Immunological memory in a teleost fish: common carp IgM+ B cells differentiate into memory and plasma cells
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39759525
PubMed Central
PMC11695322
DOI
10.3389/fimmu.2024.1493840
Knihovny.cz E-zdroje
- Klíčová slova
- antibody, antibody-secreting cell (ASC), humoral memory, immunoglobulin, myxozoa,
- MeSH
- B-lymfocyty imunologie MeSH
- buněčná diferenciace * imunologie MeSH
- imunoglobulin M * imunologie MeSH
- imunologická paměť * MeSH
- kapři * imunologie parazitologie MeSH
- nemoci ryb imunologie parazitologie MeSH
- paměťové B-buňky imunologie MeSH
- plazmatické buňky * imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- imunoglobulin M * MeSH
From ancient cold-blooded fishes to mammals, all vertebrates are protected by adaptive immunity, and retain immunological memory. Although immunologists can demonstrate these phenomena in all fish, the responding cells remain elusive, without the tools to study them nor markers to define them. Fundamentally, we posited that it is longevity that defines a memory cell, like how it is antibody production that defines a plasma cell. We infected the common carp with Sphaerospora molnari, a cnidarian parasite which causes seasonal outbreaks to which no vaccine is available. B cells proliferated and expressed gene signatures of differentiation. Despite a half-year gap between EdU labeling and sampling, IgM+ B cells retained the thymidine analogue, suggesting that these are at least six-month-old resting memory cells stemming from proliferating precursors. Additionally, we identified a lymphoid organ-resident population of plasma cells by the exceptional levels of IgM they express. Thus, we demonstrate that a teleost fish produces the lymphocytes key to vaccination success and long-term disease protection, supporting the idea that immunological memory is observable and universal across vertebrates.
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czechia
Faculty of Science University of South Bohemia České Budějovice Czechia
Fish Health Division University of Veterinary Medicine Vienna Austria
Working Group Fish Genetics Research Institute for Farm Animal Biology Dummerstorf Germany
Zobrazit více v PubMed
Flajnik MF. A cold-blooded view of adaptive immunity. Nat Rev Immunol. (2018) 18:438–53. doi: 10.1038/s41577-018-0003-9 PubMed DOI PMC
Pradeu T, Du Pasquier L. Immunological memory: What's in a name? Immunol Rev. (2018) 283:7–20. doi: 10.1111/imr.12652 PubMed DOI
Perey DY, Finstad J, Pollara B, Good RA. Evolution of the immune response. VI. First and second set skin homograft rejections in primitive fishes. Lab Invest. (1968) 19:591–7. PubMed
Linthicum DS, Hildemann WH. Immunologic responses of Pacific hagfish. 3. Serum antibodies to cellular antigens. J Immunol. (1970) 105:912–8. doi: 10.4049/jimmunol.105.4.912 PubMed DOI
Sigel MM, Voss EWJ, Rudikoff S. Binding properties of shark immunoglobulins. Comp Biochem Physiol A Comp Physiol. (1972) 42:249–59. doi: 10.1016/0300-9629(72)90384-2 PubMed DOI
Eve O, Matz H, Dooley H. Proof of long-term immunological memory in cartilaginous fishes. Dev Comp Immunol. (2020) 108:103674. doi: 10.1016/j.dci.2020.103674 PubMed DOI PMC
Dooley H, Flajnik MF. Shark immunity bites back: affinity maturation and memory response in the nurse shark, Ginglymostoma cirratum. Eur J Immunol. (2005) 35:936–45. doi: 10.1002/eji.200425760 PubMed DOI
Schaperclaus W. Beitrag zur Kenntnis der Punctata-Formen und -Typen und zur Theorie der Entstehung der infektiosen Bauchwassersucht des Karpfens VII Untersuchungen uber die ansteckende Bauchwassersucht des Karpfens und ihre Bekampfung. Zentralblatt fuer Bakteriologie Jena Abt II. (1942) 105:49–72.
Śnieszko S. Badania bakteriologiczne i serologiczne nad bakteriami posocznicy karpi. Mémoires de l’Institut d’Ichtyobiologie et Pisciculture de la Station de Pisciculture Experimentale a Mydlniki de l’Université Jagiellonienne a Cracovie. (1938).
