Selection of suitable reference genes for gene expression studies in myxosporean (Myxozoa, Cnidaria) parasites

. 2019 Oct 21 ; 9 (1) : 15073. [epub] 20191021

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31636316
Odkazy

PubMed 31636316
PubMed Central PMC6803631
DOI 10.1038/s41598-019-51479-0
PII: 10.1038/s41598-019-51479-0
Knihovny.cz E-zdroje

Myxozoans (Cnidaria: Myxozoa) are an extremely diversified group of endoparasites some of which are causative agents of serious diseases in fish. New methods involving gene expression studies have emerged over the last years to better understand and control myxozoan diseases. Quantitative RT-PCR is the most extensively used approach for gene expression studies. However, the accuracy of the results depends on the normalization of the data to reference genes. We studied the expression of eight commonly used reference genes, adenosylhomocysteinase (AHC1), beta actin (ACTB), eukaryotic translation elongation factor 2 (EF2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1), DNA-directed RNA polymerase II (RPB2), 18S ribosomal RNA (18S), 28S ribosomal RNA (28S) across different developmental stages of three myxozoan species, Sphaerospora molnari, Myxobolus cerebralis and Ceratonova shasta, representing the three major myxozoan linages from the largest class Myxosporea. The stable reference genes were identified using four algorithms: geNorm, NormFinder, Bestkeeper and ΔCq method. Additionally, we analyzed transcriptomic data from S. molnari proliferative and spore-forming stages to compare the relative amount of expressed transcripts with the most stable reference genes suggested by RT-qPCR. Our results revealed that GAPDH and EF2 are the most uniformly expressed genes across the different developmental stages of the studied myxozoan species.

Erratum v

PubMed

Zobrazit více v PubMed

Wolf K, Markiw ME. Biology contravenes taxonomy in the Myxozoa: New discoveries show alternation of invertebrate and vertebrate hosts. Science. 1984;225:1449–1452. doi: 10.1126/science.225.4669.1449. PubMed DOI

Eszterbauer Edit, Atkinson Stephen, Diamant Arik, Morris David, El-Matbouli Mansour, Hartikainen Hanna. Myxozoan Evolution, Ecology and Development. Cham: Springer International Publishing; 2015. Myxozoan Life Cycles: Practical Approaches and Insights; pp. 175–198.

Kent ML, et al. Recent advances in our knowledge of the Myxozoa. J. Eukaryot. Microbiol. 2001;48:395–413. doi: 10.1111/j.1550-7408.2001.tb00173.x. PubMed DOI

Sterud E, et al. Severe mortality in wild atlantic salmon Salmo salar due to proliferative kidney disease (PKD) caused by Tetracapsuloides bryosalmonae (Myxozoa) Dis. Aquat. Organ. 2007;77:191–198. doi: 10.3354/dao01846. PubMed DOI

Peeler EJ, Taylor NG. The application of epidemiology in aquatic animal health -opportunities and challenges. Vet. Res. 2011;42:94. doi: 10.1186/1297-9716-42-94. PubMed DOI PMC

Hallett, S. L. & Bartholomew, J. L. Myxobolus cerebralis and Ceratomyxa shasta. In Fish parasites: pathobiology and protection (eds Woo, P. T. K. & Buchmann, K.) 141–172 ((CABI), 2012).

True, K., Voss, A. & Foott, J. S. Myxosporean parasite (Ceratonova shasta and Parvicapsula minibicornis) prevalence of infection in Klamath river basin juvenile Chinook salmon, March– August 2017. Calif. -Nevada Fish Heal. Cent (2013).

Fontes, I., Hallett, S. L. & Mo, T. A. Comperative epidemiology of myxozoan diseases. In Myxozoan Evolution, Ecology and Development. (eds Okamura, B.et al) 85–110 (Springer Int. Pub, 2015).

FAO. The State of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all, Rome, 200 pp (2016).

FAO. Aquaculture newsletters. No 56 Rome, 51pp (2017).

