Elucidation of the Clustered Nano-Architecture of Radiation-Induced DNA Damage Sites and Surrounding Chromatin in Cancer Cells: A Single Molecule Localization Microscopy Approach

. 2021 Mar 31 ; 22 (7) : . [epub] 20210331

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33807337

Grantová podpora
the Heidelberg University Mobility Grant for International Research Cooperation within the excellence initiative II of the Deutsche Forschungsgemeinschaft (DFG) Deutsche Forschungsgemeinschaft
H1601/16-1 Deutsche Forschungsgemeinschaft
DAAD-19-03 DAAD-CAS
GACR 20-04109J Grantová Agentura České Republiky
The projects of Czech Government Plenipotentiary Czech Ministry of Education, Youth and Sports (MEYS-CR)
The Project 3 + 3 for cooperation with JINR Dubna Czech Ministry of Education, Youth and Sports (MEYS-CR)

In cancer therapy, the application of (fractionated) harsh radiation treatment is state of the art for many types of tumors. However, ionizing radiation is a "double-edged sword"-it can kill the tumor but can also promote the selection of radioresistant tumor cell clones or even initiate carcinogenesis in the normal irradiated tissue. Individualized radiotherapy would reduce these risks and boost the treatment, but its development requires a deep understanding of DNA damage and repair processes and the corresponding control mechanisms. DNA double strand breaks (DSBs) and their repair play a critical role in the cellular response to radiation. In previous years, it has become apparent that, beyond genetic and epigenetic determinants, the structural aspects of damaged chromatin (i.e., not only of DSBs themselves but also of the whole damage-surrounding chromatin domains) form another layer of complex DSB regulation. In the present article, we summarize the application of super-resolution single molecule localization microscopy (SMLM) for investigations of these structural aspects with emphasis on the relationship between the nano-architecture of radiation-induced repair foci (IRIFs), represented here by γH2AX foci, and their chromatin environment. Using irradiated HeLa cell cultures as an example, we show repair-dependent rearrangements of damaged chromatin and analyze the architecture of γH2AX repair clusters according to topological similarities. Although HeLa cells are known to have highly aberrant genomes, the topological similarity of γH2AX was high, indicating a functional, presumptively genome type-independent relevance of structural aspects in DSB repair. Remarkably, nano-scaled chromatin rearrangements during repair depended both on the chromatin domain type and the treatment. Based on these results, we demonstrate how the nano-architecture and topology of IRIFs and chromatin can be determined, point to the methodological relevance of SMLM, and discuss the consequences of the observed phenomena for the DSB repair network regulation or, for instance, radiation treatment outcomes.

Zobrazit více v PubMed

Woods D., Turchi J.J. Chemotherapy Induced DNA Damage Response: Convergence of Drugs and Pathways. Cancer Biol. Ther. 2013;14:379–389. doi: 10.4161/cbt.23761. PubMed DOI PMC

Monajembashi S., Rapp A., Schmitt E., Dittmar H., Greulich K.-O., Hausmann M. Spatial Association of Homologous Pericentric Regions in Human Lymphocyte Nuclei during Repair. Biophys. J. 2005;88:2309–2322. doi: 10.1529/biophysj.104.048728. PubMed DOI PMC

Rittich B., Spanová A., Falk M., Benes M.J., Hrubý M. Cleavage of Double Stranded Plasmid DNA by Lanthanide Complexes. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004;800:169–173. doi: 10.1016/j.jchromb.2003.09.011. PubMed DOI

Falk M., Falková I., Kopečná O., Bačíková A., Pagáčová E., Šimek D., Golan M., Kozubek S., Pekarová M., Follett S.E., et al. Chromatin Architecture Changes and DNA Replication Fork Collapse Are Critical Features in Cryopreserved Cells That Are Differentially Controlled by Cryoprotectants. Sci. Rep. 2018;8:14694. doi: 10.1038/s41598-018-32939-5. PubMed DOI PMC

Mavragani I.V., Nikitaki Z., Kalospyros S.A., Georgakilas A.G. Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance. Cancers. 2019;11:1789. doi: 10.3390/cancers11111789. PubMed DOI PMC

Maier P., Hartmann L., Wenz F., Herskind C. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization. Int. J. Mol. Sci. 2016;17:102. doi: 10.3390/ijms17010102. PubMed DOI PMC

Arnaudeau C., Lundin C., Helleday T. DNA Double-Strand Breaks Associated with Replication Forks Are Predominantly Repaired by Homologous Recombination Involving an Exchange Mechanism in Mammalian Cells11Edited by J. Karn. J. Mol. Biol. 2001;307:1235–1245. doi: 10.1006/jmbi.2001.4564. PubMed DOI

