RNAi-directed knockdown in the cnidarian fish blood parasite Sphaerospora molnari
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-16565S
Grantová Agentura České Republiky
20-30321Y
Grantová Agentura České Republiky
19-28399X
Grantová Agentura České Republiky, Czechia
PubMed
38347054
PubMed Central
PMC10861503
DOI
10.1038/s41598-024-54171-0
PII: 10.1038/s41598-024-54171-0
Knihovny.cz E-zdroje
- MeSH
- aktiny genetika MeSH
- Cnidaria * genetika MeSH
- fylogeneze MeSH
- Myxozoa * genetika MeSH
- nemoci ryb * genetika MeSH
- paraziti * MeSH
- pohyb buněk MeSH
- RNA interference MeSH
- ryby MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aktiny MeSH
RNA interference (RNAi) is an effective approach to suppress gene expression and monitor gene regulation. Despite its wide application, its use is limited in certain taxonomic groups, including cnidarians. Myxozoans are a unique group of cnidarian parasites that diverged from their free-living ancestors about 600 million years ago, with several species causing acute disease in farmed and wild fish populations. In this pioneering study we successfully applied RNAi in blood stages of the myxozoan Sphaerospora molnari, combining a dsRNA soaking approach, real-time PCR, confocal microscopy, and Western blotting. For proof of concept, we knocked down two unusual actins, one of which is known to play a critical role in S. molnari cell motility. We observed intracellular uptake of dsRNA after 30 min and accumulation in all cells of the typical myxozoan cell-in-cell structure. We successfully knocked down actin in S. molnari in vitro, with transient inhibition for 48 h. We observed the disruption of the cytoskeletal network within the primary cell and loss of the characteristic rotational cell motility. This RNAi workflow could significantly advance functional research within the Myxozoa, offering new prospects for investigating therapeutic targets and facilitating drug discovery against economically important fish parasites.
Department of Life Sciences University of Modena and Reggio Emilia Modena Italy
Fish Health Division University of Veterinary Medicine Vienna Austria
Zobrazit více v PubMed
Elbashir SM, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–498. doi: 10.1038/35078107. PubMed DOI
Scacheri PC, et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl. Acad. Sci. USA. 2004;101:1892–1897. doi: 10.1073/pnas.0308698100. PubMed DOI PMC
Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 2003;34:263–264. doi: 10.1038/ng1173. PubMed DOI
Clemens JC, et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal. Proc. Natl. Acad. Sci. USA. 2000;97:6499–6503. doi: 10.1073/pnas.110149597. PubMed DOI PMC
Orii H, Mochii M, Watanabe K. A simple "soaking method" for RNA interference in the planarian Dugesia japonica. Dev. Genes Evol. 2003;213:138–141. doi: 10.1007/s00427-003-0310-3. PubMed DOI
Eichner C, Nilsen F, Grotmol S, Dalvin S. A method for stable gene knock-down by RNA interference in larvae of the salmon louse (Lepeophtheirus salmonis) Exp. Parasitol. 2014;140:44–51. doi: 10.1016/j.exppara.2014.03.014. PubMed DOI
Zhou R, Mohr S, Hammom GJ, Perrimon N. Inducing RNAi in Drosophila cells by soaking with dsRNA. Cold Spring Harb. 2014 doi: 10.1101/pdb.prot080747. PubMed DOI
Seybold AC, Wharton DA, Thorne MAS, Marshall CJ. Establishing RNAi in a non-model organism: The Antarctic nematode Panagrolaimus sp. DAW1. PLoS One. 2016;11:e0166228. doi: 10.1371/journal.pone.0166228. PubMed DOI PMC
Jackson AL, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 2003;21:635–637. doi: 10.1038/nbt831. PubMed DOI
Birmingham A, et al. 3ʹ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods. 2006;3:199–204. doi: 10.1038/nmeth854. PubMed DOI
Chen J, et al. Off-target effects of RNAi correlate with the mismatch rate between dsRNA and non-target mRNA. RNA Biol. 2021;18:1747–1759. doi: 10.1080/15476286.2020.1868680. PubMed DOI PMC
Raemdonck K, Vandenbroucke RE, Demeester J, Sanders NN, De Smedt SC. Maintaining the silence: Reflections on long-term RNAi. Drug Discov. Today. 2008;21–22:917–931. doi: 10.1016/j.drudis.2008.06.008. PubMed DOI PMC
Gudmunds E, Wheat CW, Khila A, Husby A. Functional genomic tools for emerging model species. Trends Ecol. Evol. 2022;37:1104–1115. doi: 10.1016/j.tree.2022.07.004. PubMed DOI
Hou B, Hai Y, Buyin B, Hasi S. Research progress and limitation analysis of RNA interference in Haemonchus contortus in China. Front. Vet. Sci. 2023;10:1079676. doi: 10.3389/fvets.2023.1079676. PubMed DOI PMC
Morris DJ. Cell formation by myxozoan species is not explained by dogma. Proc. R. Soc. B. 2010;277:2565–2570. doi: 10.1098/rspb.2010.0282. PubMed DOI PMC
Feist, S. W., Morris, D. J., Alama-Bermejo, G. & Holzer, A. S. Cellular process in Myxozoans. In Myxozoan Evolution, Ecology and Development (eds. Okamura, B. Gruhl, A. & Bartholomew, J.L.). 139–154 10.1007/978-3-319-14753-6_8 (Springer, 2015).
