease of salmonids. Dev. Comp. Immunol. 2019;90:165–175. doi: 10.1016/j.dci.2018.09.015. PubMed DOI
Piazzon M.C., Estensoro I., Calduch-Giner J.A., del Pozo R., Picard-Sánchez A., Perez-Sánchez J., Sitjà-Bobadilla A. Hints on T cell responses in a fish-parasite model: Enteromyxum leei induces differential expression of T cell signature molecules depending on the organ and the infection status. Parasit. Vectors. 2018;11:443. doi: 10.1186/s13071-018-3007-1. PubMed DOI PMC
Pérez-Cordón G., Estensoro I., Benedito-Palos L., Calduch-Giner J.A., Sitjà-Bobadilla A., Pérez-Sanchez J. Interleukin gene expression is strongly modulated at the local level in a fish-parasite model. Fish Shellfish Immun. 2014;37:201–208. doi: 10.1016/j.fsi.2014.01.022. PubMed DOI
Gorgoglione B., Wang T., Secombes C.J., Holland J.W. Immune gene expression profiling of proliferative kidney disease in rainbow trout Oncorhynchus mykiss reveals a dominance of anti-inflammatory, antibody and Th cell-like activities. Fish Shellfish Immun. 2013;34:1654. doi: 10.1016/j.fsi.2013.03.061. PubMed DOI PMC
Sommerset I., Krossoy B., Biering E., Frost P. Vaccines for fish in aquaculture. Expert Rev. Vaccines. 2005;4:89–101. doi: 10.1586/14760584.4.1.89. PubMed DOI
Sitjà-Bobadilla A., Schmidt-Posthaus H., Wahli T., Holland J.W., Secombes C.J. Fish immune responses to Myxozoa. In: Okamura B., Gruhl A., Bartholomew J.L., editors. Myxozoan Evolution, Ecology and Development. Springer; Cham, Switzerland: 2015. pp. 253–280.
Rogers R.L., Hartl D.L. Chimeric genes as a source of rapid evolution in Drosophila melanogaster. Mol. Biol. Evol. 2012;29:517–529. doi: 10.1093/molbev/msr184. PubMed DOI PMC
Rogers R.L., Bedford T., Hartl D.L. Formation and longevity of chimeric and duplicate genes in Drosophila melanogaster. Genetics. 2009;181:313–322. doi: 10.1534/genetics.108.091538. PubMed DOI PMC
Eszterbauer E., Atkinson S., Diamant A., Morris D.J., El-Matbouli M., Hartikainen H. Myxozoan life cycles: Practical approaches and insights. In: Okamura B., Gruhl A., Bartholomew J.L., editors. Myxozoan Evolution, Ecology and Development. Springer; Cham, Switzerland: 2015. pp. 175–198.
Holzer A.S., Bartošová-Sojková P., Born-Torrijos A., Lövy A., Hartigan A., Fiala I. The joint evolution of the Myxozoa and their alternate hosts: A cnidarian recipe for success and vast biodiversity. Mol. Ecol. 2018;27:1651–1666. doi: 10.1111/mec.14558. PubMed DOI
Melillo D., Marino R., Italiani P., Boraschi D. Innate immune memory in invertebrate metazoans: A critical appraisal. Front. Immunol. 2018;9:1915. doi: 10.3389/fimmu.2018.01915. PubMed DOI PMC
Dickinson D.P. Salivary (SD-type) cystatins: Over one billion years in the making-but to what purpose? Crit. Rev. Oral Biol. Med. 2002;13:485–508. doi: 10.1177/154411130201300606. PubMed DOI
Ceratonova shasta: a cnidarian parasite of annelids and salmonids