Mechanisms and Drivers for the Establishment of Life Cycle Complexity in Myxozoan Parasites

. 2020 Jan 01 ; 9 (1) : . [epub] 20200101

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31906274

Grantová podpora
19-28399X Grantová Agentura České Republiky
CONICET-16-06 CAS-CONICET bilateral mobility programme

It is assumed that complex life cycles in cnidarian parasites belonging to the Myxozoa result from incorporation of vertebrates into simple life cycles exploiting aquatic invertebrates. However, nothing is known about the driving forces and implementation of this event, though it fostered massive diversification. We performed a comprehensive search for myxozoans in evolutionary ancient fishes (Chondrichthyes), and more than doubled existing 18S rDNA sequence data, discovering seven independent phylogenetic lineages. We performed cophylogenetic and character mapping methods in the largest monophyletic dataset and demonstrate that host and parasite phylogenies are strongly correlated, and that tectonic changes may explain phylogeographic clustering in recent skates and softnose skates, in the Atlantic. The most basal lineages of myxozoans inhabit the bile of chondrichthyans, an immunologically privileged site and protective niche, easily accessible from the gut via the bile duct. We hypothesize that feed-integration is a likely mechanism of host acquisition, an idea supported by feeding habits of chimaeras and ancient sharks and by multiple entries of different parasite lineages from invertebrates into the new host group. We provide exciting first insights into the early evolutionary history of ancient metazoan parasites in a host group that embodies more evolutionary distinctiveness than most other vertebrates.

Zobrazit více v PubMed

Moran N.A. Adaptation and constraint in the complex life cycles of animals. Annu. Rev. Ecol. Syst. 1994;25:573–600. doi: 10.1146/annurev.es.25.110194.003041. DOI

Poulin R. Evolutionary Ecology of Parasites. 2nd ed. Princeton University Press; Princeton, NJ, USA: 2007. pp. 1–342.

Holzer A.S., Bartošová-Sojková P., Born-Torrijos A., Lövy A., Hartigan A., Fiala I. The joint evolution of the Myxozoa and their alternate hosts: A cnidarian recipe for success and vast biodiversity. Mol. Ecol. 2018;27:1651–1666. doi: 10.1111/mec.14558. PubMed DOI

Licht M., Schmuecker K., Huelsken T., Hanel R., Bartsch P., Paeckert M. Contribution to the molecular phylogenetic analysis of extant holocephalan fishes (Holocephali, Chimaeriformes) Org. Divers. Evol. 2012;12:421–432. doi: 10.1007/s13127-011-0071-1. DOI

Inoue J.G., Miya M., Lam K., Tay B.H., Danks J.A., Bell J., Walker T.I., Venka-tesh B. Evolutionary origin and phylogeny of the modernholocephalans (Chondrichthyes: Chimaeriformes): A mitogenomic perspective. Mol. Biol. Evol. 2010;27:2576–2586. doi: 10.1093/molbev/msq147. PubMed DOI

Holland J.W., Okamura B., Hartikainen H., Secombes C.J. A novel minicollagen gene links cnidarians and myxozoans. Proc. Biol. Sci. 2011;278:546–553. doi: 10.1098/rspb.2010.1301. PubMed DOI PMC

Shpirer E., Diamant A., Cartwright P., Huchon D. A genome wide survey reveals multiple nematocyst-specific genes in Myxozoa. BMC Evol. Biol. 2018;18:138. doi: 10.1186/s12862-018-1253-7. PubMed DOI PMC

Chang E.S., Neuhof M., Rubinstein N.D., Diamant A., Philippe H., Huchon D., Cartwright P. Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proc. Natl. Acad. Sci. USA. 2015;112:14912–14917. doi: 10.1073/pnas.1511468112. PubMed DOI PMC

Hartigan A., Wilkinson M., Gower D.J., Streicher J.W., Holzer A.S., Okamura B. Myxozoan infections of caecilians demonstrate broad host specificity and indicate a link with human activity. Int. J. Parasitol. 2016;46:375–381. doi: 10.1016/j.ijpara.2016.02.001. PubMed DOI

Siau Y., Gasc C., Maillard C. Premières observations ultrastructurales d‘une myxosporide appartenant au genre Fabespora, parasite de trématode. Protistologica. 1981;17:131–137.

