Mechanisms and Drivers for the Establishment of Life Cycle Complexity in Myxozoan Parasites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-28399X
Grantová Agentura České Republiky
CONICET-16-06
CAS-CONICET bilateral mobility programme
PubMed
31906274
PubMed Central
PMC7168919
DOI
10.3390/biology9010010
PII: biology9010010
Knihovny.cz E-zdroje
- Klíčová slova
- Chondrichthyes, cnidaria, co-diversification, co-phylogeny, feed-integration, migration, myxozoa, phylogeography,
- Publikační typ
- časopisecké články MeSH
It is assumed that complex life cycles in cnidarian parasites belonging to the Myxozoa result from incorporation of vertebrates into simple life cycles exploiting aquatic invertebrates. However, nothing is known about the driving forces and implementation of this event, though it fostered massive diversification. We performed a comprehensive search for myxozoans in evolutionary ancient fishes (Chondrichthyes), and more than doubled existing 18S rDNA sequence data, discovering seven independent phylogenetic lineages. We performed cophylogenetic and character mapping methods in the largest monophyletic dataset and demonstrate that host and parasite phylogenies are strongly correlated, and that tectonic changes may explain phylogeographic clustering in recent skates and softnose skates, in the Atlantic. The most basal lineages of myxozoans inhabit the bile of chondrichthyans, an immunologically privileged site and protective niche, easily accessible from the gut via the bile duct. We hypothesize that feed-integration is a likely mechanism of host acquisition, an idea supported by feeding habits of chimaeras and ancient sharks and by multiple entries of different parasite lineages from invertebrates into the new host group. We provide exciting first insights into the early evolutionary history of ancient metazoan parasites in a host group that embodies more evolutionary distinctiveness than most other vertebrates.
Zobrazit více v PubMed
Moran N.A. Adaptation and constraint in the complex life cycles of animals. Annu. Rev. Ecol. Syst. 1994;25:573–600. doi: 10.1146/annurev.es.25.110194.003041. DOI
Poulin R. Evolutionary Ecology of Parasites. 2nd ed. Princeton University Press; Princeton, NJ, USA: 2007. pp. 1–342.
Holzer A.S., Bartošová-Sojková P., Born-Torrijos A., Lövy A., Hartigan A., Fiala I. The joint evolution of the Myxozoa and their alternate hosts: A cnidarian recipe for success and vast biodiversity. Mol. Ecol. 2018;27:1651–1666. doi: 10.1111/mec.14558. PubMed DOI
Licht M., Schmuecker K., Huelsken T., Hanel R., Bartsch P., Paeckert M. Contribution to the molecular phylogenetic analysis of extant holocephalan fishes (Holocephali, Chimaeriformes) Org. Divers. Evol. 2012;12:421–432. doi: 10.1007/s13127-011-0071-1. DOI
Inoue J.G., Miya M., Lam K., Tay B.H., Danks J.A., Bell J., Walker T.I., Venka-tesh B. Evolutionary origin and phylogeny of the modernholocephalans (Chondrichthyes: Chimaeriformes): A mitogenomic perspective. Mol. Biol. Evol. 2010;27:2576–2586. doi: 10.1093/molbev/msq147. PubMed DOI
Holland J.W., Okamura B., Hartikainen H., Secombes C.J. A novel minicollagen gene links cnidarians and myxozoans. Proc. Biol. Sci. 2011;278:546–553. doi: 10.1098/rspb.2010.1301. PubMed DOI PMC
Shpirer E., Diamant A., Cartwright P., Huchon D. A genome wide survey reveals multiple nematocyst-specific genes in Myxozoa. BMC Evol. Biol. 2018;18:138. doi: 10.1186/s12862-018-1253-7. PubMed DOI PMC
Chang E.S., Neuhof M., Rubinstein N.D., Diamant A., Philippe H., Huchon D., Cartwright P. Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proc. Natl. Acad. Sci. USA. 2015;112:14912–14917. doi: 10.1073/pnas.1511468112. PubMed DOI PMC
Hartigan A., Wilkinson M., Gower D.J., Streicher J.W., Holzer A.S., Okamura B. Myxozoan infections of caecilians demonstrate broad host specificity and indicate a link with human activity. Int. J. Parasitol. 2016;46:375–381. doi: 10.1016/j.ijpara.2016.02.001. PubMed DOI
Siau Y., Gasc C., Maillard C. Premières observations ultrastructurales d‘une myxosporide appartenant au genre Fabespora, parasite de trématode. Protistologica. 1981;17:131–137.
