Natural Feed Additives Modulate Immunity and Mitigate Infection with Sphaerospora molnari (Myxozoa:Cnidaria) in Common Carp: A Pilot Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
634429 (ParaFishControl)
European Commission, Horizon 2020
TG02010016
Technology Agency of the Czech Republic
LM2018099 (CENAKVA)
Ministry of Education, Youth and Sports of the Czech Republic
QK1820354 (NAZV)
Ministry of Agriculture of the Czech Republic
PubMed
33276442
PubMed Central
PMC7761334
DOI
10.3390/pathogens9121013
PII: pathogens9121013
Knihovny.cz E-zdroje
- Klíčová slova
- adaptive immunity, curcumin, fish, in-feed, innate immunity, parasite, yeast,
- Publikační typ
- časopisecké články MeSH
Myxozoans are a diverse group of cnidarian parasites, including important pathogens in different aquaculture species, without effective legalized treatments for fish destined for human consumption. We tested the effect of natural feed additives on immune parameters of common carp and in the course of a controlled laboratory infection with the myxozoan Sphaerospora molnari. Carp were fed a base diet enriched with 0.5% curcumin or 0.12% of a multi-strain yeast fraction, before intraperitoneal injection with blood stages of S. molnari. We demonstrate the impact of these treatments on respiratory burst, phagocytosis, nitric oxide production, adaptive IgM+ B cell responses, S. molnari-specific antibody titers, and on parasite numbers. Both experimental diets enriched B cell populations prior to infection and postponed initial parasite proliferation in the blood. Curcumin-fed fish showed a decrease in reactive oxygen species, nitric oxide production and B cell density at late-stage infection, likely due to its anti-inflammatory properties, favoring parasite propagation. In contrast, multi-strain yeast fraction (MsYF)-fed fish harbored the highest S. molnari-specific antibody titer, in combination with the overall lowest parasite numbers. The results demonstrate that yeast products can be highly beneficial for the outcome of myxozoan infections and could be used as effective feed additives in aquaculture.
Zobrazit více v PubMed
Hedrick R.P., Adkison M.A., El-Matbouli M., MacConnell E. Whirling disease: Re-emergence among wild trout. Immunol. Rev. 1998;166:365–376. doi: 10.1111/j.1600-065X.1998.tb01276.x. PubMed DOI
Hedrick R.P., MacConnell E., de Kinkelin P. Proliferative kidney disease of salmonid fish. Ann. Rev. Fish Dis. 1993;3:277–290. doi: 10.1016/0959-8030(93)90039-E. DOI
Bowser P.R., Conroy J.D. Histopathology of gill lesions in Channel catfish associated with Henneguya. J. Wildl. Dis. 1985;21:177–179. doi: 10.7589/0090-3558-21.2.177. PubMed DOI
Ronza P., Robledo D., Bermúdez R., Losada A., Pardo B., Martinez P., Quiroga M. Integrating genomic and morphological approaches in fish pathology research: The case of turbot (Scophthalmus maximus) Enteromyxosis. Front. Genet. 2019;10:26. doi: 10.3389/fgene.2019.00026. PubMed DOI PMC
Sitjà-Bobadilla A., Gil-Solsona R., Estensoro I., Piazzon M.C., Martos-Sitcha J.A., Picard-Sánchez A., Fuentes J., Sancho J.V., Calduch-Giner J.A., Hernández F., et al. Disruption of gut integrity and permeability contributes to enteritis in a fish-parasite model: A story told from serum metabolomics. Parasit. Vect. 2019;12:486. doi: 10.1186/s13071-019-3746-7. PubMed DOI PMC
Gómez D., Bartholomew J., Sunyer J.O. Biology and mucosal immunity to myxozoans. Dev. Comp. Immunol. 2014;43:243–256. doi: 10.1016/j.dci.2013.08.014. PubMed DOI PMC
Carraro L., Bertuzzo E., Mari L., Fontes I., Hartikainen H., Strepparava N., Schmidt-Posthaus H., Wahli T., Jokela J., Gatto M., et al. Integrated field, laboratory, and theoretical study of PKD spread in a Swiss prealpine river. Proc. Natl. Acad. Sci. USA. 2017;114:201713691. doi: 10.1073/pnas.1713691114. PubMed DOI PMC
Okamura B., Hartikainen H., Schmidt-Posthaus H., Wahli T. Life cycle complexity, environmental change and the emerging status of salmonid proliferative kidney disease. Freshw. Biol. 2011;56:735–753. doi: 10.1111/j.1365-2427.2010.02465.x. DOI
Bruneaux M., Visse M., Gross R., Pukk L., Saks L., Vasemägi A. Parasite infection and decreased thermal tolerance: Impact of proliferative kidney disease (PKD) on a wild salmonid fish in the context of climate change. Funct. Ecol. 2017;31:216–226. doi: 10.1111/1365-2435.12701. DOI
Debes P., Gross R., Vasemägi A. Quantitative genetic variation in, and environmental effects on, pathogen resistance and temperature-dependent disease severity in a wild trout. Am. Nat. 2017;190:244–265. doi: 10.1086/692536. PubMed DOI
Skovgaard A., Buchmann K. Tetracapsuloides bryosalmonae and PKD in juvenile wild salmonids in Denmark. Dis. Aquat. Org. 2012;101:33–42. doi: 10.3354/dao02502. PubMed DOI
Hutchins P.R., Sepulveda A.J., Martin R., Hopper L. A probe-based quantitative PCR assay for detecting Tetracapsuloides bryosalmonae in fish tissue and environmental DNA water samples. Conserv. Genet. Resour. 2018;10:317–319. doi: 10.1007/s12686-017-0812-3. DOI
Robbins J. Tiny Invader, Deadly to Fish, Shuts Down a River in Montana. [(accessed on 20 November 2020)];New York Times. 2016 Available online: https://www.nytimes.com/2016/08/24/us/tiny-parasite-invader-deadly-to-fish-shuts-down-yellowstone-river-in-montana.html.
