Myxozoans (Cnidaria: Myxozoa) are an extremely diversified group of endoparasites some of which are causative agents of serious diseases in fish. New methods involving gene expression studies have emerged over the last years to better understand and control myxozoan diseases. Quantitative RT-PCR is the most extensively used approach for gene expression studies. However, the accuracy of the results depends on the normalization of the data to reference genes. We studied the expression of eight commonly used reference genes, adenosylhomocysteinase (AHC1), beta actin (ACTB), eukaryotic translation elongation factor 2 (EF2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1), DNA-directed RNA polymerase II (RPB2), 18S ribosomal RNA (18S), 28S ribosomal RNA (28S) across different developmental stages of three myxozoan species, Sphaerospora molnari, Myxobolus cerebralis and Ceratonova shasta, representing the three major myxozoan linages from the largest class Myxosporea. The stable reference genes were identified using four algorithms: geNorm, NormFinder, Bestkeeper and ΔCq method. Additionally, we analyzed transcriptomic data from S. molnari proliferative and spore-forming stages to compare the relative amount of expressed transcripts with the most stable reference genes suggested by RT-qPCR. Our results revealed that GAPDH and EF2 are the most uniformly expressed genes across the different developmental stages of the studied myxozoan species.
- MeSH
- algoritmy MeSH
- messenger RNA genetika metabolismus MeSH
- Myxozoa genetika MeSH
- Oncorhynchus mykiss parazitologie MeSH
- paraziti genetika MeSH
- referenční standardy MeSH
- regulace genové exprese * MeSH
- transkriptom genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Myxozoans (Cnidaria: Myxozoa) are almost exclusively endoparasites of aquatic vertebrates and invertebrates, with the notable exception being two species of Soricimyxum Prunescu, Prunescu, Pucek et Lom, 2007 described from terrestrial shrews (Soricidae) in central Europe. Myxospores of the two parasites are morphologically indistinguishable, but have SSU rDNA sequences that differ by about 4%. Herein, we report additional molecular and histology data from Soricimyxum fegati Prunescu, Prunescu, Pucek et Lom, 2007 from common shrew (Sorex araneus Linnaeus) from Hungary, and add a new geographic record for S. fegati in pygmy shrew (Sorex minutus Linnaeus) from Slovakia. A limited survey of shrews from the northern United States, Blarina brevicauda Say and Sorex sp. from New York, and Sorex spp. from Oregon, did not discover any infections, which is in stark contrast to the relatively high infection rates (up to 66%) in European shrew populations. We also provide a summary and discussion of literature records of species of Soricimyxum and a host survey. Given the lack of distinguishing morphological or morphometric characters between Soricimyxum spp., and the overlap in vertebrate hosts and geographic ranges, unambiguous identification of these closely related shrew parasites can presently only be achieved through sequence comparison of one or more variable SSU rDNA regions.
- MeSH
- Myxozoa klasifikace genetika fyziologie MeSH
- rejskovití parazitologie MeSH
- ribozomální DNA genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Maďarsko MeSH
- Slovenská republika MeSH
As part of a biodiversity study in northwestern Hungary, we conducted a parasitological survey of small mammals. In both common shrews (Sorex araneus Linnaeus) and pygmy shrews (Sorex minutus Linnaeus), we found myxospores of a species of Soricimyxum Prunescu, Prunescu, Pucek et Lom, 2007 (Myxosporea) and plasmodia in the bile ducts within the liver. Spores from both species of shrewswere morphologically and morphometrically indistinguishable, but differed in their SSU rRNA gene sequences by 3.3%. We identified spores and developmental stages from the common shrew as Soricimyxum fegati Prunescu, Prunescu, Pucek et Lom, 2007, based on morphometric data and DNA sequence similarity. Spores from the pygmy shrew were only 96.7% similar to S. fegati, hence we identified them as a novel myxosporean Soricimyxum minuti sp. n. This is only the second myxosporean parasite species described from mammals.
- MeSH
- fylogeneze MeSH
- játra parazitologie MeSH
- Myxozoa * anatomie a histologie genetika MeSH
- rejskovití * klasifikace parazitologie MeSH
- sekvenční analýza DNA metody MeSH
- spory MeSH
- statistika jako téma MeSH
- žlučové cesty parazitologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Maďarsko MeSH