Van Muiswinkel WB. A history of fish immunology and vaccination I. The early days. Fish Shellfish Immunol. (2008) 25:397–408. doi: 10.1016/j.fsi.2008.02.019 PubMed DOI
Davidson GA, Lin SH, Secombes CJ, Ellis AE. Detection of specific and 'constitutive' antibody secreting cells in the gills, head kidney and peripheral blood leucocytes of dab (Limanda limanda). Vet Immunol Immunopathol. (1997) 58:363–74. doi: 10.1016/s0165-2427(97)00017-2 PubMed DOI
Ye J, Kaattari IM, Kaattari SL. The differential dynamics of antibody subpopulation expression during affinity maturation in a teleost. Fish Shellfish Immunol. (2011) 30:372–7. doi: 10.1016/j.fsi.2010.11.013 PubMed DOI
Ma C, Ye J, Kaattari SL. Differential compartmentalization of memory B cells versus plasma cells in salmonid fish. Eur J Immunol. (2013) 43:360–70. doi: 10.1002/eji.201242570 PubMed DOI
Bromage ES, Kaattari IM, Zwollo P, Kaattari SL. Plasmablast and plasma cell production and distribution in trout immune tissues. J Immunol. (2004) 173:7317–23. doi: 10.4049/jimmunol.173.12.7317 PubMed DOI
Wu L, Fu S, Yin X, Guo Z, Wang A, Ye J. Long-lived plasma cells secrete high-affinity antibodies responding to a T-dependent immunization in a teleost fish. Front Immunol. (2019) 10:2324. doi: 10.3389/fimmu.2019.02324 PubMed DOI PMC
Pan Y, Wu C, Zhong Y, Zhang Y, Zhang X. An atlas of grass carp igM+ B cells in homeostasis and bacterial infection helps to reveal the unique heterogeneity of B cells in early vertebrates. J Immunol. (2023) 211:964–80. doi: 10.4049/jimmunol.2300052 PubMed DOI
Picard-Sanchez A, Estensoro I, Del Pozo R, Piazzon MC, Palenzuela O, Sitja-Bobadilla A. Acquired protective immune response in a fish-myxozoan model encompasses specific antibodies and inflammation resolution. Fish Shellfish Immunol. (2019) 90:349–62. doi: 10.1016/j.fsi.2019.04.300 PubMed DOI
Mechlaoui M, Nordstrand E, Strandskog G, Jensen I, Seternes T. Vaccinated Atlantic salmon (Salmo salar L.) maintain a specific antibody response throughout the seasonal fluctuations of a full commercial production cycle in sea: a case study. Aquaculture. (2025) 595:741536. doi: 10.1016/j.aquaculture.2024.741536 DOI
Born-Torrijos A, Kosakyan A, Patra S, Pimentel-Santos J, Panicucci B, Chan JTH, et al. . Method for isolation of myxozoan proliferative stages from fish at high yield and purity: an essential prerequisite for in vitro, in vivo and genomics-based research developments. Cells. (2022) 11:377. doi: 10.3390/cells11030377 PubMed DOI PMC
Dobai T, Bartosova-Sojkova P. Sphaerospora molnari. Trends Parasitol. (2024) 40:352–3. doi: 10.1016/j.pt.2023.12.011 PubMed DOI
Siddall ME, Martin DS, Bridge D, Desser SS, Cone DK. The demise of a phylum of protists: phylogeny of Myxozoa and other parasitic cnidaria. J Parasitol. (1995) 81:961–7. doi: 10.2307/3284049 PubMed DOI
Holland JW, Okamura B, Hartikainen H, Secombes CJ. A novel minicollagen gene links cnidarians and myxozoans. Proc Biol Sci. (2011) 278:546–53. doi: 10.1098/rspb.2010.1301 PubMed DOI PMC
Foox J, Siddall ME. The road to cnidaria: history of phylogeny of the myxozoa. J Parasitol. (2015) 101:269–74. doi: 10.1645/14-671.1 PubMed DOI
Yahalomi D, Atkinson SD, Neuhof M, Chang ES, Philippe H, Cartwright P, et al. . A cnidarian parasite of salmon (Myxozoa: Henneguya) lacks a mitochondrial genome. Proc Natl Acad Sci U S A. (2020) 117:5358–63. doi: 10.1073/pnas.1909907117 PubMed DOI PMC
Abos B, Estensoro I, Perdiguero P, Faber M, Hu Y, Diaz Rosales P, et al. . Dysregulation of B cell activity during proliferative kidney disease in rainbow trout. Front Immunol. (2018) 9:1203. doi: 10.3389/fimmu.2018.01203 PubMed DOI PMC
Korytar T, Wiegertjes GF, Zuskova E, Tomanova A, Lisnerova M, Patra S, et al. . The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari. Parasit Vectors. (2019) 12:208–3. doi: 10.1186/s13071-019-3462-3 PubMed DOI PMC
