Reactivation of sarin-inhibited pig brain acetylcholinesterase using oxime antidotes

. 2006 Dec ; 2 (4) : 141-6.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18072133

INTRODUCTION: Organophosphorus nerve agents inhibit the enzyme, acetylcholinesterase (AChE; EC 3.1.1.7). AChE reactivators (also known as oximes) are generally used for the reactivation of an inhibited enzyme. METHODS: Two new AChE reactivators--K033 and K027--were tested for their in vitro reactivation of sarin-inhibited pig-brain AChE. Their reactivation potencies were compared with the commercially available AChE reactivators, pralidoxime, obidoxime, and HI-6. RESULTS: Of the oximes tested, the newly developed oxime K027 achieved the highest reactivation potency (100%; concentration of the oxime -10(-2) M). However, oxime HI-6 (33%) and obidoxime (23%) seem to be the best AChE reactivators for human relevant doses (10(-4) M and lower). CONCLUSION: For human relevant doses, newly developed oximes (K027 and K033) do not surpass the reactivation potency of the most promising oxime, HI-6.

Zobrazit více v PubMed

Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv Clin Chem. 2004;38:151–216. doi: 10.1016/S0065-2423(04)38006-6. PubMed DOI

Marrs TC. Organophosphate poisoning. Pharmacol Therap. 1993;58:51–66. doi: 10.1016/0163-7258(93)90066-M. PubMed DOI

Segura-Aguilar J, Kostrzewa RM. Neurotoxins and neurotoxic species implicated in neurodegeneration. Neurotox Res. 2004;6:615–30. doi: 10.1007/BF03033456. PubMed DOI

Kassa J. The influence of oxime and anticholinergic drug selectioin on the potency of antidotal treatment to counteract acute toxic effects of tabun in mice.Neurotox Res2005; (In Press) PubMed

Kassa J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. J Toxicol Clin Toxicol. 2002;40:803–16. doi: 10.1081/CLT-120015840. PubMed DOI

Cabal J, Kuca K. Kassa J Specification of the structure of oximes able to reactivate tabun inhibited acetylcholinesterase. Bas Clin Pharmacol Toxicol. 2004;95:81–6. PubMed

Kuca K, Cabal J. In vitro reactivation of tabun-inhibited acetylcholinesterase using new oximes—K027, K005, K033 a K048. Centr Eur J Publ Health. 2004;12:S59–S61. PubMed

Kuca K, Patocka J. Reactivation of cyclosarin-inhibited rat brain acetylcholinesterase by pyridinium-oximes. J Enzyme Inhib Med Chem. 2004;19:39–43. doi: 10.1080/1475636031000163850. PubMed DOI

Kassa J, Cabal J. A comparison of the efficacy of acetylcholinesterase reactivators against cyclohexyl methylphosphonofluoridate (GF Agent) by in vitro and in vivo methods. Pharm Toxicol. 1999;84:41–5. PubMed

Sevelova L, Kuca K, Krejcova G. Antidotal treatment of GF-agent intoxication in mice with new bispyridinium oximes. Toxicology. 2005;207:1–6. doi: 10.1016/j.tox.2004.07.019. PubMed DOI

Kuča K., Bielavský J., Cabal J., Bielavská M. Synthesis of a potential reactivator of acetylcholinesterase 1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium)-propane dibromide. Tetrahedron Letters. 2003;44:3123–3125. doi: 10.1016/S0040-4039(03)00538-0. DOI

Kuca K, Cabal J, Patocka J, Kassa J. Synthesis of bisquaternary symmetric—χ,δ-bis(2-hydroxyiminomethylpyridinium) alkane dibromides and their reactivation of cyclosarin-inhibited acetylcholinesterase. Lett Org Chem. 2004;1:84–6. doi: 10.2174/1570178043488761. DOI

Kuca K, Cabal J, Kassa J. A comparison of the efficacy of a bispyridinium oxime—1,4-bis-(2-hydroxyiminomethylpyridinium) butane dibromide and currently used oximes to reactivate sarin, tabun or cyclosarin-inhibited acetylcholinesterase by in vitro methods. Die Pharmazie. 2004;59:795–8. PubMed

Kuca K, Kassa J. In vitro reactivation of acetylcholinesterase using of the oxime K027. Vet Hum Toxicol. 2004;46:15–8. PubMed

Worek F, Reiter G, Eyer P, Szinicz L. Reactivation kinetics of acetylcholinesterase from different species inhibited by highly toxic organophosphates. Arch Toxicol. 2002;76:523–9. doi: 10.1007/s00204-002-0375-1. PubMed DOI