Overstreet R.M. Fabespora vermicola sp. n., the first myxosporidan from a platyhelminth. J. Parasitol. 1976;62:680–684. doi: 10.2307/3278937. DOI

Yokoyama H., Masuda K. Kudoa sp. (Myxozoa) causing a post-mortem myoliquefaction of North-Pacific giant octopus Paroctopus dofleini (Cephalopoda: Octopodidae) Bull. Eur. Assoc. Fish Pathol. 2001;21:266–268.

Freeman M.A., Shinn A.P. Myxosporean hyperparasites of gill monogeneans are basal to the Multivalvulida. Parasit. Vectors. 2011;4:220. doi: 10.1186/1756-3305-4-220. PubMed DOI PMC

Kodádková A., Bartošová-Sojková P., Holzer A.S., Fiala I. Bipteria vetusta n. sp.—An old parasite in an old host: Tracing the origin of myxosporean parasitism in vertebrates. Int. J. Parasitol. 2015;45:269–276. doi: 10.1016/j.ijpara.2014.12.004. PubMed DOI

Atkinson S.D., Bartholomew J.L., Lotan T. Myxozoans: Ancient metazoan parasites find a home in phylum Cnidaria. Zoology. 2018;129:66–68. doi: 10.1016/j.zool.2018.06.005. PubMed DOI

Jameson A.P. Myxosporidia from Californian fishes. J. Parasitol. 1929;16:59–86. doi: 10.2307/3271910. DOI

Davis H.S. The Myxosporidia of the Beaufort region, a systematic and biological study. Fish. Bull. 1917;35:199–252.

Gleeson R.J., Adlard R.D. Morphological and genetic analysis of three new species of Ceratomyxa Thélohan, 1892 (Myxozoa: Myxosporea) from carcharhinid sharks off Australia. Syst. Parasitol. 2011;80:117–124. doi: 10.1007/s11230-011-9316-9. PubMed DOI

Gleeson R.J., Adlard R.D. Phylogenetic relationships amongst Chloromyxum Mingazzini, 1890 (Myxozoa: Myxosporea), and the description of six novel species from Australian elasmobranchs. Parasitol. Int. 2012;61:267–274. doi: 10.1016/j.parint.2011.10.008. PubMed DOI

Cantatore D.M.P., Irigoitia M.M., Holzer A.S., Bartošová-Sojková P., Pecková H., Fiala I., Timi J.T. The description of two new species of Chloromyxum from skates in the Argentine Sea reveals that a limited geographic host distribution causes phylogenetic lineage separation of myxozoans in Chondrichthyes. Parasite. 2018;25:47. doi: 10.1051/parasite/2018051. PubMed DOI PMC

Weigmann S. Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. J. Fish Biol. 2016;88:837–1037. doi: 10.1111/jfb.12874. PubMed DOI

Stein R.W., Mull C.G., Kuhn T.S., Aschliman N.C., Davidson L.N.K., Joy J.B., Smith G.J., Dulvy N.K., Mooers A.O. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nat. Ecol. Evol. 2018;2:288–298. doi: 10.1038/s41559-017-0448-4. PubMed DOI

Dulvy N.K., Fowler S.L., Musick J.A., Cavanagh R.D., Kyne P.M., Harrison L.R., Carlson J.K., Davidson L.N.K., Fordham S.V., Francis M.P., et al. Extinction risk and conservation of the world’s sharks and rays. eLife. 2014;3:e00590. doi: 10.7554/eLife.00590. PubMed DOI PMC

Holzer A.S., Sommerville C., Wootten R. Molecular relationships and phylogeny in a community of myxosporeans and actinosporeans based on their 18S rDNA sequences. Int. J. Parasitol. 2004;34:1099–1111. doi: 10.1016/j.ijpara.2004.06.002. PubMed DOI