Eszterbauer E, Kallert DM, Grabner D, El-Matbouli M. Differentially expressed parasite genes involved in host recognition and invasion of the triactinomyxon stage of Myxobolus cerebralis (Myxozoa) Parasitology. 2009;136:367–377. doi: 10.1017/S0031182008005398. PubMed DOI
Alama-Bermejo G, Bron JE, Raga JA, Holzer AS. 3D morphology, ultrastructure and development of Ceratomyxa puntazzi stages: First insights into the mechanisms of motility and budding in the Myxozoa. Plos One. 2012 doi: 10.1371/journal.pone.0032679. PubMed DOI PMC
Alama-Bermejo G, Holzer AS, Bartholomew JL. Myxozoan adhesion and virulence: Ceratonova shasta on the move. Microorganisms. 2019;7:397. doi: 10.3390/microorganisms7100397. PubMed DOI PMC
Sarker S, Menanteau-Ledouble S, Kotob MH, El-Matbouli M. A RNAi-based therapeutic proof of concept targets salmonid whirling disease in vivo. PloS one. 2017;12:e0178687. doi: 10.1371/journal.pone.0178687. PubMed DOI PMC
Holzer AS, Piazzon MC, Barrett D, Bartholomew JL, Sitjà-Bobadilla A. To react or not to react: The dilemma of fish immune systems facing myxozoan infections. Front. Immunol. 2021;12:734238. doi: 10.3389/fimmu.2021.734238. PubMed DOI PMC
Morris DJ. Towards an in vitro culture method for the rainbow trout pathogen Tetracapsuloides bryosalmonae. J. Fish Dis. 2012;35:9441–9444. doi: 10.1111/j.13652761.2012.01421.x. PubMed DOI
Redondo MJ, Palenzuela O, Alvarez-Pellitero P. In vitro studies on viability and proliferation of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of cultured turbot Scophthalmus maximus. Dis. Aquat. Organ. 2003;55:133–144. doi: 10.3354/dao055133. PubMed DOI
Tyutyaev P. Organization of the chromosomal aparatus Myxozoa. Tsitologiya. 2008;50:907–910. PubMed
Yokoyama H, Kageyama M, Yanagida T, Ogawa K. Seawater survival of Enteromyxum leei (myxozoa) evaluated by in vitro viability and in vivo infectivity assays. Fish Pathol. 2009;44:172–177. doi: 10.3147/jsfp.44.172. DOI
Born-Torrijos A, et al. Method for isolation of myxozoan proliferative stages from fish at high yield and purity: An essential prerequisite for in vitro, in vivo and genomics-based research developments. Cells. 2022;11:377. doi: 10.3390/cells11030377. PubMed DOI PMC
Lom J, Dyková I, Pavlásková M. Unidentified mobile protozoans from the blood of carp and some unsolved problems of myxosporean life cycles. J. Protozool. 1983;30:497–508. doi: 10.1111/j.1550-7408.1983.tb01411.x. DOI
Hartigan A, et al. New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa: Myxosporea) blood stages in fish. Sci. Rep. 2016;6:39093. doi: 10.1038/srep39093. PubMed DOI PMC
Das S, Stortz JF, Meissner M, Periz J. The multiple functions of actin in apicomplexan parasites. Cell Microbiol. 2021;11:e13345. doi: 10.1111/cmi.13345. PubMed DOI
Brekhman V, et al. Proteomic analysis of the parasitic cnidarian Ceratonova shasta (Cnidaria: Myxozoa) reveals diverse roles of actin in motility and spore formation. Front. Mar. Sci. 2021;8:632700. doi: 10.3389/fmars.2021.632700. DOI
Schmitz S, et al. Malaria parasite actin filaments are very short. J. Mol. Biol. 2005;349:113–125. doi: 10.1016/j.jmb.2005.03.056. PubMed DOI
Skillman KM, et al. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites. PLoS Pathog. 2011;7:e1002280. doi: 10.1371/journal.ppat.1002280. PubMed DOI PMC
Lu H, Fagnant PM, Trybus KM. Unusual dynamics of the divergent malaria parasite PfAct1 actin filament. Proc. Natl. Acad. Sci. USA. 2019;116:20418–20427. doi: 10.1073/pnas.1906600116. PubMed DOI PMC