Clifton-Hadley RS, Bucke D, Richards RH. Economic importance of proliferative kidney disease in salmonid fish in England and Wales. Vet. Res. 1986;119:305–306. PubMed

Granath WO, Gilbert MA, Wyatt-Pescador EJ, Vincent ER. Epizootiology of Myxobolus cerebralis, the causative agent of salmonid whirling disease in the rock creek of west-central Montana. J. Parasitol. 2007;93:104–119. doi: 10.1645/GE-948R.1. PubMed DOI

Ray RA, Holt RA, Bartholomew JL. Relationship between temperature and Ceratomyxa shasta–induced mortality in Klamath river salmonids. J. Parasitol. 2012;98:520–526. doi: 10.1645/JP-GE-2737.1. PubMed DOI

Adam Ray R., Alexander Julie D., De Leenheer Patrick, Bartholomew Jerri L. Myxozoan Evolution, Ecology and Development. Cham: Springer International Publishing; 2015. Modeling the Effects of Climate Change on Disease Severity: A Case Study of Ceratonova (syn Ceratomyxa) shasta in the Klamath River; pp. 363–378.

Holzer AS, et al. The joint evolution of the Myxozoa and their alternate hosts: A cnidarian recipe for success and vast biodiversity. Mol. Ecol. 2018;27:1651–1666. doi: 10.1111/mec.14558. PubMed DOI

Chang ES, et al. Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proc. Natl. Acad. Sci. 2015;112:14912–14917. doi: 10.1073/pnas.1511468112. PubMed DOI PMC

Molnár K. Gill sphaerosporosis in the common carp and grass carp. Acta. Vet. Acad. Sci. Hungary. 1979;27:99–113. PubMed

Korytář T, et al. The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari. Parasites & Vectors. 2019;12:208. doi: 10.1186/s13071-019-3462-3. PubMed DOI PMC

Holzer AS, et al. Molecular fingerprinting of the myxozoan community in common carp suffering Swim Bladder Inflammation (SBI) identifies multiple etiological agents. Parasites & Vectors. 2014;7:398. doi: 10.1186/1756-3305-7-398. PubMed DOI PMC

Bartholomew JL, Whipple MJ, Stevens DG, Fryer JL. The life cycle of Ceratomyxa shasta, a myxosporean parasite of salmonids, requires a freshwater polychaete as an alternate host. J. Parasitol. 1997;83:859–868. doi: 10.2307/3284281. PubMed DOI

Thellin O, El-Moualij B, Heinen E, Zorzi W. A decade of improvements in quantification of gene expression and internal standard selection. Biotechnol. Adv. 2009;27:323–33. doi: 10.1016/j.biotechadv.2009.01.010. PubMed DOI

Valente V, et al. Selection of suitable housekeeping genes for expression analysis in glioblastoma using quantitative RT-PCR. BMC Mol. Biol. 2009;10:17. doi: 10.1186/1471-2199-10-17. PubMed DOI PMC

Kozera B, Rapacz M. Reference genes in real-time PCR. J. Appl. Genet. 2013;54:391–406. doi: 10.1007/s13353-013-0173-x. PubMed DOI PMC

San Segundo-Val I, Sanz-Lozano CS. Introduction to the gene expression analysis. Methods in molecular biology (Clifton, N.J.) 2016;1434:29–43. doi: 10.1007/978-1-4939-3652-6_3. PubMed DOI

Lehnert EM, et al. Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians. G3(Bethesda); Genes|Genomes|Genetics. 2014;4:277–295. doi: 10.1534/g3.113.009084. PubMed DOI PMC

Levy O, et al. Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science (80-.) 2007;318:467–470. doi: 10.1126/science.1145432. PubMed DOI

Moya A, et al. Cloning and use of a coral 36B4 gene to study the differential expression of coral genes between light and dark conditions. Mar. Biotechnol. 2008;10:653–663. doi: 10.1007/s10126-008-9101-1. PubMed DOI

Rodriguez-Lanetty M, Phillips WS, Dove S, Hoegh-Guldberg O, Weis VM. Analytical approach for selecting normalizing genes from a cDNA microarray platform to be used in q-RT-PCR assays: A cnidarian case study. J. Biochem. Biophys. Methods. 2008;70:985–991. doi: 10.1016/j.jbbm.2007.08.005. PubMed DOI

Kenkel CD, et al. Development of gene expression markers of acute heat-light stress in reef-building corals of the genus Porites. PLoS One. 2011;6:e26914. doi: 10.1371/journal.pone.0026914. PubMed DOI PMC