Taggart-Murphy L, Alama-Bermejo G, Dolan B, Takizawa F, Bartholomew J. Differences in inflammatory responses of rainbow trout infected by two genotypes of the myxozoan parasite Ceratonova shasta. Dev Comp Immunol. (2021) 114:103829. doi: 10.1016/j.dci.2020.103829 PubMed DOI PMC
Perez-Cordon G, Estensoro I, Benedito-Palos L, Calduch-Giner JA, Sitja-Bobadilla A, Perez-Sanchez J. Interleukin gene expression is strongly modulated at the local level in a fish-parasite model. Fish Shellfish Immunol. (2014) 37:201–8. doi: 10.1016/j.fsi.2014.01.022 PubMed DOI
Abd-Elfattah A, Kumar G, Soliman H, El-Matbouli M. Persistence of Tetracapsuloides bryosalmonae (Myxozoa) in chronically infected brown trout Salmo trutta. Dis Aquat Organ. (2014) 111:41–9. doi: 10.3354/dao02768 PubMed DOI PMC
Houghton G, Matthews RA. Immunosuppression in juvenile carp, Cyprinus carpio L.: the effects of the corticosteroids triamcinolone acetonide and hydrocortisone 21-hemisuccinate (cortisol) on acquired immunity and the humoral antibody response to Ichthyophthirius multifiliis Fouquet. J Fish Dis. (1990) 13:269–80. doi: 10.1111/j.1365-2761.1990.tb00783.x DOI
Houghton G, Matthews RA. Immunosuppression of carp (Cyprinus carpio L.) to ichthyophthiriasis using the corticosteroid triamcinolone acetonide. Vet Immunol Immunopathol. (1986) 12:413–9. doi: 10.1016/0165-2427(86)90148-0 PubMed DOI
Korytar T, Chan JTH, Vancova M, Holzer AS. Blood feast: Exploring the erythrocyte-feeding behaviour of the myxozoan Sphaerospora molnari . Parasite Immunol. (2019) 12:208. doi: 10.1111/pim.12683 PubMed DOI PMC
Shibasaki Y, Afanasyev S, Fernandez-Montero A, Ding Y, Watanabe S, Takizawa F, et al. . Cold-blooded vertebrates evolved organized germinal center-like structures. Sci Immunol. (2023) 8:eadf1627. doi: 10.1126/sciimmunol.adf1627 PubMed DOI PMC
Zwollo P. Dissecting teleost B cell differentiation using transcription factors. Dev Comp Immunol. (2011) 35:898–905. doi: 10.1016/j.dci.2011.01.009 PubMed DOI PMC
Zwollo P, Mott K, Barr M. Comparative analyses of B cell populations in trout kidney and mouse bone marrow: establishing "B cell signatures. Dev Comp Immunol. (2010) 34:1291–9. doi: 10.1016/j.dci.2010.08.003 PubMed DOI PMC
Zwollo P, Haines A, Rosato P, Gumulak-Smith J. Molecular and cellular analysis of B-cell populations in the rainbow trout using Pax5 and immunoglobulin markers. Dev Comp Immunol. (2008) 32:1482–96. doi: 10.1016/j.dci.2008.06.008 PubMed DOI PMC
Barr M, Mott K, Zwollo P. Defining terminally differentiating B cell populations in rainbow trout immune tissues using the transcription factor XbpI. Fish Shellfish Immunol. (2011) 31:727–35. doi: 10.1016/j.fsi.2011.06.018 PubMed DOI PMC
Tafalla C, Gonzalez L, Castro R, Granja AG. B cell-activating factor regulates different aspects of B cell functionality and is produced by a subset of splenic B cells in teleost fish. Front Immunol. (2017) 8:295. doi: 10.3389/fimmu.2017.00295 PubMed DOI PMC
Granja AG, Holland JW, Pignatelli J, Secombes CJ, Tafalla C. Characterization of BAFF and APRIL subfamily receptors in rainbow trout (Oncorhynchus mykiss). Potential role of the BAFF / APRIL axis in the pathogenesis of proliferative kidney disease. PloS One. (2017) 12:e0174249. doi: 10.1371/journal.pone.0174249 PubMed DOI PMC
Chakravarti R, Adams JC. Comparative genomics of the syndecans defines an ancestral genomic context associated with matrilins in vertebrates. BMC Genomics. (2006) 7:83–3. doi: 10.1186/1471-2164-7-83 PubMed DOI PMC
Zwollo P. Why spawning salmon return to their natal stream: the immunological imprinting hypothesis. Dev Comp Immunol. (2012) 38:27–9. doi: 10.1016/j.dci.2012.03.011 PubMed DOI
Igarashi H, Medina KL, Yokota T, Rossi MID, Sakaguchi N, Comp PC, et al. . Early lymphoid progenitors in mouse and man are highly sensitive to glucocorticoids. Int Immunol. (2005) 17:501–11. doi: 10.1093/intimm/dxh230 PubMed DOI
Akkaya M, Kwak K, Pierce SK. B cell memory: building two walls of protection against pathogens. Nat Rev Immunol. (2019). doi: 10.1038/s41577-019-0244-2 PubMed DOI PMC