Dorsett Y, Tuschl T. siRNAs: Applications in functional genomics and potential as therapeutics. Nat. Rev. Drug Discov. 2004;3:318–329. doi: 10.1038/nrd1345. PubMed DOI
Poh JJ, Gan SKE. The determination of factors involved in column-based nucleic acid extraction and purification. J. Bioprocess Biotech. 2014;4:157. doi: 10.4172/2155-9821.1000157. DOI
Li C, Zamore PD. Preparation of dsRNAs for RNAi by in vitro transcription. Cold Spring Harb. Protoc. 2019 doi: 10.1101/pdb.prot097469. PubMed DOI
Timmons L, Court DL, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene. 2001;263:103–112. doi: 10.1016/s0378-1119(00)00579-5. PubMed DOI
Nwokeoji AO, Kung AW, Kilby PM, Portwood DE, Dickman MJ. Purification and characterisation of dsRNA using ion pair reverse phase chromatography and mass spectrometry. J. Chromatogr. A. 2017;10:14–25. doi: 10.1016/j.chroma.2016.12.062. PubMed DOI PMC
Worby, C. A., Simonson-Leff, N. & Dixon, J. E. RNA interference of gene expression (RNAi) in cultured Drosophila cells. Sci. STKE95, PL1 10.1126/stke.2001.95.pl1 (2001). PubMed
Saleh MC, et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat. Cell Biol. 2006;8:793–802. doi: 10.1038/ncb1439. PubMed DOI PMC
Li X, Dong X, Zou C, Zhang H. Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference. Sci. Rep. 2015;5:8700. doi: 10.1038/srep08700. PubMed DOI PMC
Ye C, et al. The involvement of systemic RNA interference deficient-1-like (SIL1) in cellular dsRNA uptake in Acyrthosiphon pisum. Insect Sci. 2022;30:1393–1404. doi: 10.1111/1744-7917.13167. PubMed DOI
Morris DJ, Adams A. Transmission of freshwater myxozoans during the asexual propagation of invertebrate hosts. Int. J. Parasitol. 2006;36:371–377. doi: 10.1016/j.ijpara.2005.10.009. PubMed DOI
Hartigan A, Kosakyan A, Pecková H, Eszterbauer E, Holzer AS. Transcriptome of Sphaerospora molnari (Cnidaria, Myxosporea) blood stages provides proteolytic arsenal as potential therapeutic targets against sphaerosporosis in common carp. BMC Genomics. 2020;21:404. doi: 10.1186/s12864-020-6705-y. PubMed DOI PMC
Winston WM, Molodowitch C, Hunter CP. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science. 2002;295:2456–2459. doi: 10.1126/science.1068836. PubMed DOI
Feinberg EH, Hunter CP. Transport of dsRNA into cells by the transmembrane protein SID-1. Science. 2003;301:1545–1547. doi: 10.1126/science.1087117. PubMed DOI
DeWitte-Orr S, Collins SE, Bauer CMT, Bowdish DM, Mossman KL. An accessory to the 'Trinity': SR-As are essential pathogen sensors of extracellular dsRNA, mediating entry and leading to subsequent type I IFN responses. PLoS Pathog. 2010;6:e1000829. doi: 10.1371/journal.ppat.1000829. PubMed DOI PMC
Nellimarla S, et al. Class A scavenger receptor-mediated double-stranded RNA internalization is independent of innate antiviral signaling and does not require phosphatidylinositol 3-kinase activity. J. Immunol. 2015;195:3858–3865. doi: 10.4049/jimmunol.1501028. PubMed DOI PMC
Wytinck N, Manchur CL, Li VH, Whyard S, Belmonte MF. dsRNA uptake in plant pests and pathogens: Insights into RNAi-based insect and fungal control technology. Plants. 2020;9:1780. doi: 10.3390/plants9121780. PubMed DOI PMC
Layzer JM, et al. In vivo activity of nuclease-resistant siRNAs. RNA. 2004;10:766–771. doi: 10.1261/rna.5239604. PubMed DOI PMC
Pfarr K, Heider U, Hoerauf A. RNAi mediated silencing of actin expression in adult Litomosoides sigmodontis is specific, persistent and results in a phenotype. Int. J. Parasitol. 2006;36:661–669. doi: 10.1016/j.ijpara.2006.01.010. PubMed DOI
