The 3D structure of human chromosomes in cell nuclei

. 2002 ; 10 (7) : 535-48.

Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid12498343

The spatial arrangement of some genetic elements relative to chromosome territories and in parallel with the cell nucleus was investigated in human lymphocytes. The structure of the chromosome territories was studied in chromosomes containing regions (clusters) of highly expressed genes (HSA 9, 17) and those without such clusters (HSA 8, 13). In chromosomes containing highly expressed regions, the elements pertaining to these regions were found close to the centre of the nucleus on the inner sides of chromosome territories; those pertaining to regions with low expression were localized close to the nuclear membrane on the opposite sides of the territories. In chromosomes with generally low expression (HSA 8, 13), the elements investigated were found symmetrically distributed over the territories. Based on the investigations of the chromosome structure, the following conclusions are suggested: (1) Chromosome territories have a non-random internal 3D structure with defined average mutual positions between elements. For example, RARalpha, TP53 and Iso-q of HSA 17 are nearer to each other than they are to the HSA 17 centromere. (2) The structure of a chromosome territory reflects the number and chromosome location of clusters of highly expressed genes. (3) Chromosome territories behave to some extent as solid bodies: if the territory is found closer to the nuclear centre, the individual genetic elements of this chromosome are also found, on average, closer the centre of the nucleus. (4) The positions of centromeres are, on average, nearer to the fluorescence weight centre of the territory (FWCT) than to genes. (5) Active genes are not found near the centromeres of their own territory. A simple model of the structure of chromosome territory is proposed.

Zobrazit více v PubMed

Cytometry. 1999 Aug 1;36(4):279-93 PubMed

Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2710-4 PubMed

Science. 2000 Oct 6;290(5489):138-41 PubMed

Chromosoma. 2002 Dec;111(5):321-31 PubMed

Chromosoma. 2001 Apr;110(1):39-51 PubMed

Hum Genet. 1988 Nov;80(3):224-34 PubMed

Blood. 1999 Feb 15;93(4):1197-207 PubMed

J Struct Biol. 2002 Aug;139(2):76-89 PubMed

J Cell Biol. 1997 Dec 29;139(7):1597-610 PubMed

J Cell Biol. 1995 Sep;130(6):1239-49 PubMed

Cell. 1997 Dec 12;91(6):845-54 PubMed

J Cell Biol. 1996 Dec;135(5):1195-205 PubMed

J Cell Biol. 1999 Jun 14;145(6):1119-31 PubMed

J Cell Biol. 1999 Sep 20;146(6):1211-26 PubMed

Cytometry. 2001 Sep 1;45(1):1-12 PubMed

Crit Rev Eukaryot Gene Expr. 2000;10(2):179-212 PubMed

Am J Hum Genet. 1991 Jan;48(1):1-15 PubMed

Mol Biol Cell. 2001 Nov;12(11):3563-72 PubMed

Chromosoma. 2001 Sep;110(5):360-70 PubMed

Science. 1995 Dec 15;270(5243):1831-5 PubMed

Hum Mol Genet. 2001 Feb 1;10(3):211-9 PubMed

Curr Opin Cell Biol. 1999 Jun;11(3):307-11 PubMed

Chromosoma. 2000 Mar;108(8):514-22 PubMed

Chromosoma. 1992 Aug;101(9):557-65 PubMed

Mol Cell. 1999 Feb;3(2):207-17 PubMed

Proc Natl Acad Sci U S A. 1988 Dec;85(23):9138-42 PubMed

Chromosoma. 1999 Dec;108(7):426-35 PubMed

J Cell Biol. 1999 Oct 4;147(1):13-24 PubMed

Anal Cell Pathol. 2000;20(4):173-85 PubMed

J Cell Biol. 1994 Oct;127(2):287-302 PubMed

J Cell Sci. 2001 Jan;114(Pt 2):377-88 PubMed

Nat Rev Genet. 2001 Apr;2(4):292-301 PubMed

J Cell Sci. 2000 May;113 ( Pt 9):1565-76 PubMed

Hum Genet. 1988 Nov;80(3):235-46 PubMed

Cytogenet Cell Genet. 2000;90(1-2):13-21 PubMed

Curr Opin Genet Dev. 1999 Apr;9(2):199-205 PubMed

Blood. 1997 Jun 15;89(12):4537-45 PubMed

Chromosome Res. 2000;8(6):487-99 PubMed

Science. 1998 Apr 24;280(5363):547-53 PubMed

Hum Genet. 1998 Feb;102(2):241-51 PubMed

Science. 2001 Feb 16;291(5507):1289-92 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...