Lukášová E., Kovarˇík A., Bacˇíková A., Falk M., Kozubek S. Loss of Lamin B Receptor Is Necessary to Induce Cellular Senescence. Biochem. J. 2017;474:281–300. doi: 10.1042/BCJ20160459. PubMed DOI

Pilarczyk G., Papenfuß F., Bestvater F., Hausmann M. Spatial Arrangements of Connexin43 in Cancer Related Cells and Re-Arrangements under Treatment Conditions: Investigations on the Nano-Scale by Super-Resolution Localization Light Microscopy. Cancers. 2019;11:301. doi: 10.3390/cancers11030301. PubMed DOI PMC

Pilarczyk G., Nesnidal I., Gunkel M., Bach M., Bestvater F., Hausmann M. Localisation Microscopy of Breast Epithelial ErbB-2 Receptors and Gap Junctions: Trafficking after γ-Irradiation, Neuregulin-1β, and Trastuzumab Application. Int. J. Mol. Sci. 2017;18:362. doi: 10.3390/ijms18020362. PubMed DOI PMC

Falk M., Lukasova E., Kozubek S. Higher-Order Chromatin Structure in DSB Induction, Repair and Misrepair. Mutat. Res. 2010;704:88–100. doi: 10.1016/j.mrrev.2010.01.013. PubMed DOI

Rothkamm K., Kruger I., Thompson L.H., Lobrich M. Pathways of DNA Double-Strand Break Repair during the Mammalian Cell Cycle. Mol. Cell. Biol. 2003;23:5706–5715. doi: 10.1128/MCB.23.16.5706-5715.2003. PubMed DOI PMC

Kakarougkas A., Jeggo P.A. DNA DSB Repair Pathway Choice: An Orchestrated Handover Mechanism. Br. J. Radiol. 2014;87:20130685. doi: 10.1259/bjr.20130685. PubMed DOI PMC

Shibata A., Conrad S., Birraux J., Geuting V., Barton O., Ismail A., Kakarougkas A., Meek K., Taucher-Scholz G., Löbrich M., et al. Factors Determining DNA Double-Strand Break Repair Pathway Choice in G2 Phase: DSB Repair Pathway Choice in G2 Phase. EMBO J. 2011;30:1079–1092. doi: 10.1038/emboj.2011.27. PubMed DOI PMC

Hoeijmakers J.H. DNA Repair Mechanisms. Maturitas. 2001;38:17–22; discussion 22–23. doi: 10.1016/S0378-5122(00)00188-2. PubMed DOI

Brandsma I., Gent D.C. Pathway Choice in DNA Double Strand Break Repair: Observations of a Balancing Act. Genome Integr. 2012;3:9. doi: 10.1186/2041-9414-3-9. PubMed DOI PMC

Chang H.H.Y., Pannunzio N.R., Adachi N., Lieber M.R. Non-Homologous DNA End Joining and Alternative Pathways to Double-Strand Break Repair. Nat. Rev. Mol. Cell Biol. 2017;18:495–506. doi: 10.1038/nrm.2017.48. PubMed DOI PMC

Davis A.J., Chen D.J. DNA Double Strand Break Repair via Non-Homologous End-Joining. Transl. Cancer Res. 2013;2:130–143. doi: 10.3978/j.issn.2218-676X.2013.04.02. PubMed DOI PMC

Wright W.D., Shah S.S., Heyer W.-D. Homologous Recombination and the Repair of DNA Double-Strand Breaks. J. Biol. Chem. 2018;293:10524–10535. doi: 10.1074/jbc.TM118.000372. PubMed DOI PMC

Ceccaldi R., Rondinelli B., D’Andrea A.D. Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. 2016;26:52–64. doi: 10.1016/j.tcb.2015.07.009. PubMed DOI PMC

Falk M., Hausmann M. A Paradigm Revolution or Just Better Resolution–Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Cancers. 2021;13:18. doi: 10.3390/cancers13010018. PubMed DOI PMC

Yang K., Guo R., Xu D. Non-Homologous End Joining: Advances and Frontiers. Acta Biochim. Biophys. Sin. 2016;48:632–640. doi: 10.1093/abbs/gmw046. PubMed DOI

Kim J.-S., Krasieva T.B., Kurumizaka H., Chen D.J., Taylor A.M.R., Yokomori K. Independent and Sequential Recruitment of NHEJ and HR Factors to DNA Damage Sites in Mammalian Cells. J. Cell Biol. 2005;170:341–347. doi: 10.1083/jcb.200411083. PubMed DOI PMC

Shibata A., Jeggo P.A. Canonical DNA Non-Homologous End-Joining; Capacity versus Fidelity. Br. J. Radiol. 2020;93:20190966. doi: 10.1259/bjr.20190966. PubMed DOI PMC

