Reactivation of sarin-inhibited pig brain acetylcholinesterase using oxime antidotes
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
18072133
PubMed Central
PMC3550075
DOI
10.1007/bf03161181
Knihovny.cz E-zdroje
- MeSH
- acetylcholinesterasa metabolismus MeSH
- antidota farmakologie MeSH
- cholinesterasové inhibitory toxicita MeSH
- mozek účinky léků enzymologie MeSH
- obidoxim chlorid farmakologie MeSH
- oximy farmakologie MeSH
- pralidoximové sloučeniny farmakologie MeSH
- prasata MeSH
- pyridinové sloučeniny farmakologie MeSH
- reaktivátory cholinesterázy farmakologie MeSH
- sarin toxicita MeSH
- techniky in vitro MeSH
- výzkumný projekt MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- 1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium) propane dibromide MeSH Prohlížeč
- 1,4-bis(2-hydroxyiminomethylpyridinium)butane MeSH Prohlížeč
- acetylcholinesterasa MeSH
- antidota MeSH
- asoxime chloride MeSH Prohlížeč
- cholinesterasové inhibitory MeSH
- obidoxim chlorid MeSH
- oximy MeSH
- pralidoxime MeSH Prohlížeč
- pralidoximové sloučeniny MeSH
- pyridinové sloučeniny MeSH
- reaktivátory cholinesterázy MeSH
- sarin MeSH
INTRODUCTION: Organophosphorus nerve agents inhibit the enzyme, acetylcholinesterase (AChE; EC 3.1.1.7). AChE reactivators (also known as oximes) are generally used for the reactivation of an inhibited enzyme. METHODS: Two new AChE reactivators--K033 and K027--were tested for their in vitro reactivation of sarin-inhibited pig-brain AChE. Their reactivation potencies were compared with the commercially available AChE reactivators, pralidoxime, obidoxime, and HI-6. RESULTS: Of the oximes tested, the newly developed oxime K027 achieved the highest reactivation potency (100%; concentration of the oxime -10(-2) M). However, oxime HI-6 (33%) and obidoxime (23%) seem to be the best AChE reactivators for human relevant doses (10(-4) M and lower). CONCLUSION: For human relevant doses, newly developed oximes (K027 and K033) do not surpass the reactivation potency of the most promising oxime, HI-6.
Zobrazit více v PubMed
Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv Clin Chem. 2004;38:151–216. doi: 10.1016/S0065-2423(04)38006-6. PubMed DOI
Marrs TC. Organophosphate poisoning. Pharmacol Therap. 1993;58:51–66. doi: 10.1016/0163-7258(93)90066-M. PubMed DOI
Segura-Aguilar J, Kostrzewa RM. Neurotoxins and neurotoxic species implicated in neurodegeneration. Neurotox Res. 2004;6:615–30. doi: 10.1007/BF03033456. PubMed DOI
Kassa J. The influence of oxime and anticholinergic drug selectioin on the potency of antidotal treatment to counteract acute toxic effects of tabun in mice.Neurotox Res2005; (In Press) PubMed
Kassa J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. J Toxicol Clin Toxicol. 2002;40:803–16. doi: 10.1081/CLT-120015840. PubMed DOI
Cabal J, Kuca K. Kassa J Specification of the structure of oximes able to reactivate tabun inhibited acetylcholinesterase. Bas Clin Pharmacol Toxicol. 2004;95:81–6. PubMed
Kuca K, Cabal J. In vitro reactivation of tabun-inhibited acetylcholinesterase using new oximes—K027, K005, K033 a K048. Centr Eur J Publ Health. 2004;12:S59–S61. PubMed
Kuca K, Patocka J. Reactivation of cyclosarin-inhibited rat brain acetylcholinesterase by pyridinium-oximes. J Enzyme Inhib Med Chem. 2004;19:39–43. doi: 10.1080/1475636031000163850. PubMed DOI
Kassa J, Cabal J. A comparison of the efficacy of acetylcholinesterase reactivators against cyclohexyl methylphosphonofluoridate (GF Agent) by in vitro and in vivo methods. Pharm Toxicol. 1999;84:41–5. PubMed
Sevelova L, Kuca K, Krejcova G. Antidotal treatment of GF-agent intoxication in mice with new bispyridinium oximes. Toxicology. 2005;207:1–6. doi: 10.1016/j.tox.2004.07.019. PubMed DOI
Kuča K., Bielavský J., Cabal J., Bielavská M. Synthesis of a potential reactivator of acetylcholinesterase 1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium)-propane dibromide. Tetrahedron Letters. 2003;44:3123–3125. doi: 10.1016/S0040-4039(03)00538-0. DOI
Kuca K, Cabal J, Patocka J, Kassa J. Synthesis of bisquaternary symmetric—χ,δ-bis(2-hydroxyiminomethylpyridinium) alkane dibromides and their reactivation of cyclosarin-inhibited acetylcholinesterase. Lett Org Chem. 2004;1:84–6. doi: 10.2174/1570178043488761. DOI
