New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa:Myxosporea) blood stages in fish
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
27982057
PubMed Central
PMC5159882
DOI
10.1038/srep39093
PII: srep39093
Knihovny.cz E-resources
- MeSH
- Actins immunology MeSH
- Cytoplasm metabolism MeSH
- Phylogeny MeSH
- Carps blood parasitology MeSH
- Cloning, Molecular MeSH
- Myxozoa physiology MeSH
- Cell Movement MeSH
- Antibodies metabolism MeSH
- Protozoan Proteins immunology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Actins MeSH
- Antibodies MeSH
- Protozoan Proteins MeSH
Cellular motility is essential for microscopic parasites, it is used to reach the host, migrate through tissues, or evade host immune reactions. Many cells employ an evolutionary conserved motor protein- actin, to crawl or glide along a substrate. We describe the peculiar movement of Sphaerospora molnari, a myxozoan parasite with proliferating blood stages in its host, common carp. Myxozoa are highly adapted parasitic cnidarians alternately infecting vertebrates and invertebrates. S. molnari blood stages (SMBS) have developed a unique "dancing" behaviour, using the external membrane as a motility effector to rotate and move the cell. SMBS movement is exceptionally fast compared to other myxozoans, non-directional and constant. The movement is based on two cytoplasmic actins that are highly divergent from those of other metazoans. We produced a specific polyclonal actin antibody for the staining and immunolabelling of S. molnari's microfilaments since we found that neither commercial antibodies nor phalloidin recognised the protein or microfilaments. We show the in situ localization of this actin in the parasite and discuss the importance of this motility for evasion from the cellular host immune response in vitro. This new type of motility holds key insights into the evolution of cellular motility and associated proteins.
Institute for Veterinary Medical Research Centre for Agricultural Research Budapest Hungary
Instituto de Acuicultura Torre de la Sal Castellón Spain
University of South Bohemia Faculty of Science Branišovská 31 České Budějovice Czech Republic
See more in PubMed
Ananthakrishnan R. & Ehrlicher A. The forces behind cell movement. Int. J Biol Sci. 3, 303–317 (2007). PubMed PMC
Dobrowolski J. & Sibley L. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84, 933–939, doi: 10.1016/S0092-8674(00)81071-5 (1996). PubMed DOI
Langousis G. & Hill K. L. Motility and more: the flagellum of PubMed DOI PMC
Broadhead R. et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440, 224–227, doi: 10.1038/nature04541 (2006). PubMed DOI
Dominguez R., Holmes K., Rees D., Dill K. & Jr W. Actin structure and function. Annu. Rev. Biophys. 40, 169–186, doi: 10.1146/annurev-biophys-042910-155359 (2011). PubMed DOI PMC
van den Ent F., Amos L. & Lowe J. Prokaryotic origin of the actin cytoskeleton. Nature 413, 39–44, doi: 10.1038/35092500 (2001). PubMed DOI
Steinmetz P. et al. Independent evolution of striated muscles in cnidarians and bilaterians. Nature 487, 231–U1508, doi: 10.1038/nature11180 (2012). PubMed DOI PMC
Steele R., David C. & Technau U. A genomic view of 500 million years of cnidarian evolution. Trends Genet. 27, 7–13, doi: 10.1016/j.tig.2010.10.002 (2011). PubMed DOI PMC
Kodádková A., Bartosová-Sojková P., Holzer A. & Fiala I. PubMed DOI
Schröder O. Zur Kenntnis der
Feist S. W., Morris D. J., Alama-Bermejo G. & Holzer A. S. Cellular process in myxozoans in
Eszterbauer E., Kallert D. M., Grabner D. & El-Matbouli M. Differentially expressed parasite genes involved in host recognition and invasion of the triactinomyxon stage of PubMed DOI
El-Matbouli M., Hoffmann R. W. & Mandok C. Light and electron microscopic observations on the route of the Triactinomyxon sporoplasm of DOI
Alama-Bermejo G., Bron J. E., Antonio Raga J. & Holzer A. S. 3D Morphology, ultrastructure and development of PubMed DOI PMC
Lom J., Dyková I., Pavlásková M. & Grupcheva G.