Groth P., Orta M.L., Elvers I., Majumder M.M., Lagerqvist A., Helleday T. Homologous Recombination Repairs Secondary Replication Induced DNA Double-Strand Breaks after Ionizing Radiation. Nucleic Acids Res. 2012;40:6585–6594. doi: 10.1093/nar/gks315. PubMed DOI PMC

Li X., Heyer W.-D. Homologous Recombination in DNA Repair and DNA Damage Tolerance. Cell Res. 2008;18:99–113. doi: 10.1038/cr.2008.1. PubMed DOI PMC

Cromie G.A., Connelly J.C., Leach D.R. Recombination at Double-Strand Breaks and DNA Ends: Conserved Mechanisms from Phage to Humans. Mol. Cell. 2001;8:1163–1174. doi: 10.1016/S1097-2765(01)00419-1. PubMed DOI

Dueva R., Iliakis G. Alternative Pathways of Non-Homologous End Joining (NHEJ) in Genomic Instability and Cancer. Transl. Cancer Res. 2013;2:163–177. doi: 10.3978/j.issn.2218-676X.2013.05.02. DOI

Biehs R., Steinlage M., Barton O., Juhász S., Künzel J., Spies J., Shibata A., Jeggo P.A., Löbrich M. DNA Double-Strand Break Resection Occurs during Non-Homologous End Joining in G1 but Is Distinct from Resection during Homologous Recombination. Mol. Cell. 2017;65:671–684.e5. doi: 10.1016/j.molcel.2016.12.016. PubMed DOI PMC

Decottignies A. Alternative End-Joining Mechanisms: A Historical Perspective. Front. Genet. 2013;4:48. doi: 10.3389/fgene.2013.00048. PubMed DOI PMC

Iliakis G., Mladenov E., Mladenova V. Necessities in the Processing of DNA Double Strand Breaks and Their Effects on Genomic Instability and Cancer. Cancers. 2019;11:1671. doi: 10.3390/cancers11111671. PubMed DOI PMC

Iliakis G. Backup Pathways of NHEJ in Cells of Higher Eukaryotes: Cell Cycle Dependence. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2009;92:310–315. doi: 10.1016/j.radonc.2009.06.024. PubMed DOI

Seol J.-H., Shim E.Y., Lee S.E. Microhomology-Mediated End Joining: Good, Bad and Ugly. Mutat. Res. Mol. Mech. Mutagen. 2018;809:81–87. doi: 10.1016/j.mrfmmm.2017.07.002. PubMed DOI PMC

Black S.J., Ozdemir A.Y., Kashkina E., Kent T., Rusanov T., Ristic D., Shin Y., Suma A., Hoang T., Chandramouly G., et al. Molecular Basis of Microhomology-Mediated End-Joining by Purified Full-Length Polθ. Nat. Commun. 2019;10:1–16. doi: 10.1038/s41467-019-12272-9. PubMed DOI PMC

Janssen A., Colmenares S.U., Lee T., Karpen G.H. Timely Double-Strand Break Repair and Pathway Choice in Pericentromeric Heterochromatin Depend on the Histone Demethylase DKDM4A. Genes Dev. 2019;33:103–115. doi: 10.1101/gad.317537.118. PubMed DOI PMC

Clouaire T., Legube G. DNA Double Strand Break Repair Pathway Choice: A Chromatin Based Decision? Nucleus. 2015;6:107–113. doi: 10.1080/19491034.2015.1010946. PubMed DOI PMC

Aparicio T., Baer R., Gautier J. DNA Double-Strand Break Repair Pathway Choice and Cancer. DNA Repair. 2014;19:169–175. doi: 10.1016/j.dnarep.2014.03.014. PubMed DOI PMC

Schwarz B., Friedl A.A., Girst S., Dollinger G., Reindl J. Nanoscopic Analysis of 53BP1, BRCA1 and Rad51 Reveals New Insights in Temporal Progression of DNA-Repair and Pathway Choice. Mutat. Res. 2019;816–818:111675. doi: 10.1016/j.mrfmmm.2019.111675. PubMed DOI

Stadler J., Richly H. Regulation of DNA Repair Mechanisms: How the Chromatin Environment Regulates the DNA Damage Response. Int. J. Mol. Sci. 2017;18:1715. doi: 10.3390/ijms18081715. PubMed DOI PMC

Jachimowicz R.D., Goergens J., Reinhardt H.C. DNA Double-Strand Break Repair Pathway Choice-from Basic Biology to Clinical Exploitation. Cell Cycle. 2019;18:1423–1434. doi: 10.1080/15384101.2019.1618542. PubMed DOI PMC