Overstreet R.M. Fabespora vermicola sp. n., the first myxosporidan from a platyhelminth. J. Parasitol. 1976;62:680–684. doi: 10.2307/3278937. DOI
Yokoyama H., Masuda K. Kudoa sp. (Myxozoa) causing a post-mortem myoliquefaction of North-Pacific giant octopus Paroctopus dofleini (Cephalopoda: Octopodidae) Bull. Eur. Assoc. Fish Pathol. 2001;21:266–268.
Freeman M.A., Shinn A.P. Myxosporean hyperparasites of gill monogeneans are basal to the Multivalvulida. Parasit. Vectors. 2011;4:220. doi: 10.1186/1756-3305-4-220. PubMed DOI PMC
Kodádková A., Bartošová-Sojková P., Holzer A.S., Fiala I. Bipteria vetusta n. sp.—An old parasite in an old host: Tracing the origin of myxosporean parasitism in vertebrates. Int. J. Parasitol. 2015;45:269–276. doi: 10.1016/j.ijpara.2014.12.004. PubMed DOI
Atkinson S.D., Bartholomew J.L., Lotan T. Myxozoans: Ancient metazoan parasites find a home in phylum Cnidaria. Zoology. 2018;129:66–68. doi: 10.1016/j.zool.2018.06.005. PubMed DOI
Jameson A.P. Myxosporidia from Californian fishes. J. Parasitol. 1929;16:59–86. doi: 10.2307/3271910. DOI
Davis H.S. The Myxosporidia of the Beaufort region, a systematic and biological study. Fish. Bull. 1917;35:199–252.
Gleeson R.J., Adlard R.D. Morphological and genetic analysis of three new species of Ceratomyxa Thélohan, 1892 (Myxozoa: Myxosporea) from carcharhinid sharks off Australia. Syst. Parasitol. 2011;80:117–124. doi: 10.1007/s11230-011-9316-9. PubMed DOI
Gleeson R.J., Adlard R.D. Phylogenetic relationships amongst Chloromyxum Mingazzini, 1890 (Myxozoa: Myxosporea), and the description of six novel species from Australian elasmobranchs. Parasitol. Int. 2012;61:267–274. doi: 10.1016/j.parint.2011.10.008. PubMed DOI
Cantatore D.M.P., Irigoitia M.M., Holzer A.S., Bartošová-Sojková P., Pecková H., Fiala I., Timi J.T. The description of two new species of Chloromyxum from skates in the Argentine Sea reveals that a limited geographic host distribution causes phylogenetic lineage separation of myxozoans in Chondrichthyes. Parasite. 2018;25:47. doi: 10.1051/parasite/2018051. PubMed DOI PMC
Weigmann S. Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. J. Fish Biol. 2016;88:837–1037. doi: 10.1111/jfb.12874. PubMed DOI
Stein R.W., Mull C.G., Kuhn T.S., Aschliman N.C., Davidson L.N.K., Joy J.B., Smith G.J., Dulvy N.K., Mooers A.O. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nat. Ecol. Evol. 2018;2:288–298. doi: 10.1038/s41559-017-0448-4. PubMed DOI
Dulvy N.K., Fowler S.L., Musick J.A., Cavanagh R.D., Kyne P.M., Harrison L.R., Carlson J.K., Davidson L.N.K., Fordham S.V., Francis M.P., et al. Extinction risk and conservation of the world’s sharks and rays. eLife. 2014;3:e00590. doi: 10.7554/eLife.00590. PubMed DOI PMC
Holzer A.S., Sommerville C., Wootten R. Molecular relationships and phylogeny in a community of myxosporeans and actinosporeans based on their 18S rDNA sequences. Int. J. Parasitol. 2004;34:1099–1111. doi: 10.1016/j.ijpara.2004.06.002. PubMed DOI
Holzer A.S., Bartošová P., Pecková H., Tyml T., Atkinson S., Bartholomew J., Sipos D., Eszterbauer E., Dyková I. ‘Who’s who’ in renal sphaerosporids (Bivalvulida: Myxozoa) from common carp, Prussian carp and goldfish—Molecular identification of cryptic species, blood stages and new members of Sphaerospora sensu stricto. Parasitology. 2012;140:46–60. doi: 10.1017/S0031182012001175. PubMed DOI
Katoh K., Misawa K., Kuma K.I., Miyata T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Cheung M., Sturrock S., Buxton S., Cooper A., et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI
Swofford D.L. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b 10. 2001. Sinauer Associates, Inc.; Sunderland, UK: 2002.