Holzer A.S., Bartošová P., Pecková H., Tyml T., Atkinson S., Bartholomew J., Sipos D., Eszterbauer E., Dyková I. ‘Who’s who’ in renal sphaerosporids (Bivalvulida: Myxozoa) from common carp, Prussian carp and goldfish—Molecular identification of cryptic species, blood stages and new members of Sphaerospora sensu stricto. Parasitology. 2012;140:46–60. doi: 10.1017/S0031182012001175. PubMed DOI

Katoh K., Misawa K., Kuma K.I., Miyata T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Cheung M., Sturrock S., Buxton S., Cooper A., et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI

Swofford D.L. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b 10. 2001. Sinauer Associates, Inc.; Sunderland, UK: 2002.

Mueller T., Fagan W. Search and navigation in dynamic environments: From individual behaviors to population distributions. Oikos. 2008;117:654–664. doi: 10.1111/j.0030-1299.2008.16291.x. DOI

Bates D., Mächler M., Bolker B., Walker S. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Softw. 2015;67 doi: 10.18637/jss.v067.i01. DOI

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2018. [(accessed on 15 April 2019)]. Available online: https://www.R-project.org/

Merkle D., Middendorf M., Wieseke N. A parameter-adaptive dynamic programming approach for inferring cophylogenies. BMC Bioinform. 2010;11:S60. doi: 10.1186/1471-2105-11-S1-S60. PubMed DOI PMC

Legendre P., Desdevises Y., Bazin E. A statistical test for host–parasite coevolution. Syst. Biol. 2002;51:217–234. doi: 10.1080/10635150252899734. PubMed DOI

Ronquist F. Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography. Syst. Biol. 1997;46:195–203. doi: 10.1093/sysbio/46.1.195. DOI

Ronquist F. DIVA Version 1.2. Computer Program for MacOS and Win32. Evolutionary Biology Centre, Uppsala University. [(accessed on 12 January 2019)];2001 Available online: http://www.ebc.uu.se/systzoo/research/diva/diva.html.

Yu Y., Harris A.J., Blair C., He X. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol. Phylogenetics Evol. 2015;87:46–49. doi: 10.1016/j.ympev.2015.03.008. PubMed DOI

Patra S., Bartošová-Sojková P., Pecková H., Fiala I., Eszterbauer E., Holzer A.S. Biodiversity and host-parasite cophylogeny of Sphaerospora (sensu stricto) (Cnidaria: Myxozoa) Parasit. Vectors. 2018;11:347. doi: 10.1186/s13071-018-2863-z. PubMed DOI PMC

Fiala I. The phylogeny of Myxosporea (Myxozoa) based on small subunit ribosomal RNA gene analysis. Int. J. Parasitol. 2006;36:1521–1534. doi: 10.1016/j.ijpara.2006.06.016. PubMed DOI

Okamura B., Hartigan A., Naldoni J. Extensive uncharted biodiversity: The parasite dimension. Integr. Comp. Biol. 2018;58:1132–1145. doi: 10.1093/icb/icy039. PubMed DOI

Hughes L.C., Ortí G., Huang Y., Sun Y., Baldwin C.C., Thompson A.W., Arcila D., Betancur R.R., Li C., Becker L., et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc. Natl. Acad. Sci. USA. 2018;115:6249–6254. doi: 10.1073/pnas.1719358115. PubMed DOI PMC

Sirin C., Santos M.J., Rangel L.F. Morphological and molecular analyses of Bipteria lusitanica n. sp. in wild white seabream, Diplodus sargus (Linnaeus, 1758) in Portugal. Parasitol. Res. 2018;117:2035–2041. doi: 10.1007/s00436-018-5865-z. PubMed DOI

Eiras J.C., Lu Y.S., Gibson D.I., Fiala I., Saraiva A., Cruz C., Santos M.J. Synopsis of the species of Chloromyxum Mingazinni, 1890 (Myxozoa: Myxosporea: Chloromyxidae) Syst. Parasitol. 2012;83:203–225. doi: 10.1007/s11230-012-9380-9. PubMed DOI

Ikeda I. Studies on some sporozoan parasites of sipunculoids. In The life history of a new actinomyxidian Tetractinomyxon intermedium g. et sp. nov. Arch. Protistenkd. 1912;25:240–272.