Patocka J, Bielavsky J, Ornst F. Reactivating effect of alpha, omega-bis(4-pyridinealdoxime)-2-trans-butene dibromide on isopropyl-methylphosphonylated acetylcholinesterase. FEBS Lett. 1970;10:182–4. doi: 10.1016/0014-5793(70)80448-3. PubMed DOI

Tattersall JEH. Ion channel blockade by oximes and recovery of diaphragm muscle from soman poisoning in vitro. Br J Pharmacol. 1993;108:106–15. PubMed PMC

Sevelova L, Bajgar J, Saxena A, Doctor BP. Protective effect of equine butyrylcholinesterase in inhalation intoxication of rats with sarin: determination of blood and brain cholinesterase activities. Inhal Toxicol. 2004;16:531–6. doi: 10.1080/08958370490442511. PubMed DOI

Broomfield CA, Maxwell DM, Solana RP, Castro CA, Finger AV, Lenz DE. Protection by butyrylcholinesterase against organophosphorus poisoning in nonhuman primates. J Pharmacol Exp Ther. 1991;259:633–8. PubMed

Bedford CD, Miura M, Bottaro JC, Howd RA, Nolen HW. Nonquaternary cholinesterase reactivators. 4. Dialkylaminoalkyl thioesters of alpha-keto thiohydroximic acids as reactivators of ethyl methylphosphonyl- and 1,2,2-trimethylpropyl methylphosphonyl-acetylcholinesterase in vitro. J Med Chem. 1986;29:1689–96. doi: 10.1021/jm00159a021. PubMed DOI

Degorre F, Kiffer D, Terrier F. Sulfur derivatives of 2-oxopropanal oxime as reactivators of organophosphate-inhibited acetylcholinesterase in vitro: synthesis and structure-reactivity relationships. J Med Chem. 1988;31:757–63. doi: 10.1021/jm00399a012. PubMed DOI

Hammond PI, Kern C, Hong F, Kollmeyer TM, Pang YP. Brimijoin S. Cholinesterase reactivation in vivo with a novel bis-oxime optimized by computer-aided design. J Pharmacol Exp Therap. 2003;307:190–6. doi: 10.1124/jpet.103.053405. PubMed DOI

Yang GY, Yoon JH, Seong CM, Park NS, Jung YS. Synthesis of Bis-pyridinium oxime antidotes using bis(methylsulfonoxymethyl) ether for organophosphate nerve agents. Bull Korean Chem Soc. 2003;24:1368–70. doi: 10.5012/bkcs.2003.24.9.1368. DOI

Kuca K, Kassa J. A Comparison of the ability of a new bispyridinium oxime—1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane dibromide and currently used oximes to reactivate nerve agent-inhibited rat brain acetylcholinesterase by in vitro methods. J Enzyme Inhib Med Chem. 2003;18:529–35. doi: 10.1080/14756360310001605552. PubMed DOI

Clement JG, Erhardt N. In vitro oxime-induced reactivation of various molecular forms of soman-inhibited acetylcholinesterase in striated muscle from rat, monkey and human. Arch Toxicol. 1994;68:648–55. doi: 10.1007/s002040050127. PubMed DOI

Kuca K, Patocka J, Cabal J, Jun D. Reactivation of organophosphate-inhibited acetylcholinesterase by quaternary pyridinium aldoximes. Neurotox Res. 2004;6:565–70. doi: 10.1007/BF03033452. PubMed DOI

Kuca K, Patocka J, Cabal J. Reactivation of organophosphate inhibited acetylcholinesterase activity by α,ω-bis-(4-hydroxyiminomethylpyridinium)alkanes in vitro. J Appl Biomed. 2003;1:207–11.

Mager PP. Quantitative structure-reactivity and structure-toxicity relationships of reactivators of phosphylated acetylcholinesterase. Die Pharmazie. 1981;36:450–51. PubMed

Mager PP, Weber A. Structural bioinformatics and QSAR analysis applied to the acetylcholinesterase and bispyridinium aldoximes. Drug Des Dis. 2004;18:127–50. PubMed

Pang YP, Kollmeyer TM, Hong F, Lee JC, Hammond PI, Haugabouk SP, Brimijoin S. Rational design of alkylene-linked bis-pyridiniumaldoximes as improved acetylcholinesterase reactivators. Chem Biol. 2003;10:491–502. doi: 10.1016/S1074-5521(03)00126-1. PubMed DOI

Kapkova P, Stiefl N, Sürig U, Engels B, Baumann K, Holzgrabe U. Synthesis, biological activity, and docking studies of new acetylcholinesterase inhibitors of the bispyridinium type. Arch Pharm. 2003;336:523–40. doi: 10.1002/ardp.200300795. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...