Kuca K, Cabal J, Kassa J. A comparison of the efficacy of a bispyridinium oxime—1,4-bis-(2-hydroxyiminomethylpyridinium) butane dibromide and currently used oximes to reactivate sarin, tabun or cyclosarin-inhibited acetylcholinesterase by in vitro methods. Die Pharmazie. 2004;59:795–8. PubMed
Kuca K, Kassa J. In vitro reactivation of acetylcholinesterase using of the oxime K027. Vet Hum Toxicol. 2004;46:15–8. PubMed
Worek F, Reiter G, Eyer P, Szinicz L. Reactivation kinetics of acetylcholinesterase from different species inhibited by highly toxic organophosphates. Arch Toxicol. 2002;76:523–9. doi: 10.1007/s00204-002-0375-1. PubMed DOI
Patocka J, Bielavsky J, Ornst F. Reactivating effect of alpha, omega-bis(4-pyridinealdoxime)-2-trans-butene dibromide on isopropyl-methylphosphonylated acetylcholinesterase. FEBS Lett. 1970;10:182–4. doi: 10.1016/0014-5793(70)80448-3. PubMed DOI
Tattersall JEH. Ion channel blockade by oximes and recovery of diaphragm muscle from soman poisoning in vitro. Br J Pharmacol. 1993;108:106–15. PubMed PMC
Sevelova L, Bajgar J, Saxena A, Doctor BP. Protective effect of equine butyrylcholinesterase in inhalation intoxication of rats with sarin: determination of blood and brain cholinesterase activities. Inhal Toxicol. 2004;16:531–6. doi: 10.1080/08958370490442511. PubMed DOI
Broomfield CA, Maxwell DM, Solana RP, Castro CA, Finger AV, Lenz DE. Protection by butyrylcholinesterase against organophosphorus poisoning in nonhuman primates. J Pharmacol Exp Ther. 1991;259:633–8. PubMed
Bedford CD, Miura M, Bottaro JC, Howd RA, Nolen HW. Nonquaternary cholinesterase reactivators. 4. Dialkylaminoalkyl thioesters of alpha-keto thiohydroximic acids as reactivators of ethyl methylphosphonyl- and 1,2,2-trimethylpropyl methylphosphonyl-acetylcholinesterase in vitro. J Med Chem. 1986;29:1689–96. doi: 10.1021/jm00159a021. PubMed DOI
Degorre F, Kiffer D, Terrier F. Sulfur derivatives of 2-oxopropanal oxime as reactivators of organophosphate-inhibited acetylcholinesterase in vitro: synthesis and structure-reactivity relationships. J Med Chem. 1988;31:757–63. doi: 10.1021/jm00399a012. PubMed DOI
Hammond PI, Kern C, Hong F, Kollmeyer TM, Pang YP. Brimijoin S. Cholinesterase reactivation in vivo with a novel bis-oxime optimized by computer-aided design. J Pharmacol Exp Therap. 2003;307:190–6. doi: 10.1124/jpet.103.053405. PubMed DOI
Yang GY, Yoon JH, Seong CM, Park NS, Jung YS. Synthesis of Bis-pyridinium oxime antidotes using bis(methylsulfonoxymethyl) ether for organophosphate nerve agents. Bull Korean Chem Soc. 2003;24:1368–70. doi: 10.5012/bkcs.2003.24.9.1368. DOI
Kuca K, Kassa J. A Comparison of the ability of a new bispyridinium oxime—1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane dibromide and currently used oximes to reactivate nerve agent-inhibited rat brain acetylcholinesterase by in vitro methods. J Enzyme Inhib Med Chem. 2003;18:529–35. doi: 10.1080/14756360310001605552. PubMed DOI
Clement JG, Erhardt N. In vitro oxime-induced reactivation of various molecular forms of soman-inhibited acetylcholinesterase in striated muscle from rat, monkey and human. Arch Toxicol. 1994;68:648–55. doi: 10.1007/s002040050127. PubMed DOI
Kuca K, Patocka J, Cabal J, Jun D. Reactivation of organophosphate-inhibited acetylcholinesterase by quaternary pyridinium aldoximes. Neurotox Res. 2004;6:565–70. doi: 10.1007/BF03033452. PubMed DOI
Kuca K, Patocka J, Cabal J. Reactivation of organophosphate inhibited acetylcholinesterase activity by α,ω-bis-(4-hydroxyiminomethylpyridinium)alkanes in vitro. J Appl Biomed. 2003;1:207–11.
Mager PP. Quantitative structure-reactivity and structure-toxicity relationships of reactivators of phosphylated acetylcholinesterase. Die Pharmazie. 1981;36:450–51. PubMed
Mager PP, Weber A. Structural bioinformatics and QSAR analysis applied to the acetylcholinesterase and bispyridinium aldoximes. Drug Des Dis. 2004;18:127–50. PubMed
Pang YP, Kollmeyer TM, Hong F, Lee JC, Hammond PI, Haugabouk SP, Brimijoin S. Rational design of alkylene-linked bis-pyridiniumaldoximes as improved acetylcholinesterase reactivators. Chem Biol. 2003;10:491–502. doi: 10.1016/S1074-5521(03)00126-1. PubMed DOI
Kapkova P, Stiefl N, Sürig U, Engels B, Baumann K, Holzgrabe U. Synthesis, biological activity, and docking studies of new acetylcholinesterase inhibitors of the bispyridinium type. Arch Pharm. 2003;336:523–40. doi: 10.1002/ardp.200300795. PubMed DOI