Zhao Y., Chen S. Targeting DNA Double-Strand Break (DSB) Repair to Counteract Tumor Radio-Resistance. Curr. Drug Targets. 2019;20:891–902. doi: 10.2174/1389450120666190222181857. PubMed DOI

Toulany M. Targeting DNA Double-Strand Break Repair Pathways to Improve Radiotherapy Response. Genes. 2019;10:25. doi: 10.3390/genes10010025. PubMed DOI PMC

Jakob B., Splinter J., Conrad S., Voss K.-O., Zink D., Durante M., Löbrich M., Taucher-Scholz G. DNA Double-Strand Breaks in Heterochromatin Elicit Fast Repair Protein Recruitment, Histone H2AX Phosphorylation and Relocation to Euchromatin. Nucleic Acids Res. 2011;39:6489–6499. doi: 10.1093/nar/gkr230. PubMed DOI PMC

Zhang Y., Máté G., Müller P., Hillebrandt S., Krufczik M., Bach M., Kaufmann R., Hausmann M., Heermann D.W. Radiation Induced Chromatin Conformation Changes Analysed by Fluorescent Localization Microscopy, Statistical Physics, and Graph Theory. PLoS ONE. 2015;10:e0128555. doi: 10.1371/journal.pone.0128555. PubMed DOI PMC

Dabin J., Fortuny A., Polo S.E. Epigenome Maintenance in Response to DNA Damage. Mol. Cell. 2016;62:712–727. doi: 10.1016/j.molcel.2016.04.006. PubMed DOI PMC

Banno K., Kisu I., Yanokura M., Tsuji K., Masuda K., Ueki A., Kobayashi Y., Yamagami W., Nomura H., Tominaga E., et al. Epimutation and Cancer: A New Carcinogenic Mechanism of Lynch Syndrome. Int. J. Oncol. 2012;41:793–797. doi: 10.3892/ijo.2012.1528. PubMed DOI PMC

Machnik M., Oleksiewicz U. Dynamic Signatures of the Epigenome: Friend or Foe? Cells. 2020;9:653. doi: 10.3390/cells9030653. PubMed DOI PMC

Ježková L., Falk M., Falková I., Davídková M., Bačíková A., Štefančíková L., Vachelová J., Michaelidesová A., Lukášová E., Boreyko A., et al. Function of Chromatin Structure and Dynamics in DNA Damage, Repair and Misrepair: γ-Rays and Protons in Action. Pt BAppl. Radiat. Isot. Data Instrum. Methods Use Agric. Ind. Med. 2014;83:128–136. doi: 10.1016/j.apradiso.2013.01.022. PubMed DOI

Timm S., Lorat Y., Jakob B., Taucher-Scholz G., Rübe C.E. Clustered DNA Damage Concentrated in Particle Trajectories Causes Persistent Large-Scale Rearrangements in Chromatin Architecture. Radiother. Oncol. 2018;129:600–610. doi: 10.1016/j.radonc.2018.07.003. PubMed DOI

Jakob B., Dubiak-Szepietowska M., Janiel E., Schmidt A., Durante M., Taucher-Scholz G. Differential Repair Protein Recruitment at Sites of Clustered and Isolated DNA Double-Strand Breaks Produced by High-Energy Heavy Ions. Sci. Rep. 2020;10:1443. doi: 10.1038/s41598-020-58084-6. PubMed DOI PMC

Falk M., Hausmann M., Lukášová E., Biswas A., Hildenbrand G., Davídková M., Krasavin E., Kleibl Z., Falková I., Ježková L., et al. Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part A—Radiomics. Crit. Rev. Eukaryot. Gene Expr. 2014;24:205–223. doi: 10.1615/CritRevEukaryotGeneExpr.2014010313. PubMed DOI

Falk M., Hausmann M., Lukášová E., Biswas A., Hildenbrand G., Davídková M., Krasavin E., Kleibl Z., Falková I., Ježková L., et al. Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part B—Structuromics. Crit. Rev. Eukaryot. Gene Expr. 2014;24:225–247. doi: 10.1615/CritRevEukaryotGeneExpr.v24.i3.40. PubMed DOI

Falk M., Lukasova E., Gabrielova B., Ondrej V., Kozubek S. Local Changes of Higher-Order Chromatin Structure during DSB-Repair. J. Phys. Conf. Ser. 2008 doi: 10.1088/1742-6596/101/1/012018. DOI

Depes D., Lee J.-H., Bobkova E., Jezkova L., Falkova I., Bestvater F., Pagacova E., Kopecna O., Zadneprianetc M., Bacikova A., et al. Single-Molecule Localization Microscopy as a Promising Tool for ΓH2AX/53BP1 Foci Exploration. Eur. Phys. J. D. 2018;72:1–11. doi: 10.1140/epjd/e2018-90148-1. DOI