Arthur J.R., Lom J. Sphaerospora araii n. sp. (Myxosporea: Sphaerosporidae) from the kidney of a longnose skate (Raja rhina Jordan and Gilbert) from the Pacific Ocean off Canada. Can. J. Zool. 1985;63:2902–2906. doi: 10.1139/z85-434. DOI

Pariselle A., Morand S., Deveney M.R., Pouyaud L. Parasite species richness of closely related hosts: Historical scenario and “genetic” hypothesis. In: Combes C., Jourdan J., editors. Taxonomy, Ecology and Evolution of Metazoan Parasites. Presses Universitaires de Perpignan; Perpignan, France: 2003. pp. 147–166.

Gao C., Shi N.N., Liu Y.X., Peay K.G., Zheng Y., Ding Q., Mi X.C., Ma K.P., Wubet T., Buscot F., et al. Host plant genus-level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese subtropical forest. Mol. Ecol. 2003;22:3403–3414. doi: 10.1111/mec.12297. PubMed DOI

Molnár K., El-Mansy A., Székely C., Baska F. Experimental identification of the actinosporean stage of Sphaerospora renicola Dyková & Lom 1982 (Myxosporea: Sphaerosporidae) in oligochaete alternate hosts. J. Fish Dis. 1999;22:143–153.

Bartošová P., Fiala I., Jirků M., Cinková M., Caffara M., Fioravanti M.L., Atkinson S.D., Bartholomew J.L., Holzer A.S. Sphaerospora sensu stricto: Taxonomy, diversity and evolution of a unique lineage of myxosporeans (Myxozoa) Mol. Phylogenet. Evol. 2013;68:93–105. doi: 10.1016/j.ympev.2013.02.026. PubMed DOI

Karlsbakk E., Køie M. Bipteria formosa (Kovaleva et Gaevskaya, 1979) comb. n. (Myxozoa: Myxosporea) in whiting Merlangius merlangus (Teleostei: Gadidae) from Denmark. Folia Parasitol. 2009;56:86–90. doi: 10.14411/fp.2009.013. PubMed DOI

Koletić N., Novosel M., Rajević N., Franjević D. Bryozoans are returning home: Recolonization of freshwater ecosystems inferred from phylogenetic relationships. Ecol. Evol. 2015;5:255–264. doi: 10.1002/ece3.1352. PubMed DOI PMC

Lucifora L.O., de Carvalho M.R., Kyne P.M., White W.T. Freshwater sharks and rays. Curr. Biol. 2015;25:R971–R973. doi: 10.1016/j.cub.2015.06.051. PubMed DOI

Dwyer G., Elkinton J.S. Host dispersal and the spatial spread of insect pathogens. Ecology. 1995;76:1262–1275. doi: 10.2307/1940933. DOI

Figuerola J., Green A. Haematozoan parasites and migratory behaviour in waterfowl. Evol. Ecol. 2000;14:143–153. doi: 10.1023/A:1011009419264. DOI

Koprivnikar J., Leung T.L.F. Flying with diverse passengers: Greater richness of parasitic nematodes in migratory birds. Oikos. 2015;124:399–405. doi: 10.1111/oik.01799. DOI

Hannon E.R., Kinsella J.M., Calhoun D.M., Joseph M.B., Johnson P.T.J. Endohelminths in bird hosts from northern California and an analysis of the role of life history traits on parasite richness. J. Parasitol. 2016;102:199–207. doi: 10.1645/15-867. PubMed DOI PMC

Nance R.D., Worsley T.R., Moody J.B. The supercontinent cycle. Sci. Am. 1988;259:72–79. doi: 10.1038/scientificamerican0788-72. PubMed DOI