Sorek M, et al. Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium. Microbiome. 2018;6:83. doi: 10.1186/s40168-018-0465-9. PubMed DOI PMC

Kelley GO, Adkison MA, Leutenegger CM, Hedrick RP. Myxobolus cerebralis: identification of a cathepsin Z-like protease gene (MyxCP-1) expressed during parasite development in rainbow trout, Oncorhynchus mykiss. Exp. Parasitol. 2003;105:201–210. doi: 10.1016/j.exppara.2003.12.004. PubMed DOI

Eszterbauer E, Kallert DM, Grabner D, El-Matbouli M. Differentially expressed parasite genes involved in host recognition and invasion of the triactinomyxon stage of Myxobolus cerebralis (Myxozoa) Parasitology. 2009;136:367. doi: 10.1017/S0031182008005398. PubMed DOI

Sarker S, Menanteau-Ledouble S, Kotob MH, El-Matbouli M. A RNAi-based therapeutic proof of concept targets salmonid whirling disease in vivo. PLoS One. 2017;12:e0178687. doi: 10.1371/journal.pone.0178687. PubMed DOI PMC

Hallett SL, Bartholomew JL. Application of a real-time PCR assay to detect and quantify the myxozoan parasite Ceratomyxa shasta in river water samples. Dis Aquat Organ. 2006;71:109–18. doi: 10.3354/dao071109. PubMed DOI

Jorgensen A, et al. Real-time PCR detection of Parvicapsula pseudobranchicola (Myxozoa: Myxosporea) in wild salmonids in Norway. J. Fish Dis. 2011;34:365–71. doi: 10.1111/j.1365-2761.2011.01248.x. PubMed DOI

Alama-Bermejo G, Sima R, Raga JA, Holzer AS. Understanding myxozoan infection dynamics in the sea: Seasonality and transmission of Ceratomyxa puntazzi. Int. J. Parasitol. 2013;9:771–780. doi: 10.1016/j.ijpara.2013.05.003. PubMed DOI

Sipos D, et al. Susceptibility-related differences in the quantity of developmental stages of Myxobolus spp. (Myxozoa) in fish blood. PLoS One. 2018;13:e0204437. doi: 10.1371/journal.pone.0204437. PubMed DOI PMC

Marton S, Eszterbauer E. The susceptibility of diverse species of cultured oligochaetes to the fish parasite Myxobolus pseudodispar Gorbunova (Myxozoa) J. Fish Dis. 2012;35:303–314. doi: 10.1111/j.1365-2761.2012.01347.x. PubMed DOI

Atkinson SD, Bartholomew JL. Disparate infection patterns of Ceratomyxa shasta (Myxozoa) in rainbow trout Oncorhynchus mykiss and Chinook salmon Oncorhynchus tshawytscha correlate with ITS-1 sequence variation in the parasite. Int. J. Parasitol. 2010;40:599–604. doi: 10.1016/j.ijpara.2009.10.010. PubMed DOI

Ibarra AM, Hedrick RP, Gall GAE. Inheritance of susceptibility to Ceratomyxa Shasta (Myxozoa) in rainbow trout and the effect of length of exposure on the liability to develop ceratomyxosis. Aquaculture. 1992;104:217–229. doi: 10.1016/0044-8486(92)90205-Y. DOI

Willson SJ, Wilzbach MA, Malakauskas DM, Cummins K. Lab rearing of a freshwater polychaete (Manayunkia speciosa, Sabellidae) host for Salmon pathogens. Northwest Science. 2010;84:183–191. doi: 10.3955/046.084.0207. DOI

Bjork SJ, Bartholomew JL. Effects of Ceratomyxa shasta dose on a susceptible strain of rainbow trout and comparatively resistant Chinook and Coho salmon. Dis. Aquat. Organ. 2009;86:29–37. doi: 10.3354/dao02092. PubMed DOI

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI

Eszterbauer E, et al. Molecular characterization of Sphaerospora molnari (Myxozoa), the agent of gill sphaerosporosis in common carp Cyprinus carpio carpio. Dis Aquat Organ. 2013;104(1):59–67. doi: 10.3354/dao02584. PubMed DOI