Holzer A. S., Hartigan A., Patra S., Pecková H. & Eszterbauer E. Molecular fingerprinting of the myxozoan community in common carp suffering Swim Bladder Inflammation (SBI) identifies multiple etiological agents. Parasit Vector 7, doi: 10.1186/1756-3305-7-398 (2014). PubMed DOI PMC
Csaba G. An unidentifiable extracellular sporozoan parasite from the blood of the carp. Parasitologica Hungarica 9, 21–24 (1976).
Lom J., Dyková I. & Pavlásková M. Unidentified mobile protozoans from the blood of carp and some unsolved problems of myxosporean life cycles. J Protozool. 30, 497–508, doi: 10.1111/j.1550-7408.1983.tb05467.x (1983). DOI
Morris D. J. & Adams A. Transmission of freshwater myxozoans during the asexual propagation of invertebrate hosts. Int. J Parasitol. 36, 371–377, doi: 10.1016/j.ijpara.2005.10.009 (2006). PubMed DOI
Lom J., Pavlásková M. & Dyková I. Notes on kidney infecting species of the genus Sphaerospora Thelohan (Myxosporea), including a new species DOI
Bjork S. J. & Bartholomew J. L. Invasion of PubMed DOI
Cooper J. Effects of Cytochalasin and Phalloidin on Actin. J Cell Biol. 105, 1473–1478, doi: 10.1083/jcb.105.4.1473 (1987). PubMed DOI PMC
Forer A. & Fabian L. Does 2,3-butanedione monoxime inhibit nonmuscle myosin? Protoplasma 225, 1–4, doi: 10.1007/s00709-004-0077-z (2005). PubMed DOI
Barden J. A., Miki M., Hambly B. D. & dos Remedios C. G. Localization of the phalloidin and nucleotide-binding sites on actin. Eur.J.Biochem. 162, 583–588 (1987). PubMed
Nair U. B., Joel P. B., Wan Q., Lowey S., Rould M. A. & Trybus K. Crystal structures of monomeric actin bound to cytochalasin D. J Mol Biol. 384 848–64, doi: 10.1016/j.jmb.2008.09.082 (2008). PubMed DOI PMC
Wetzel D., Hakansson S., Hu K., Roos D. & Sibley L. Actin filament polymerization regulates gliding motility by apicomplexan parasites. Mol. Biol. Cell 14, 396–406, doi: 10.1091/mbc.E02-08-0458 (2003). PubMed DOI PMC
Schmitz S. et al. Malaria parasite actin filaments are very short. J Mol. Biol. 349, 113–125, doi: 10.1016/j.jmb.2005.03.056 (2005). PubMed DOI
Sahoo N., Beatty W., Heuser J., Sept D. & Sibley L. Unusual kinetic and structural properties control rapid assembly and turnover of actin in the parasite PubMed DOI PMC
Nett I., Davidson L., Lamont D. & Ferguson M. Identification and specific localization of tyrosine-phosphorylated proteins in PubMed DOI PMC
Bartles J. Parallel actin bundles and their multiple actin-bundling proteins. Curr. Opin. Cell Biol. 12, 72–78, doi: 10.1016/S0955-0674(99)00059-9 (2000). PubMed DOI PMC
Demonchy R. et al. Kinesin 9 family members perform separate functions in the trypanosome flagellum. J Cell Biol. 187, 615–622, doi: 10.1083/jcb.200903139 (2009). PubMed DOI PMC
Wickstead B. & Gull K. The evolution of the cytoskeleton. J Cell Biol. 194, 513–525, doi: 10.1083/jcb.201102065 (2011). PubMed DOI PMC
Jockusch B. et al. The Long Journey: actin on the road to pro- and eukaryotic cells. Rev. Physiol. Bioch P 161, 67–85, doi: 10.1007/112_2011_1 (2011). PubMed DOI
Fisher D. & Bode H. Nucleotide sequence of an actin encoding gene from PubMed DOI
Hooper S. & Thuma J. Invertebrate muscles: Muscle specific genes and proteins. Physiol. Rev 85, 1001–1060, doi: 10.1152/physrev.00019.2004 (2005). PubMed DOI
Kelley G. O., Beauchamp K. A. & Hedrick R. P. Phylogenetic comparison of the myxosporea based on an actin cDNA isolated from PubMed DOI
Baldauf S., Roger A., Wenk-Siefert I. & Doolittle W. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977, doi: 10.1126/science.290.5493.972 (2000). PubMed DOI
Holzer A. S., Wootten R. & Sommerville C. The secondary structure of the unusually long 18S ribosomal RNA of the myxozoan PubMed DOI
Venkatesh B., Tay B., Elgar G. & Brenner S. Isolation, characterization and evolution of nine pufferfish ( PubMed DOI
Skillman K. et al. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites. Plos Pathog 7, doi: 10.1371/journal.ppat.1002280 (2011). PubMed DOI PMC
Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826, doi: 10.1038/nature06246 (2007). PubMed DOI
Sitjà-Bobadilla A. Living off a fish: A trade-off between parasites and the immune system. Fish Shellfish Immunol. 25, 358–372, doi: 10.1016/j.fsi.2008.03.018 (2008). PubMed DOI
Smith L. & May R. Mechanisms of microbial escape from phagocyte killing. Biochem. Soc. Trans. 41, 475–490, doi: 10.1042/BST20130014 (2013). PubMed DOI
Clark T., Lin T. & Dickerson H. Surface antigen cross-linking triggers forced exit of a protozoan parasite from its host. Proc Nat Acad Sci USA 93, 6825–6829, doi: 10.1073/pnas.93.13.6825 (1996). PubMed DOI PMC
Buchmann K., Sigh J., Nielsen C. & Dalgaard M. Host responses against the fish parasitizing ciliate PubMed DOI
Forlenza M. et al. Nitric oxide hinders antibody clearance from the surface of PubMed DOI
Munoz P. et al. Sharpsnout sea bream ( PubMed DOI
Cuesta A., Esteban M. & Meseguer J. PubMed DOI
Folgueira I. et al. Particle size and traffic of phagocytes between the turbot peritoneal cavity and lymphoid organs. Fish Shellfish Immunol. 44, 652–661, doi: 10.1016/j.fsi.2015.03.034 (2015). PubMed DOI
Rodriguez A., Esteban M. & Meseguer J. Phagocytosis and peroxidase release by Seabream ( PubMed DOI
Dezfuli B. et al. Infiltration and activation of acidophilic granulocytes in skin lesions of gilthead seabream, PubMed DOI
Dezfuli B. et al. Histological damage and inflammatory response elicited by PubMed DOI PMC
Estensoro I. Mulero I., Redondo M. J., Alvarez-Pellitero P., Mulero V. & Sitjà-Bobadilla A. Modulation of leukocytic populations of gilthead sea bream ( PubMed DOI
Katzenback B. & Belosevic M. Isolation and functional characterization of neutrophil-like cells, from goldfish ( PubMed DOI
Kurata O., Okamoto N. & Ikeda Y. Neutrophilic granulocytes in carp, PubMed DOI
Meseguer J., Esteban M. & Mulero V. Nonspecific cell-mediated cytotoxicity in the seawater teleosts ( PubMed DOI
Whyte S. The innate immune response of finfish - A review of current knowledge. Fish Shellfish Immunol 23, 1127–1151, doi: 10.1016/j.fsi.2007.06.005 (2007). PubMed DOI
Schneider C., Rasband W. & Eliceiri K. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671–675, doi: 10.1038/nmeth.2089 (2012). PubMed DOI PMC
Tekle Y. et al. A Multigene analysis of PubMed DOI
Swofford D. L. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4 (2002).
Ronquist F. & Huelsenbeck J. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574, doi: 10.1093/bioinformatics/btg180 (2003). PubMed DOI
Whelan S. & Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18, 691–699 (2001). PubMed
RNAi-directed knockdown in the cnidarian fish blood parasite Sphaerospora molnari
To React or Not to React: The Dilemma of Fish Immune Systems Facing Myxozoan Infections
Genetic Diversity of Serine Protease Inhibitors in Myxozoan (Cnidaria, Myxozoa) Fish Parasites
Blood feast: Exploring the erythrocyte-feeding behaviour of the myxozoan Sphaerospora molnari
Myxozoan Adhesion and Virulence: Ceratonova shasta on the Move