Kurosaki T, Kometani K, Ise W. Memory B cells. Nat Rev Immunol. (2015) 15:149–59. doi: 10.1038/nri3802 PubMed DOI
Inoue T, Kurosaki T. Memory B cells. Nat Rev Immunol. (2024) 24:5–17. doi: 10.1038/s41577-023-00897-3 PubMed DOI
Ye J, Kaattari I, Kaattari S. Plasmablasts and plasma cells: reconsidering teleost immune system organization. Dev Comp Immunol. (2011) 35:1273–81. doi: 10.1016/j.dci.2011.03.005 PubMed DOI
Yu X, Tsibane T, McGraw PA, House FS, Keefer CJ, Hicar MD, et al. . Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature. (2008) 455:532–6. doi: 10.1038/nature07231 PubMed DOI PMC
Weisel FJ, Zuccarino-Catania GV, Chikina M, Shlomchik MJ. A temporal switch in the germinal center determines differential output of memory B and plasma cells. Immunity. (2016) 44:116–30. doi: 10.1016/j.immuni.2015.12.004 PubMed DOI PMC
Pickering AD, Pottinger TG. Stress responses and disease resistance in salmonid fish: Effects of chronic elevation of plasma cortisol. Fish Physiol Biochem. (1989) 7:253–8. doi: 10.1007/BF00004714 PubMed DOI
Ye J, Bromage ES, Kaattari SL. The strength of B cell interaction with antigen determines the degree of IgM polymerization. J Immunol. (2010) 184:844–50. doi: 10.4049/jimmunol.0902364 PubMed DOI
Maule AG, Schreck CB. Glucocorticoid receptors in leukocytes and gill of juvenile coho salmon (Oncorhynchus kisutch). Gen Comp Endocrinol. (1990) 77:448–55. doi: 10.1016/0016-6480(90)90236-F PubMed DOI
Saha NR, Usami T, Suzuki Y. A double staining flow cytometric assay for the detection of steroid induced apoptotic leucocytes in common carp (Cyprinus carpio). Dev Comp Immunol. (2003) 27:351–63. doi: 10.1016/s0145-305x(02)00116-7 PubMed DOI
Vijay R, Guthmiller JJ, Sturtz AJ, Surette FA, Rogers KJ, Sompallae RR, et al. . Infection-induced plasmablasts are a nutrient sink that impairs humoral immunity to malaria. Nat Immunol. (2020) 21:790–801. doi: 10.1038/s41590-020-0678-5 PubMed DOI PMC
Holzer AS, Piazzon MC, Barrett D, Bartholomew JL, Sitja-Bobadilla A. To react or not to react: the dilemma of fish immune systems facing myxozoan infections. Front Immunol. (2021) 12:734238. doi: 10.3389/fimmu.2021.734238 PubMed DOI PMC
Holzer AS, Bartosova-Sojkova P, Born-Torrijos A, Lovy A, Hartigan A, Fiala I. The joint evolution of the Myxozoa and their alternate hosts: A cnidarian recipe for success and vast biodiversity. Mol Ecol. (2018) 27:1651–66. doi: 10.1111/mec.14558 PubMed DOI
Roess DA, Zschokke ME, Peacock JS, Barisas BG. Triamcinolone acetonide inhibits lymphocyte differentiation in B cells decorated with artificial antigen receptors. Biochem Biophys Res Commun. (1991) 179:1276–80. doi: 10.1016/0006-291x(91)91711-k PubMed DOI
Secombes CJ, van Groningen JJ, Egberts E. Separation of lymphocyte subpopulations in carp Cyprinus carpio L. by monoclonal antibodies: immunohistochemical studies. Immunology. (1983) 48:165–75. PubMed PMC
Sacks JM, Gillette KG, Frank GH. Development and evaluation of an enzyme-linked immunosorbent assay for bovine antibody to Pasteurella haemolytica: constructing an enzyme-linked immunosorbent assay titer. Am J Vet Res. (1988) 49:38–41. PubMed
Ganeva VO, Korytar T, Peckova H, McGurk C, Mullins J, Yanes-Roca C, et al. . Natural feed additives modulate immunity and mitigate infection with sphaerospora molnari (Myxozoa : cnidaria) in common carp: A pilot study. Pathogens. (2020) 9:1013. doi: 10.3390/pathogens9121013 PubMed DOI PMC
Holzer AS, Sommerville C, Wootten R. Molecular relationships and phylogeny in a community of myxosporeans and actinosporeans based on their 18S rDNA sequences. Int J Parasitol. (2004) 34:1099–111. doi: 10.1016/j.ijpara.2004.06.002 PubMed DOI
Adamek M, Matras M, Rebl A, Stachnik M, Falco A, Bauer J, et al. . Don't let it get under your skin! - vaccination protects the skin barrier of common carp from disruption caused by cyprinid herpesvirus 3. Front Immunol. (2022) 13:787021. doi: 10.3389/fimmu.2022.787021 PubMed DOI PMC