Atkinson SD, Hallett SL, Bartholomew JL. Genotyping of individual Ceratonova shasta (Cnidaria: Myxosporea) myxospores reveals intra-spore ITS-1 variation and invalidates the distinction of genotypes II and III. Parasitology. 2018;145:1588–1593. doi: 10.1017/S0031182018000422. PubMed DOI

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Chong G, Kuo F-W, Tsai S, Lin C. Validation of reference genes for cryopreservation studies with the gorgonian coral endosymbiont Symbiodinium. Sci. Rep. 2017;7:39396. doi: 10.1038/srep39396. PubMed DOI PMC

Silver N, Best S, Jiang J, Thein SL. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006;7:33. doi: 10.1186/1471-2199-7-33. PubMed DOI PMC

Andersen CL, Jensen JL, Ørntoft TF. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496. PubMed DOI

Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8:R19. doi: 10.1186/gb-2007-8-2-r19. PubMed DOI PMC

Vandesompele J, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034.1. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004;26:509–15. doi: 10.1023/B:BILE.0000019559.84305.47. PubMed DOI

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 2017;14:417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC

Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25. doi: 10.1186/gb-2010-11-3-r25. PubMed DOI PMC

Haas BJ, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC

Hibbeler S, Scharsack JP, Becker S. Housekeeping genes for quantitative expression studies in the three-spined stickleback Gasterosteus aculeatus. BMC Mol. Biol. 2008;9:18. doi: 10.1186/1471-2199-9-18. PubMed DOI PMC

Dzaki N, Ramli KN, Azlan A, Ishak IH, Azzam G. Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti. Sci. Rep. 2017;7:43618. doi: 10.1038/srep43618. PubMed DOI PMC

Pihur V, Datta S, Datta S. RankAggreg, an R package for weighted rank aggregation. BMC Bioinformatics. 2009;10:62. doi: 10.1186/1471-2105-10-62. PubMed DOI PMC

Vanhauwaert S, et al. Expressed repeat elements improve RT-qPCR normalization across a wide range of zebrafish gene expression studies. PLoS One. 2014;9:e109091. doi: 10.1371/journal.pone.0109091. PubMed DOI PMC

Carmona R, et al. Automated identification of reference genes based on RNA-seq data. Biomed. Eng. Online. 2017;16:65. doi: 10.1186/s12938-017-0356-5. PubMed DOI PMC

Gao D, Kong F, Sun P, Bi G, Mao Y. Transcriptome-wide identification of optimal reference genes for expression analysis of Pyropia yezoensis responses to abiotic stress. BMC Genomics. 2018;19:251. doi: 10.1186/s12864-018-4643-8. PubMed DOI PMC

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Stanton KA, et al. A Whole-transcriptome approach to evaluating reference genes for quantitative gene expression studies: A case study in Mimulus. G3 (Bethesda) 2017;7:1085–1095. doi: 10.1534/g3.116.038075. PubMed DOI PMC

Brunner AM, Yakovlev IA, Strauss SH. Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol. 2004;4:14. doi: 10.1186/1471-2229-4-14. PubMed DOI PMC

de Jonge HJM, et al. Evidence based selection of housekeeping genes. PLoS One. 2007;2:e898. doi: 10.1371/journal.pone.0000898. PubMed DOI PMC

Susorov D, et al. Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome. J. Biol. Chem. 2018;293:5220–5229. doi: 10.1074/jbc.RA117.000761. PubMed DOI PMC

Eissa N, et al. Stability of reference genes for messenger RNA quantification by Real-Time PCR in mouse dextran sodium sulfate experimental colitis. PLoS One. 2016;11:e0156289. doi: 10.1371/journal.pone.0156289. PubMed DOI PMC

Boava LP, et al. Selection of endogenous genes for gene expression studies in Eucalyptus under biotic (Puccinia psidii) and abiotic (acibenzolar-S-methyl) stresses using RT-qPCR. BMC Res. Notes. 2010;3:43. doi: 10.1186/1756-0500-3-43. PubMed DOI PMC

Zainuddin A, Chua KH, Abdul Rahim N, Makpol S. Effect of experimental treatment on GAPDH mRNA expression as a housekeeping gene in human diploid fibroblasts. BMC Mol. Biol. 2010;11:59. doi: 10.1186/1471-2199-11-59. PubMed DOI PMC