Mueller T., Fagan W. Search and navigation in dynamic environments: From individual behaviors to population distributions. Oikos. 2008;117:654–664. doi: 10.1111/j.0030-1299.2008.16291.x. DOI
Bates D., Mächler M., Bolker B., Walker S. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Softw. 2015;67 doi: 10.18637/jss.v067.i01. DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2018. [(accessed on 15 April 2019)]. Available online: https://www.R-project.org/
Merkle D., Middendorf M., Wieseke N. A parameter-adaptive dynamic programming approach for inferring cophylogenies. BMC Bioinform. 2010;11:S60. doi: 10.1186/1471-2105-11-S1-S60. PubMed DOI PMC
Legendre P., Desdevises Y., Bazin E. A statistical test for host–parasite coevolution. Syst. Biol. 2002;51:217–234. doi: 10.1080/10635150252899734. PubMed DOI
Ronquist F. Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography. Syst. Biol. 1997;46:195–203. doi: 10.1093/sysbio/46.1.195. DOI
Ronquist F. DIVA Version 1.2. Computer Program for MacOS and Win32. Evolutionary Biology Centre, Uppsala University. [(accessed on 12 January 2019)];2001 Available online: http://www.ebc.uu.se/systzoo/research/diva/diva.html.
Yu Y., Harris A.J., Blair C., He X. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol. Phylogenetics Evol. 2015;87:46–49. doi: 10.1016/j.ympev.2015.03.008. PubMed DOI
Patra S., Bartošová-Sojková P., Pecková H., Fiala I., Eszterbauer E., Holzer A.S. Biodiversity and host-parasite cophylogeny of Sphaerospora (sensu stricto) (Cnidaria: Myxozoa) Parasit. Vectors. 2018;11:347. doi: 10.1186/s13071-018-2863-z. PubMed DOI PMC
Fiala I. The phylogeny of Myxosporea (Myxozoa) based on small subunit ribosomal RNA gene analysis. Int. J. Parasitol. 2006;36:1521–1534. doi: 10.1016/j.ijpara.2006.06.016. PubMed DOI
Okamura B., Hartigan A., Naldoni J. Extensive uncharted biodiversity: The parasite dimension. Integr. Comp. Biol. 2018;58:1132–1145. doi: 10.1093/icb/icy039. PubMed DOI
Hughes L.C., Ortí G., Huang Y., Sun Y., Baldwin C.C., Thompson A.W., Arcila D., Betancur R.R., Li C., Becker L., et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc. Natl. Acad. Sci. USA. 2018;115:6249–6254. doi: 10.1073/pnas.1719358115. PubMed DOI PMC
Sirin C., Santos M.J., Rangel L.F. Morphological and molecular analyses of Bipteria lusitanica n. sp. in wild white seabream, Diplodus sargus (Linnaeus, 1758) in Portugal. Parasitol. Res. 2018;117:2035–2041. doi: 10.1007/s00436-018-5865-z. PubMed DOI
Eiras J.C., Lu Y.S., Gibson D.I., Fiala I., Saraiva A., Cruz C., Santos M.J. Synopsis of the species of Chloromyxum Mingazinni, 1890 (Myxozoa: Myxosporea: Chloromyxidae) Syst. Parasitol. 2012;83:203–225. doi: 10.1007/s11230-012-9380-9. PubMed DOI
Ikeda I. Studies on some sporozoan parasites of sipunculoids. In The life history of a new actinomyxidian Tetractinomyxon intermedium g. et sp. nov. Arch. Protistenkd. 1912;25:240–272.
