In-Cell NMR Spectroscopy of Functional Riboswitch Aptamers in Eukaryotic Cells
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32975353
PubMed Central
PMC7839747
DOI
10.1002/anie.202007184
Knihovny.cz E-zdroje
- Klíčová slova
- 2′-deoxyguanosine riboswitch, HeLa cells, RNA structures, aptamers, structural biology,
- MeSH
- aptamery nukleotidové chemie metabolismus MeSH
- HeLa buňky MeSH
- konfokální mikroskopie MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- ligandy MeSH
- nukleární magnetická rezonance biomolekulární * MeSH
- riboswitch MeSH
- RNA chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aptamery nukleotidové MeSH
- ligandy MeSH
- riboswitch MeSH
- RNA MeSH
We report here the in-cell NMR-spectroscopic observation of the binding of the cognate ligand 2'-deoxyguanosine to the aptamer domain of the bacterial 2'-deoxyguanosine-sensing riboswitch in eukaryotic cells, namely Xenopus laevis oocytes and in human HeLa cells. The riboswitch is sufficiently stable in both cell types to allow for detection of binding of the ligand to the riboswitch. Most importantly, we show that the binding mode established by in vitro characterization of this prokaryotic riboswitch is maintained in eukaryotic cellular environment. Our data also bring important methodological insights: Thus far, in-cell NMR studies on RNA in mammalian cells have been limited to investigations of short (<15 nt) RNA fragments that were extensively modified by protecting groups to limit their degradation in the intracellular space. Here, we show that the in-cell NMR setup can be adjusted for characterization of much larger (≈70 nt) functional and chemically non-modified RNA.
Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 612 65 Brno Czech Republic
National Centre for Biomolecular Research Masaryk University Kamenice 5 625 00 Brno Czech Republic
Present address Center for Molecular Medicine Cologne Robert Koch Str 21 50931 Cologne Germany
Zobrazit více v PubMed
Mandal M., Boese B., Barrick J. E., Winkler W. C., Breaker R. R., Cell 2003, 113, 577. PubMed
Bastet L., Turcotte P., Wade J. T., Lafontaine D. A., RNA Biol. 2018, 15, 679. PubMed PMC
Ellington A. D., Szostak J. W., Nature 1990, 346, 818. PubMed
Findeiß S., Etzel M., Will S., Mörl M., Stadler P. F., Sensors 2017, 17, 1990. PubMed PMC
Wittmann A., Suess B., FEBS Lett. 2012, 586, 2076; PubMed
Machtel P., Bąkowska-Żywicka K., Żywicki M., J. Appl. Genet. 2016, 57, 531. PubMed PMC
Serganov A., Yuan Y.-R., Pikovskaya O., Polonskaia A., Malinina L., Phan A. T., Hobartner C., Micura R., Breaker R. R., Patel D. J., Chem. Biol. 2004, 11, 1729; PubMed PMC
Garst A. D., Héroux A., Rambo R. P., Batey R. T., J. Biol. Chem. 2008, 283, 22347; PubMed PMC
Buck J., Noeske J., Wöhnert J., Schwalbe H., Nucleic Acids Res. 2010, 38, 4143; PubMed PMC
Reiss C. W., Strobel S. A., RNA 2017, 23, 1338. PubMed PMC
Noeske J., Buck J., Fürtig B., Nasiri H. R., Schwalbe H., Wöhnert J., Nucleic Acids Res. 2007, 35, 572; PubMed PMC
Kang M., Peterson R., Feigon J., Mol- Cell 2009, 33, 784; PubMed
Weickhmann A. K., Keller H., Duchardt-Ferner E., Strebitzer E., Juen M. A., Kremser J., Wurm J. P., Kreutz C., Wöhnert J., Biomol. NMR Assignments 2018, 12, 329. PubMed
Wacker A., Buck J., Mathieu D., Richter C., Wöhnert J., Schwalbe H., Nucleic Acids Res. 2011, 39, 6802. PubMed PMC
Wickiser J. K., Winkler W. C., Breaker R. R., Crothers D. M., Mol. Cell 2005, 18, 49; PubMed