Hammond SM, Caudy A, Hannon G. Post-transcriptional gene silencing by double-stranded RNA. Nat. Rev. Genet. 2001;2:110–119. doi: 10.1038/35052556. PubMed DOI
Nishide Y, et al. Effectiveness of orally-delivered double-stranded RNA on gene silencing in the stinkbug Plautia stali. PloS One. 2021;16:e0245081. doi: 10.1371/journal.pone.0245081. PubMed DOI PMC
Niu J, et al. Topical dsRNA delivery induces gene silencing and mortality in the pea aphid. Pest Manag. Sci. 2019;75:2873–2881. doi: 10.1002/ps.5457. PubMed DOI
Wang X, et al. Selection of hyperfunctional siRNAs with improved potency and specificity. Nucl. Acids Res. 2009;37:e152. doi: 10.1093/nar/gkp864. PubMed DOI PMC
Peng H, et al. Sustained delivery of siRNA/PEI complex from in situ forming hydrogels potently inhibits the proliferation of gastric cancer. J. Exp. Clin. Cancer Res. 2016;35:57. doi: 10.1186/s13046-016-0334-y. PubMed DOI PMC
Kasai H, et al. Efficient siRNA delivery and gene silencing using a lipopolypeptide hybrid vector mediated by a caveolae-mediated and temperature-dependent endocytic pathway. J. Nanobiotechnol. 2019;17:11. doi: 10.1186/s12951-019-0444-8. PubMed DOI PMC
Cooper AM, Silver K, Zhang J, Park Y, Zhu KY. Molecular mechanisms influencing efficiency of RNA interference in insects. Pest Manag. Sci. 2019;75:18–28. doi: 10.1002/ps.5126. PubMed DOI
Liu S, et al. RNA-based technologies for insect control in plant production. Biotechnol. Adv. 2020;39:107463. doi: 10.1016/j.biotechadv.2019. PubMed DOI
Chen J, et al. Transcript level is a key factor affecting RNAi efficiency. Pestic. Biochem. Phys. 2021;176:104872. doi: 10.1016/j.pestbp.2021.104872. PubMed DOI
Macel ML, et al. Sea as a color palette: The ecology and evolution of fluorescence. Zool. Lett. 2020;6:9. doi: 10.1186/s40851-020-00161-9. PubMed DOI PMC
Shagin DA, et al. GFP-like proteins as ubiquitous Metazoan superfamily: Evolution of functional features and structural complexity. Mol. Biol. Evol. 2004;21:841–850. doi: 10.1093/molbev/msh079. PubMed DOI
Tschuch C, et al. Off-target effects of siRNA specific for GFP”. BMC Mol. Biol. 2008;9:60. doi: 10.1186/1471-2199-9-60. PubMed DOI PMC
Nunes FM, et al. Non-target effects of green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) used in honey bee RNA interference (RNAi) assays. Insects. 2013;4:90–103. doi: 10.3390/insects4010090. PubMed DOI PMC
Rougeot J, Wang Y, Verhulst EC. Effect of using green fluorescent protein double-stranded RNA as non-target negative control in Nasonia vitripennis RNA interference assays. Exp. Res. 2021;2:E11. doi: 10.1017/exp.2020.67. DOI
Joseph R, Srivastava OP, Pfister RR. Downregulation of β-actin and its regulatory gene HuR affect cell migration of human corneal fibroblasts. Mol. Vis. 2014;20:593–605. PubMed PMC
Dunn SR, Phillips WS, Green DR, Weis VM. Knockdown of actin and caspase gene expression by RNA interference in the symbiotic anemone Aiptasia pallida. Biol. Bull. 2007;212:250–258. doi: 10.2307/25066607. PubMed DOI
Killiny N, Hajeri S, Tiwari S, Gowda S, Stelinski LL. Double-stranded RNA uptake through topical application, mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri. PLoS One. 2014;9:e110536. doi: 10.1371/journal.pone.0110536. PubMed DOI PMC
Refki PN, Armisén D, Crumière AJ, Viala S, Khila A. Emergence of tissue sensitivity to Hox protein levels underlies the evolution of an adaptive morphological trait. Dev. Biol. 2014;392:441–453. doi: 10.1016/j.ydbio.2014.05.021. PubMed DOI PMC