Arthur J.R., Lom J. Sphaerospora araii n. sp. (Myxosporea: Sphaerosporidae) from the kidney of a longnose skate (Raja rhina Jordan and Gilbert) from the Pacific Ocean off Canada. Can. J. Zool. 1985;63:2902–2906. doi: 10.1139/z85-434. DOI
Pariselle A., Morand S., Deveney M.R., Pouyaud L. Parasite species richness of closely related hosts: Historical scenario and “genetic” hypothesis. In: Combes C., Jourdan J., editors. Taxonomy, Ecology and Evolution of Metazoan Parasites. Presses Universitaires de Perpignan; Perpignan, France: 2003. pp. 147–166.
Gao C., Shi N.N., Liu Y.X., Peay K.G., Zheng Y., Ding Q., Mi X.C., Ma K.P., Wubet T., Buscot F., et al. Host plant genus-level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese subtropical forest. Mol. Ecol. 2003;22:3403–3414. doi: 10.1111/mec.12297. PubMed DOI
Molnár K., El-Mansy A., Székely C., Baska F. Experimental identification of the actinosporean stage of Sphaerospora renicola Dyková & Lom 1982 (Myxosporea: Sphaerosporidae) in oligochaete alternate hosts. J. Fish Dis. 1999;22:143–153.
Bartošová P., Fiala I., Jirků M., Cinková M., Caffara M., Fioravanti M.L., Atkinson S.D., Bartholomew J.L., Holzer A.S. Sphaerospora sensu stricto: Taxonomy, diversity and evolution of a unique lineage of myxosporeans (Myxozoa) Mol. Phylogenet. Evol. 2013;68:93–105. doi: 10.1016/j.ympev.2013.02.026. PubMed DOI
Karlsbakk E., Køie M. Bipteria formosa (Kovaleva et Gaevskaya, 1979) comb. n. (Myxozoa: Myxosporea) in whiting Merlangius merlangus (Teleostei: Gadidae) from Denmark. Folia Parasitol. 2009;56:86–90. doi: 10.14411/fp.2009.013. PubMed DOI
Koletić N., Novosel M., Rajević N., Franjević D. Bryozoans are returning home: Recolonization of freshwater ecosystems inferred from phylogenetic relationships. Ecol. Evol. 2015;5:255–264. doi: 10.1002/ece3.1352. PubMed DOI PMC
Lucifora L.O., de Carvalho M.R., Kyne P.M., White W.T. Freshwater sharks and rays. Curr. Biol. 2015;25:R971–R973. doi: 10.1016/j.cub.2015.06.051. PubMed DOI
Dwyer G., Elkinton J.S. Host dispersal and the spatial spread of insect pathogens. Ecology. 1995;76:1262–1275. doi: 10.2307/1940933. DOI
Figuerola J., Green A. Haematozoan parasites and migratory behaviour in waterfowl. Evol. Ecol. 2000;14:143–153. doi: 10.1023/A:1011009419264. DOI
Koprivnikar J., Leung T.L.F. Flying with diverse passengers: Greater richness of parasitic nematodes in migratory birds. Oikos. 2015;124:399–405. doi: 10.1111/oik.01799. DOI
Hannon E.R., Kinsella J.M., Calhoun D.M., Joseph M.B., Johnson P.T.J. Endohelminths in bird hosts from northern California and an analysis of the role of life history traits on parasite richness. J. Parasitol. 2016;102:199–207. doi: 10.1645/15-867. PubMed DOI PMC
Nance R.D., Worsley T.R., Moody J.B. The supercontinent cycle. Sci. Am. 1988;259:72–79. doi: 10.1038/scientificamerican0788-72. PubMed DOI
Veevers J.J. Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: Supercontinental tectonics via stratigraphy and radiometric dating. Earth Sci. Rev. 2004;68:1–132. doi: 10.1016/j.earscirev.2004.05.002. DOI