Bobkova E., Depes D., Lee J.-H., Jezkova L., Falkova I., Pagacova E., Kopecna O., Zadneprianetc M., Bacikova A., Kulikova E., et al. Recruitment of 53BP1 Proteins for DNA Repair and Persistence of Repair Clusters Differ for Cell Types as Detected by Single Molecule Localization Microscopy. Int. J. Mol. Sci. 2018;19:3713. doi: 10.3390/ijms19123713. PubMed DOI PMC

Fabre E., Zimmer C. From Dynamic Chromatin Architecture to DNA Damage Repair and Back. Nucleus. 2018;9:161–170. doi: 10.1080/19491034.2017.1419847. PubMed DOI PMC

Eberle J.P., Rapp A., Krufczik M., Eryilmaz M., Gunkel M., Erfle H., Hausmann M. Super-Resolution Microscopy Techniques and Their Potential for Applications in Radiation Biophysics. Vol. 1663. Humana Press Inc. of Springer Science and Business Media; Totowa, NJ, USA: 2017. Methods in Molecular Biology. PubMed

Hausmann M., Wagner E., Lee J.-H., Schrock G., Schaufler W., Krufczik M., Papenfuß F., Port M., Bestvater F., Scherthan H. Super-Resolution Localization Microscopy of Radiation-Induced Histone H2AX-Phosphorylation in Relation to H3K9-Trimethylation in HeLa Cells. Nanoscale. 2018;10:4320–4331. doi: 10.1039/C7NR08145F. PubMed DOI

Nakamura K., Saredi G., Becker J.R., Foster B.M., Nguyen N.V., Beyer T.E., Cesa L.C., Faull P.A., Lukauskas S., Frimurer T., et al. H4K20me0 Recognition by BRCA1–BARD1 Directs Homologous Recombination to Sister Chromatids. Nat. Cell Biol. 2019;21:311–318. doi: 10.1038/s41556-019-0282-9. PubMed DOI PMC

Krigerts J., Salmina K., Freivalds T., Zayakin P., Rumnieks F., Inashkina I., Giuliani A., Hausmann M., Erenpreisa J. Differentiating breast cancer cells reveal early large-scale genome regulation by pericentric domains. Biophys. J. 2021;120:711–724. doi: 10.1016/j.bpj.2021.01.002. PubMed DOI PMC

Hausmann M., Neitzel C., Bobkova E., Nagel D., Hofmann A., Chramko T., Smirnova E., Kopečná O., Pagáčová E., Boreyko A., et al. Single Molecule Localization Microscopy Analyses of DNA-Repair Foci and Clusters Detected along Particle Damage Tracks. Front. Phys. Sect. Med. Phys. Imaging. 2020;8:578662. doi: 10.3389/fphy.2020.578662. DOI

Lorat Y., Timm S., Jakob B., Taucher-Scholz G., Rübe C.E. Clustered Double-Strand Breaks in Heterochromatin Perturb DNA Repair after High Linear Energy Transfer Irradiation. Radiother. Oncol. 2016;121:154–161. doi: 10.1016/j.radonc.2016.08.028. PubMed DOI

Lorat Y., Brunner C.U., Schanz S., Jakob B., Taucher-Scholz G., Rübe C.E. Nanoscale Analysis of Clustered DNA Damage after High-LET Irradiation by Quantitative Electron Microscopy–The Heavy Burden to Repair. DNA Repair. 2015;28:93–106. doi: 10.1016/j.dnarep.2015.01.007. PubMed DOI

Ayache J., Beaunier L., Boumendil J., Ehret G., Laub D. Sample Preparation Handbook for Transmission Electron Microscopy. Springer; New York, NY, USA: 2010. Artifacts in Transmission Electron Microscopy; pp. 125–170.

Cremer C. Optics Far Beyond the Diffraction Limit. In: Träger F., editor. Springer Handbook of Lasers and Optics. Springer; Berlin/Heidelberg, Germany: 2012. pp. 1359–1397.