Wang H, Lacoche S, Huang L, Xue B, Muthuswamy SK. Rotational motion during three-dimensional morphogenesis of mammary epithelial acini relates to laminin matrix assembly. Proc. Natl. Acad. Sci. USA. 2013;110:163–168. doi: 10.1073/pnas.1201141110. PubMed DOI PMC
Kuhne W, et al. Disintegration of cytoskeletal structure of actin filaments in energy-depleted endothelial cells. Am. J. Physiol. 1993;264:H1599–H1608. doi: 10.1152/ajpheart.1993.264.5.H1599. PubMed DOI
Rivera AS, et al. RNA interference in marine and freshwater sponges: actin knockdown in Tethya wilhelma and Ephydatia muelleriby ingested dsRNA expressing bacteria. BMC Biotechnol. 2011;11:67. doi: 10.1186/1472-6750-11-67. PubMed DOI PMC
Vanslembrouck B, Ampe C, van Hengel J. Time for rethinking the different β-actin transgenic mouse models? Cytoskeleton (Hoboken, N.J.) 2020;77:527–543. doi: 10.1002/cm.21647. PubMed DOI
Gerisch G, et al. Mobile actin clusters and traveling waves in cells recovering from actin depolymerization. Biophys. J. 2004;87:3493–3503. doi: 10.1529/biophysj.104.047589. PubMed DOI PMC
Dugina V, Zwaenepoel I, Gabbiani G, Clément S, Chaponnier C. Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity. J. Cell Sci. 2009;122:2980–2988. doi: 10.1242/jcs.041970. PubMed DOI
Pearson GW, Hunter T. Real-time imaging reveals that noninvasive mammary epithelial acini can contain motile cells. J. Cell Biol. 2007;179:1555–1567. doi: 10.1083/jcb.200706099. PubMed DOI PMC
Murrell M, Oakes P, Lenz M, Gardel ML. Forcing cells into shape: The mechanics of actomyosin contractility. Nat. Rev. Mol. Cell Biol. 2015;16:486–498. doi: 10.1038/nrm4012. PubMed DOI PMC
Sympson CJ, Singleton D, Geoghegan TE. Cytochalasin D-induced actin gene expression in murine erythroleukemia cells. Exp. Cell Res. 1993;205:225–231. doi: 10.1006/excr.1993.1080. PubMed DOI
Brett JG, Tannenbaum J. Cytochalasin D-induced increase in actin synthesis and content in a variety of cell types. Cell Biol. Int. Rep. 1985;9:723–730. doi: 10.1016/0309-1651(85)90080-3. PubMed DOI
Luxenburg C, Amalia Pasolli H, Williams SE, Fuchs E. Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation. Nat. Cell Biol. 2011;13:203–214. doi: 10.1038/ncb2163. PubMed DOI PMC
Bunnell TM, Burbach BJ, Shimizu Y, Ervasti JM. β-Actin specifically controls cell growth, migration, and the G-actin pool. Mol. Biol Cell. 2011;21:4047–4058. doi: 10.1091/mbc.E11-06-0582. PubMed DOI PMC
Vedula P, et al. Diverse functions of homologous actin isoforms are defined by their nucleotide, rather than their amino acid sequence. Elife. 2017;6:e31661. doi: 10.7554/eLife.31661. PubMed DOI PMC
Larive RM, Baisamy L, Urbach S, Coopman P, Bettache N. Cell membrane extensions, generated by mechanical constraint, are associated with a sustained lipid raft patching and an increased cell signaling. Biochim. Biophys. Acta. 2010;1798:389–400. doi: 10.1016/j.bbamem.2009.11.016. PubMed DOI
Xu, W., Jiang, X. & Huang, L. RNA interference technology. In Comprehensive Biotechnology. 3rd edn (ed. Moo-Young, M.). 560–575 10.1016/B978-0-444-64046-8.00282-2 (Pergamon, 2019).
Schindelin J, et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2013;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Sage D, et al. DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods (San Diego, Calif.) 2017;115:28–41. doi: 10.1016/j.ymeth.2016.12.015. PubMed DOI
Kosakyan A, et al. Selection of suitable reference genes for gene expression studies in myxosporean (Myxozoa, Cnidaria) parasites. Sci. Rep. 2019;9:15073. doi: 10.1038/s41598-019-51479-0. PubMed DOI PMC
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org (Springer, 2016).