Moura T., Figueiredo I., Bordalo-Machado P., Gordo L.S. Feeding habits of Chimaera monstrosa L. (Chimaeridae) in relation to its ontogenetic development on the southern Portuguese continental slope. Mar. Biol. Res. 2005;1:118–126. doi: 10.1080/17451000510019079. DOI
Dunn M., Griggs L., Forman J., Horn P. Feeding habits and niche separation among the deep-sea chimaeroid fishes Harriotta raleighana, Hydrolagus bemisi and Hydrolagus novaezealandiae. Mar. Ecol. Prog. Ser. 2010;407:209–225. doi: 10.3354/meps08580. DOI
Sitjà-Bobadilla A., Schmidt-Posthaus H., Wahli T., Holland J.W., Secombes C.J. Fish immune responses to Myxozoa. In: Okamura B., Gruhl A., Bartholomew J., editors. Myxozoan Evolution, Ecology and Development. Springer International Publishing; Cham, Switzerland: 2015. pp. 253–280.
Agrawal A. Transposition and evolution of antigen-specific immunity. Science. 2000;290:1715–1716. doi: 10.1126/science.290.5497.1715. PubMed DOI
Trail D.R.S. Behavioral interactions between parasites and hosts: Host suicide and the evolution of complex life cycles. Am. Nat. 1980;116:77–91. doi: 10.1086/283612. DOI
Brown S.P., Renaud F., Guegan J.F., Thomas F. Evolution of trophic transmission in parasites: The need to reach a mating place. J. Evol. Biol. 2001;14:815–820. doi: 10.1046/j.1420-9101.2001.00318.x. DOI
Parker G.A., Chubb J.C., Ball M.A., Roberts G.N. Evolution of complex life cycles in helminth parasites. Nature. 2003;425:480–484. doi: 10.1038/nature02012. PubMed DOI
Kallert D.M., Grabner D.S., Yokoyama H., El-Matbouli M., Eszterbauer E. Transmission of myxozoans to vertebrate hosts. In: Okamura B., Gruhl A., Bartholomew J., editors. Myxozoan Evolution, Ecology and Development. Springer International Publishing; Cham, Switzerland: 2015. pp. 235–251.
Liyanage Y.S., Yokoyama H., Wakabayashi H. Dynamics of experimental production of Thelohanellus hovorkai (Myxozoa: Myxosporea) in fish and oligochaete alternate hosts. J. Fish Dis. 2003;26:575–582. doi: 10.1046/j.1365-2761.2003.00492.x. PubMed DOI
Johnson P.T.J., Dobson A., Lafferty K.D., Marcogliese D.J., Memmott J., Orlofske S.A., Poulin R., Thieltges D.W. When parasites become prey: Ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 2010;25:362–371. doi: 10.1016/j.tree.2010.01.005. PubMed DOI
Parker G.A., Ball M.A., Chubb J.C. Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent. J. Evol. Biol. 2015;28:267–291. doi: 10.1111/jeb.12575. PubMed DOI
Blaxter M.L. Nematoda: Genes, genomes and the evolution of parasitism. Adv. Parasitol. 2003;54:101–195. doi: 10.1016/S0065-308X(03)54003-9. PubMed DOI
Morris D.J. A new model for myxosporean (Myxozoa) development explains the endogenous budding phenomenon, the nature of cell within cell life stages and evolution of parasitism from a cnidarian ancestor. Int. J. Parasitol. 2012;42:829–840. doi: 10.1016/j.ijpara.2012.06.001. PubMed DOI