Holzer A.S., Hartigan A., Patra S., Pecková H., Eszterbauer E. Molecular fingerprinting of the myxozoan community in common carp suffering swim bladder inflammation (SBI) identifies multiple etiological agents. Parasit. Vect. 2014;7:398. doi: 10.1186/1756-3305-7-398. PubMed DOI PMC
Davies I., Rodger G.A. Review of the use of ivermectin as a treatment for sea lice (Lepeophtheirus salmonis (Krøyer) and Caligus elongatus Nordmann) infestation in farmed Atlantic salmon (Salmo salar L.) Aquac. Res. 2001;31:869–883. doi: 10.1046/j.1365-2109.2000.00510.x. DOI
Collier L.M., Pinn E.H. An assessment of the acute impact of the sea lice treatment ivermectin on a benthic community. J. Exp. Mar. Biol. Ecol. 1998;230:131–147. doi: 10.1016/S0022-0981(98)00081-1. DOI
Whipple M.J., Gannam A.L., Bartholomew J.L. Inability to control ceratomyxosis in rainbow trout and steelhead with oral treatments of glucan immunostimulant or the fumagillin analog TNP-470. N. Am. J. Aquac. 2002;64:1–9. doi: 10.1577/1548-8454(2002)064<0001:ITCCIR>2.0.CO;2. DOI
Palenzuela O., Del Pozo R., Piazzon M.C., Isern-Subich M.M., Ceulemans S., Coutteau P., Sitja-Bobadilla A. Effect of a functional feed additive on mitigation of experimentally induced gilthead sea bream Sparus aurata enteromyxosis. Dis. Aquat. Org. 2020;138:111–120. doi: 10.3354/dao03453. PubMed DOI
Korytář T., Wiegertjes G., Zusková E., Tomanová A., Lisnerová M., Patra S., Sieranski V., Šíma R., born-Torrijos A., Wentzel A.S., et al. The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari. Parasit. Vect. 2019;12:208. doi: 10.1186/s13071-019-3462-3. PubMed DOI PMC
Haddad M., Sauvain M., Deharo E. Curcuma as a parasiticidal agent: A review. Planta Med. 2011;77:672–678. doi: 10.1055/s-0030-1250549. PubMed DOI
Cao L., Ding W., Du J., Jia R., Liu Y., Zhao C., Shen Y., Yin G. Effects of curcumin on antioxidative activities and cytokine production in Jian carp (Cyprinus carpio var. Jian) with CCl4-induced liver damage. Fish Shellfish Immunol. 2015;43:150–157. doi: 10.1016/j.fsi.2014.12.025. PubMed DOI
Goel A., Kunnumakkara A.B., Aggarwal B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2007;75:787–809. doi: 10.1016/j.bcp.2007.08.016. PubMed DOI
Mallo N., DeFelipe A.P., Folgueira I., Sueiro R.A., Lamas J., Leiro J.M. Combined antiparasitic and anti-inflammatory effects of the natural polyphenol curcumin on turbot scuticociliatosis. J. Fish Dis. 2017;40:205–217. doi: 10.1111/jfd.12503. PubMed DOI
Brunet L.R. Nitric oxide in parasitic infections. Int. Immunopharmacol. 2001;1:1457–1467. doi: 10.1016/S1567-5769(01)00090-X. PubMed DOI
Petit J., Wiegertjes G.F. Long-lived effects of administering β-glucans: Indications for trained immunity in fish. Dev. Comp. Immunol. 2016;64:93–102. doi: 10.1016/j.dci.2016.03.003. PubMed DOI
Schiavone M., Vax A., Formosa C., Martin-Yken H., Dague E., François J.M. A combined chemical and enzymatic method to determine quantitatively the polysaccharide components in the cell wall of yeasts. FEMS Yeast Res. 2014;14:933–947. doi: 10.1111/1567-1364.12182. PubMed DOI
Abarca A., Bethke J., Narvaez E., Flores R., Mercado L. Parameters to evaluate the immunostimulant effect of Zymosan A in head kidney leucocytes (HKL) of salmonids. Lat. Am. J. Aquat. Res. 2012;40:545–552. doi: 10.3856/vol40-issue3-fulltext-4. DOI