Veevers J.J. Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: Supercontinental tectonics via stratigraphy and radiometric dating. Earth Sci. Rev. 2004;68:1–132. doi: 10.1016/j.earscirev.2004.05.002. DOI

Moura T., Figueiredo I., Bordalo-Machado P., Gordo L.S. Feeding habits of Chimaera monstrosa L. (Chimaeridae) in relation to its ontogenetic development on the southern Portuguese continental slope. Mar. Biol. Res. 2005;1:118–126. doi: 10.1080/17451000510019079. DOI

Dunn M., Griggs L., Forman J., Horn P. Feeding habits and niche separation among the deep-sea chimaeroid fishes Harriotta raleighana, Hydrolagus bemisi and Hydrolagus novaezealandiae. Mar. Ecol. Prog. Ser. 2010;407:209–225. doi: 10.3354/meps08580. DOI

Sitjà-Bobadilla A., Schmidt-Posthaus H., Wahli T., Holland J.W., Secombes C.J. Fish immune responses to Myxozoa. In: Okamura B., Gruhl A., Bartholomew J., editors. Myxozoan Evolution, Ecology and Development. Springer International Publishing; Cham, Switzerland: 2015. pp. 253–280.

Agrawal A. Transposition and evolution of antigen-specific immunity. Science. 2000;290:1715–1716. doi: 10.1126/science.290.5497.1715. PubMed DOI

Trail D.R.S. Behavioral interactions between parasites and hosts: Host suicide and the evolution of complex life cycles. Am. Nat. 1980;116:77–91. doi: 10.1086/283612. DOI

Brown S.P., Renaud F., Guegan J.F., Thomas F. Evolution of trophic transmission in parasites: The need to reach a mating place. J. Evol. Biol. 2001;14:815–820. doi: 10.1046/j.1420-9101.2001.00318.x. DOI

Parker G.A., Chubb J.C., Ball M.A., Roberts G.N. Evolution of complex life cycles in helminth parasites. Nature. 2003;425:480–484. doi: 10.1038/nature02012. PubMed DOI

Kallert D.M., Grabner D.S., Yokoyama H., El-Matbouli M., Eszterbauer E. Transmission of myxozoans to vertebrate hosts. In: Okamura B., Gruhl A., Bartholomew J., editors. Myxozoan Evolution, Ecology and Development. Springer International Publishing; Cham, Switzerland: 2015. pp. 235–251.

Liyanage Y.S., Yokoyama H., Wakabayashi H. Dynamics of experimental production of Thelohanellus hovorkai (Myxozoa: Myxosporea) in fish and oligochaete alternate hosts. J. Fish Dis. 2003;26:575–582. doi: 10.1046/j.1365-2761.2003.00492.x. PubMed DOI

Johnson P.T.J., Dobson A., Lafferty K.D., Marcogliese D.J., Memmott J., Orlofske S.A., Poulin R., Thieltges D.W. When parasites become prey: Ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 2010;25:362–371. doi: 10.1016/j.tree.2010.01.005. PubMed DOI

Parker G.A., Ball M.A., Chubb J.C. Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent. J. Evol. Biol. 2015;28:267–291. doi: 10.1111/jeb.12575. PubMed DOI

Blaxter M.L. Nematoda: Genes, genomes and the evolution of parasitism. Adv. Parasitol. 2003;54:101–195. doi: 10.1016/S0065-308X(03)54003-9. PubMed DOI

Morris D.J. A new model for myxosporean (Myxozoa) development explains the endogenous budding phenomenon, the nature of cell within cell life stages and evolution of parasitism from a cnidarian ancestor. Int. J. Parasitol. 2012;42:829–840. doi: 10.1016/j.ijpara.2012.06.001. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Genetic Diversity of Serine Protease Inhibitors in Myxozoan (Cnidaria, Myxozoa) Fish Parasites

. 2020 Sep 29 ; 8 (10) : . [epub] 20200929

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...