Cremer C., Masters B.R. Resolution Enhancement Techniques in Microscopy. Eur. Phys. J. H. 2013;38:281–344. doi: 10.1140/epjh/e2012-20060-1. DOI

Hausmann M., Ilić N., Pilarczyk G., Lee J.-H., Logeswaran A., Borroni A., Krufczik M., Theda F., Waltrich N., Bestvater F., et al. Challenges for Super-Resolution Localization Microscopy and Biomolecular Fluorescent Nano-Probing in Cancer Research. Int. J. Mol. Sci. 2017;18:2066. doi: 10.3390/ijms18102066. PubMed DOI PMC

Du G., Drexler G.A., Friedland W., Greubel C., Hable V., Krücken R., Kugler A., Tonelli L., Friedl A.A., Dollinger G. Spatial Dynamics of DNA Damage Response Protein Foci along the Ion Trajectory of High-LET Particles. Radiat. Res. 2011;176:706–715. doi: 10.1667/RR2592.1. PubMed DOI

Lopez Perez R., Best G., Nicolay N.H., Greubel C., Rossberger S., Reindl J., Dollinger G., Weber K.-J., Cremer C., Huber P.E. Superresolution Light Microscopy Shows Nanostructure of Carbon Ion Radiation-Induced DNA Double-Strand Break Repair Foci. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2016;30:2767–2776. doi: 10.1096/fj.201500106R. PubMed DOI

Varga D., Majoros H., Újfaludi Z., Erdélyi M., Pankotai T. Quantification of DNA Damage Induced γH2AX Focus Formation via Super-Resolution dSTORM Localization Microscopy. Nanoscale. 2019;11:14226–14236. doi: 10.1039/C9NR03696B. PubMed DOI

Cremer C., Edelmann P., Esa A., Bornfleth H., Schneider B., BradI J., Rinke B., Trakhtenbrot L., Dietzel S., Hausmann M., et al. Spektrale Präzisionsdistanzmikroskopie in Der Genomforschung. Z. Med. Phys. 1999;9:14–20. doi: 10.1016/S0939-3889(15)70223-0. DOI

Esa A., Edelmann P., Kreth G., Trakhtenbrot L., Amariglio N., Rechavi B.G., Hausmann B.M., Cremer C. Three-Dimensional Spectral Precision Distance Microscopy of Chromatin Nanostructures after Triple-Colour DNA Labelling: A Study of the BCR Region on Chromosome 22 and the Philadelphia Chromosome. J. Microsc. 2000;199:96–105. doi: 10.1046/j.1365-2818.2000.00707.x. PubMed DOI

Rauch J., Knoch T.A., Solovei I., Teller K., Stein S., Buiting K., Horsthemke B., Langowski J., Cremer T., Hausmann M., et al. Light Optical Precision Measurements of the Active and Inactive Prader–Willi Syndrome Imprinted Regions in Human Cell Nuclei. Differentiation. 2008;76:66–82. doi: 10.1111/j.1432-0436.2007.00237.x. PubMed DOI

Lemmer P., Gunkel M., Baddeley D., Kaufmann R., Urich A., Weiland Y., Reymann J., Müller P., Hausmann M., Cremer C. SPDM: Light Microscopy with Single-Molecule Resolution at the Nanoscale. Appl. Phys. B. 2008;93:1–12. doi: 10.1007/s00340-008-3152-x. DOI

Hendrix J., Flors C., Dedecker P., Hofkens J., Engelborghs Y. Dark States in Monomeric Red Fluorescent Proteins Studied by Fluorescence Correlation and Single Molecule Spectroscopy. Biophys. J. 2008;94:4103–4113. doi: 10.1529/biophysj.107.123596. PubMed DOI PMC

Sinnecker D., Voigt P., Hellwig N., Schaefer M. Reversible Photobleaching of Enhanced Green Fluorescent Proteins. Biochemistry. 2005;44:7085–7094. doi: 10.1021/bi047881x. PubMed DOI

Thompson R.E., Larson D.R., Webb W.W. Precise Nanometer Localization Analysis for Individual Fluorescent Probes. Biophys. J. 2002;82:2775–2783. doi: 10.1016/S0006-3495(02)75618-X. PubMed DOI PMC

Deschout H., Zanacchi F.C., Mlodzianoski M., Diaspro A., Bewersdorf J., Hess S.T., Braeckmans K. Precisely and Accurately Localizing Single Emitters in Fluorescence Microscopy. Nat. Methods. 2014;11:253–266. doi: 10.1038/nmeth.2843. PubMed DOI

Hofmann A., Krufczik M., Heermann D.W., Hausmann M. Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of ΓH2AX Foci/Clusters. Int. J. Mol. Sci. 2018;19:2263. doi: 10.3390/ijms19082263. PubMed DOI PMC

Abbe E. Beiträge Zur Theorie Des Mikroskops Und Der MikroskopischenWahrnehmung. Arch. F Mikrosk. Anat. 1873;9:411–468. doi: 10.1007/BF02956173. DOI

Lee J.H., Tchetgna F.L., Krufczik M., Schmitt E., Cremer C., Bestvater F., Hausmann M. COMBO-FISH: A Versatile Tool Beyond Standard FISH to Study Chromatin Organization by Fluorescence Light Microscopy. OBM Genet. 2018;3:28. doi: 10.21926/obm.genet.1901064. DOI