Bridle A.R., Carter C.G., Morrison R.N., Nowak B.F. The effect of β-glucan administration on macrophage respiratory burst activity and Atlantic salmon, Salmo salar L., challenged with amoebic gill disease–evidence of inherent resistance. J. Fish Dis. 2005;28:347–356. doi: 10.1111/j.1365-2761.2005.00636.x. PubMed DOI
Cook M.T., Hayball P.J., Hutchinson W., Nowak B., Hayball J.D. The efficacy of a commercial beta-glucan preparation, EcoActiva, on stimulating respiratory burst activity of head-kidney macrophages from pink snapper (Pagrus auratus), Sparidae. Fish Shellfish Immunol. 2001;11:661–672. doi: 10.1006/fsim.2001.0343. PubMed DOI
Meena D.K., Das P., Kumar S., Mandal S.C., Prusty A.K., Singh S.K., Akhtar M.S., Behera B.K., Kumar K., Pal A.K., et al. Beta-glucan: An ideal immunostimulant in aquaculture (a review) Fish Physiol. Biochem. 2013;39:431–457. doi: 10.1007/s10695-012-9710-5. PubMed DOI
Rawling M.D., Pontefract N., Rodiles A., Anagnostara I., Leclercq E., Schiavone M., Castex M., Merrifield D.L. The effect of feeding a novel multistrain yeast fraction on European seabass (Dicentrachus labrax) intestinal health and growth performance. J. World Aquac. Soc. 2019;50:1108–1122. doi: 10.1111/jwas.12591. DOI
Aakre R., Wergeland H.I., Aasjord P.M., Endresen C. Enhanced antibody response in Atlantic salmon (Salmo salar L.) to Aeromonas salmonicida cell wall antigens using a bacterin containing β-1,3-M-glucan as adjuvant. Fish Shellfish Immunol. 1994;4:47–61. doi: 10.1006/fsim.1994.1005. DOI
Chen D., Ainsworth A.J. Glucan administration potentiates immune defence mechanisms of. channel catfish, Ictalurus punctatus Rafinesque. J. Fish Dis. 1992;15:295–304. doi: 10.1111/j.1365-2761.1992.tb00667.x. DOI
Sitjà-Bobadilla A. Fish immune response to myxozoan parasites. Parasite. 2008;15:420–425. doi: 10.1051/parasite/2008153420. PubMed DOI
Furuta T., Ogawa K., Wakabayashi H. Humoral immune response of carp Cyprinus carpio to Myxobolus artus (Myxozoa: Myxobolidae) infection. J. Fish Biol. 1993;43:441–450. doi: 10.1111/j.1095-8649.1993.tb00579.x. DOI
Saulnier D., Kinkelin P. Antigenic and biochemical study of PKX, the myxosporean causative agent of proliferative kidney disease of salmonid fish. Dis. Aquat. Org. 1996;27:103–114. doi: 10.3354/dao027103. DOI
Sitjà-Bobadilla A., Palenzuela O., Riaza A., Macías M.A., Alvarez-Pellitero P. Protective acquired immunity to Enteromyxum scophthalmi (Myxozoa) is related to specific antibodies in Psetta maxima (L.) (Teleostei) Scand. J. Immunol. 2007;66:26–34. doi: 10.1111/j.1365-3083.2007.01942.x. PubMed DOI
Sommerset I., Krossøy B., Biering E., Frost P. Vaccines for fish in aquaculture. Expert Rev. Vaccines. 2005;4:89–101. doi: 10.1586/14760584.4.1.89. PubMed DOI
Korytář T., Chan J.T.H., Vancová M., Holzer A.S. Blood feast: Exploring the erythrocyte-feeding behaviour of the myxozoan Sphaerospora molnari. Paras. Immunol. 2020;42:e12683. doi: 10.1111/pim.12683. PubMed DOI PMC
Li J., Barreda D.R., Zhang Y.-A., Boshra H., Gelman A.E., LaPatra S., Tort L., Sunyer J.O. B lymphocytes from early vertebrates have potent phagocytic and microbicidal abilities. Nat. Immunol. 2006;7:1116–1124. doi: 10.1038/ni1389. PubMed DOI
Asahida T., Kobayashi T., Saitoh K., Nakayama I. Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish. Sci. 1996;62:727–730. doi: 10.2331/fishsci.62.727. DOI
Holzer A.S., Sommerville C., Wootten R. Molecular relationships and phylogeny in a community of myxosporeans and actinosporeans based on their 18S rDNA sequences. Int. J. Parasitol. 2004;34:1099–1111. doi: 10.1016/j.ijpara.2004.06.002. PubMed DOI