Dombrowski JE, Martin RC. Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress. Plant Sci. 2009;176:390–396. doi: 10.1016/j.plantsci.2008.12.005. DOI

Løvdal T, Lillo C. Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal. Biochem. 2009;387:238–242. doi: 10.1016/j.ab.2009.01.024. PubMed DOI

Wu X, et al. Variation of expression levels of seven housekeeping genes at different life-history stages in Porphyra yezoensis. PLoS One. 2013;8:e60740. doi: 10.1371/journal.pone.0060740. PubMed DOI PMC

Li M-Y, et al. Validation and comparison of reference genes for qPCR normalization of Celery (Apium graveolens) at different development stages. Front. Plant Sci. 2016;7:313. PubMed PMC

Kelley GO, Beauchamp KA, Hedric R. Phylogenetic comparison of the myxosporea based on an actin cDNA isolated from Myxobolus cerebralis. J. Eukaryot. Microbiol. 2004;51:660–663. doi: 10.1111/j.1550-7408.2004.tb00605.x. PubMed DOI

Hartigan A, et al. New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa: Myxosporea) blood stages in fish. Sci. Rep. 2016;6:39093. doi: 10.1038/srep39093. PubMed DOI PMC

Perrin BJ, Ervasti JM. The actin gene family: function follows isoform. Cytoskeleton. 2010;67:630–634. doi: 10.1002/cm.20475. PubMed DOI PMC

Kim B-R, Nam H-Y, Kim S-U, Kim S-I, Chang Y-J. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol. Lett. 2003;25:1869–72. doi: 10.1023/A:1026298032009. PubMed DOI

Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005;6:279–284. doi: 10.1038/sj.gene.6364190. PubMed DOI

Kuchipudi SV, et al. 18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells. Virol. J. 2012;9:230. doi: 10.1186/1743-422X-9-230. PubMed DOI PMC

Bär M, Bär D, Lehmann B. Selection and validation of candidate housekeeping genes for studies of human Keratinocytes—Review and recommendations. J. Invest. Dermatol. 2009;129:535–537. doi: 10.1038/jid.2008.428. PubMed DOI

Gudnason H, Dufva M, Bang DD, Wolff A. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Res. 2007;35:e127. doi: 10.1093/nar/gkm671. PubMed DOI PMC

Penn HJ, Chapman EG, Harwood JD. Overcoming PCR inhibition during DNA-based gut content analysis of ants. Environ. Entomol. 2016;45:1255–1261. doi: 10.1093/ee/nvw090. PubMed DOI

Schrader C, Schielke A, Ellerbroek L, Johne R. PCR inhibitors—Occurrence, properties and removal. J. Appl. Microbiol. 2012;113:1014–1026. doi: 10.1111/j.1365-2672.2012.05384.x. PubMed DOI

Matheson CD, Gurney C, Esau N, Lehto R. Assessing PCR Inhibition from humic substances. Open Enzym. Inhib. J. 2014;3:38–45. doi: 10.2174/1874940201003010038. DOI

Bustin SA, et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Najafpanah MJ, Sadeghi M, Bakhtiarizadeh MR. Reference genes selection for Quantitative Real-Time PCR using RankAggreg method in different tissues of Capra hircus. PLoS One. 2013;8:e83041. doi: 10.1371/journal.pone.0083041. PubMed DOI PMC

Radonić A, et al. Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun. 2004;313:856–62. doi: 10.1016/j.bbrc.2003.11.177. PubMed DOI

Stürzenbaum SR, Kille P. Control genes in quantitative molecular biological techniques: the variability of invariance. Comp. Biochem. Physiol. Part B. 2001;130:281–289. doi: 10.1016/S1096-4959(01)00440-7. PubMed DOI

Tsotetsi TN, Collins NE, Oosthuizen MC, Sibeko-Matjila KP. Selection and evaluation of housekeeping genes as endogenous controls for quantification of mRNA transcripts in Theileria parva using quantitative real-time polymerase chain reaction (qPCR) PLoS One. 2018;13:e0196715. doi: 10.1371/journal.pone.0196715. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...