Ripley B.D. Modelling Spatial Patterns. J. R. Stat. Soc. Ser. B Methodol. 1977;39:172–192. doi: 10.1111/j.2517-6161.1977.tb01615.x. DOI

Cremer M., Hase J.V., Volm T., Brero A., Kreth G., Walter J., Fischer C., Solovei I., Cremer C., Cremer T. Non-Random Radial Higher-Order Chromatin Arrangements in Nuclei of Diploid Human Cells. Chromosome Res. 2001;9:541–567. doi: 10.1023/A:1012495201697. PubMed DOI

Kozubek S., Lukásová E., Jirsová P., Koutná I., Kozubek M., Ganová A., Bártová E., Falk M., Paseková R. 3D Structure of the Human Genome: Order in Randomness. Chromosoma. 2002;111:321–331. doi: 10.1007/s00412-002-0210-8. PubMed DOI

Falk M., Lukásová E., Kozubek S., Kozubek M. Topography of Genetic Elements of X-Chromosome Relative to the Cell Nucleus and to the Chromosome X Territory Determined for Human Lymphocytes. Gene. 2002;292:13–24. doi: 10.1016/S0378-1119(02)00667-4. PubMed DOI

Huang K., Li Y., Shim A.R., Virk R.K.A., Agrawal V., Eshein A., Nap R.J., Almassalha L.M., Backman V., Szleifer I. Physical and Data Structure of 3D Genome. Sci. Adv. 2020;6:eaay4055. doi: 10.1126/sciadv.aay4055. PubMed DOI PMC

Falk M., Lukásová E., Kozubek S. Chromatin Structure Influences the Sensitivity of DNA to Gamma-Radiation. Biochim. Biophys. Acta. 2008;1783:2398–2414. doi: 10.1016/j.bbamcr.2008.07.010. PubMed DOI

Radulescu I., Elmroth K., Stenerlöw B. Chromatin Organization Contributes to Non-Randomly Distributed Double-Strand Breaks after Exposure to High-LET Radiation. Radiat. Res. 2004;161:1–8. doi: 10.1667/RR3094. PubMed DOI

Lukásová E., Kozubek S., Kozubek M., Falk M., Amrichová J. The 3D Structure of Human Chromosomes in Cell Nuclei. Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 2002;10:535–548. doi: 10.1023/A:1020958517788. PubMed DOI

Cremer T., Cremer M. Chromosome Territories. Cold Spring Harb. Perspect. Biol. 2010;2:a003889. doi: 10.1101/cshperspect.a003889. PubMed DOI PMC

Aleksandrov R., Hristova R., Stoynov S., Gospodinov A. The Chromatin Response to Double-Strand DNA Breaks and Their Repair. Cells. 2020;9:1853. doi: 10.3390/cells9081853. PubMed DOI PMC

Kleppe A., Albregtsen F., Vlatkovic L., Pradhan M., Nielsen B., Hveem T.S., Askautrud H.A., Kristensen G.B., Nesbakken A., Trovik J., et al. Chromatin Organisation and Cancer Prognosis: A Pan-Cancer Study. Lancet Oncol. 2018;19:356–369. doi: 10.1016/S1470-2045(17)30899-9. PubMed DOI PMC

Máté G., Hofmann A., Wenzel N., Heermann D.W. A Topological Similarity Measure for Proteins. Biochim. Biophys. Acta BBA Biomembr. 2014;1838:1180–1190. doi: 10.1016/j.bbamem.2013.08.019. PubMed DOI

Braden B. The Surveyor’s Area Formula. Coll. Math. J. 1986;17:326–337. doi: 10.1080/07468342.1986.11972974. DOI

Ghrist R. Barcodes: The Persistent Topology of Data. Bull. Am. Math. Soc. 2007;45:61–76. doi: 10.1090/S0273-0979-07-01191-3. DOI

Jaccard P. Etude Comparative de La Distribution Florale Dans Une Portion Des Alpes et Des Jura. Bull. Soc. Vaud. Sci. Nat. 1901;37:547–579.