Haller A., Soulière M. F., Micura R., Acc. Chem. Res. 2011, 44, 1339; PubMed
Steinert H., Sochor F., Wacker A., Buck J., Helmling C., Hiller F., Keyhani S., Noeske J., Grimm S., Rudolph M. M. et al., eLife 2017, 6, 0e21297; PubMed PMC
Helmling C., Klötzner D.-P., Sochor F., Mooney R. A., Wacker A., Landick R., Fürtig B., Heckel A., Schwalbe H., Nat. Commun. 2018, 9, 944. PubMed PMC
Kim Y.-B., Wacker A., von Laer K., Rogov V. V., Suess B., Schwalbe H., Nucleic Acids Res. 2017, 45, 5375. PubMed PMC
Hänsel R., Foldynová-Trantírková S., Dötsch V., Trantírek L., Top. Curr. Chem. 2013, 330, 47; PubMed
Hänsel R., Foldynová-Trantírková S., Löhr F., Buck J., Bongartz E., Bamberg E., Schwalbe H., Dötsch V., Trantírek L., J. Am. Chem. Soc. 2009, 131, 15761; PubMed
Salgado G. F., Cazenave C., Kerkour A., Mergny J.-L., Chem. Sci. 2015, 6, 3314; PubMed PMC
Krafcikova M., Hänsel-Hertsch R., Trantirek L., Foldynova-Trantirkova S., Methods Mol. Biol. 2019, 2035, 397. PubMed
Yamaoki Y., Kiyoishi A., Miyake M., Kano F., Murata M., Nagata T., Katahira M., Phys. Chem. Chem. Phys. 2018, 20, 2982. PubMed
Dzatko S., Krafcikova M., Hänsel-Hertsch R., Fessl T., Fiala R., Loja T., Krafcik D., Mergny J.-L., Foldynova-Trantirkova S., Trantirek L., Angew. Chem. Int. Ed. 2018, 57, 2165; PubMed PMC
Angew. Chem. 2018, 130, 2187.
Krafcikova M., Dzatko S., Caron C., Granzhan A., Fiala R., Loja T., Teulade-Fichou M.-P., Fessl T., Hänsel-Hertsch R., Mergny J.-L. et al., J. Am. Chem. Soc. 2019, 141, 13281. PubMed
Narasimhan S., Folkers G. E., Baldus M., ChemPlusChem 2020, 85, 760. PubMed
Luchinat E., Banci L., IUCrJ 2017, 4, 108. PubMed PMC
Dzatko S., Fiala R., Hänsel-Hertsch R., Foldynova-Trantirkova S., Trantirek L. in New Developments in NMR (Eds.: Ito Y., Dötsch V., Shirakawa M.), Royal Society of Chemistry, Cambridge, 2019, pp. 272–297;
Yamaoki Y., Nagata T., Sakamoto T., Katahira M., Biophys. Rev. 2020, 12, 411. PubMed PMC
Kim J. N., Roth A., Breaker R. R., Proc. Natl. Acad. Sci. USA 2007, 104, 16092; PubMed PMC
Pikovskaya O., Polonskaia A., Patel D. J., Serganov A., Nat. Chem. Biol. 2011, 7, 748. PubMed PMC
Selenko P., Wagner G., J. Struct. Biol. 2007, 158, 244. PubMed
Schanda P., Kupce E., Brutscher B., J. Biomol. NMR 2005, 33, 199. PubMed
Kupce E., Freeman R., J. Magn. Reson. Ser. A 1994, 108, 268.
Geen H., Freeman R., J. Magn. Reson. 1991, 93, 93.
Ogino S., Kubo S., Umemoto R., Huang S., Nishida N., Shimada I., J. Am. Chem. Soc. 2009, 131, 10834. PubMed
Theillet F.-X., Binolfi A., Bekei B., Martorana A., Rose H. M., Stuiver M., Verzini S., Lorenz D., van Rossum M., Goldfarb D. et al., Nature 2016, 530, 45. PubMed
Kreutz C., Kählig H., Konrat R., Micura R., Angew. Chem. Int. Ed. 2006, 45, 3450; PubMed
Angew. Chem. 2006, 118, 3528;
Fauster K., Kreutz C., Micura R., Angew. Chem. Int. Ed. 2012, 51, 13080; PubMed PMC
Angew. Chem. 2012, 124, 13257;
Puffer B., Kreutz C., Rieder U., Ebert M.-O., Konrat R., Micura R., Nucleic Acids Res. 2009, 37, 7728; PubMed PMC
Li Q., Chen J., Trajkovski M., Zhou Y., Fan C., Lu K., Tang P., Su X., Plavec J., Xi Z. et al., J. Am. Chem. Soc. 2020, 142, 4739; PubMed
Sochor F., Silvers R., Müller D., Richter C., Fürtig B., Schwalbe H., J. Biomol. NMR 2016, 64, 63. PubMed
Bao H.-L., Ishizuka T., Sakamoto T., Fujimoto K., Uechi T., Kenmochi N., Xu Y., Nucleic Acids Res. 2017, 45, 5501. PubMed PMC