Rouvreau V. [(accessed on 11 January 2021)];Cython Interface. In GUDHI Editorial Board, 3.3.0, GUDHI User and Reference Manual. 2020 Available online: https://gudhi.inria.fr/doc/3.3.0/

Máté G., Heermann D.W. Statistical Analysis of Protein Ensembles. Front. Phys. 2014;2:20. doi: 10.3389/fphy.2014.00020. DOI

Knoch T.A. Ph.D. Thesis. Faculty of Physics and Astronomy, Heidelberg University; Heidelberg, Germany: 2003. Approaching the Three-Dimensional Organization of the Human Genome. DOI

Lukášová E., Kozubek S., Falk M., Kozubek M., Žaloudík J., Vagunda V., Pavlovský Z. Topography of Genetic Loci in the Nuclei of Cells of Colorectal Carcinoma and Adjacent Tissue of Colonic Epithelium. Chromosoma. 2004;112:221–230. doi: 10.1007/s00412-003-0263-3. PubMed DOI

Bach M., Savini C., Krufczik M., Cremer C., Rösl F., Hausmann M. Super-Resolution Localization Microscopy of γ-H2AX and Heterochromatin after Folate Deficiency. Int. J. Mol. Sci. 2017;18:1726. doi: 10.3390/ijms18081726. PubMed DOI PMC

Lisby M., Barlow J.H., Burgess R.C., Rothstein R. Choreography of the DNA Damage Response: Spatiotemporal Relationships among Checkpoint and Repair Proteins. Cell. 2004;118:699–713. doi: 10.1016/j.cell.2004.08.015. PubMed DOI

Scherthan H., Lee J.-H., Maus E., Schumann S., Muhtadi R., Chojowski R., Port M., Lassmann M., Bestvater F., Hausmann M. Nanostructure of Clustered DNA Damage in Leukocytes after In-Solution Irradiation with the Alpha Emitter Ra-223. Cancers. 2019;11:1877. doi: 10.3390/cancers11121877. PubMed DOI PMC

Sevcik J., Falk M., Kleiblova P., Lhota F., Stefancikova L., Janatova M., Weiterova L., Lukasova E., Kozubek S., Pohlreich P., et al. The BRCA1 Alternative Splicing Variant Δ14-15 with an in-Frame Deletion of Part of the Regulatory Serine-Containing Domain (SCD) Impairs the DNA Repair Capacity in MCF-7 Cells. Cell. Signal. 2012;24:1023–1030. doi: 10.1016/j.cellsig.2011.12.023. PubMed DOI

Sevcik J., Falk M., Macurek L., Kleiblova P., Lhota F., Hojny J., Stefancikova L., Janatova M., Bartek J., Stribrna J., et al. Expression of Human BRCA1Δ17-19 Alternative Splicing Variant with a Truncated BRCT Domain in MCF-7 Cells Results in Impaired Assembly of DNA Repair Complexes and Aberrant DNA Damage Response. Cell. Signal. 2013;25:1186–1193. doi: 10.1016/j.cellsig.2013.02.008. PubMed DOI

Jezkova L., Zadneprianetc M., Kulikova E., Smirnova E., Bulanova T., Depes D., Falkova I., Boreyko A., Krasavin E., Davidkova M., et al. Particles with Similar LET Values Generate DNA Breaks of Different Complexity and Reparability: A High-Resolution Microscopy Analysis of Γh2AX/53BP1 Foci. Nanoscale. 2018;10:1162–1179. doi: 10.1039/C7NR06829H. PubMed DOI

Hofer M., Falk M., Komůrková D., Falková I., Bačíková A., Klejdus B., Pagáčová E., Štefančíková L., Weiterová L., Angelis K.J., et al. Two New Faces of Amifostine: Protector from DNA Damage in Normal Cells and Inhibitor of DNA Repair in Cancer Cells. J. Med. Chem. 2016;59:3003–3017. doi: 10.1021/acs.jmedchem.5b01628. PubMed DOI

Falk M., Lukášová E., Štefančíková L., Baranová E., Falková I., Ježková L., Davídková M., Bačíková A., Vachelová J., Michaelidesová A., et al. Heterochromatinization Associated with Cell Differentiation as a Model to Study DNA Double Strand Break Induction and Repair in the Context of Higher-Order Chromatin Structure. Pt BAppl. Radiat. Isot. Data Instrum. Methods Use Agric. Ind. Med. 2014;83:177–185. doi: 10.1016/j.apradiso.2013.01.029. PubMed DOI

Lukášová E., Kořistek Z., Klabusay M., Ondřej V., Grigoryev S., Bačíková A., Řezáčová M., Falk M., Vávrová J., Kohútová V., et al. Granulocyte Maturation Determines Ability to Release Chromatin NETs and Loss of DNA Damage Response; These Properties Are Absent in Immature AML Granulocytes. Biochim. Biophys. Acta. 2013;1833:767–779. doi: 10.1016/j.bbamcr.2012.12.012. PubMed DOI

Falk M., Lukasova E., Gabrielova B., Ondrej V., Kozubek S. Chromatin Dynamics during DSB Repair. Biochim. Biophys. Acta. 2007;1773:1534–1545. doi: 10.1016/j.bbamcr.2007.07.002. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace