Towards Profiling of the G-Quadruplex Targeting Drugs in the Living Human Cells Using NMR Spectroscopy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV-19-08-00450
Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.1.01/0.0/0.0/15_003/0000477
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34205000
PubMed Central
PMC8199861
DOI
10.3390/ijms22116042
PII: ijms22116042
Knihovny.cz E-zdroje
- Klíčová slova
- BRACO19, Bcl2, G-quadruplex, KRAS, NMM, PhenDC3, drug, in-cell NMR, ligand, telomeric DNA,
- MeSH
- DNA chemie účinky léků MeSH
- G-kvadruplexy účinky léků MeSH
- konformace nukleové kyseliny účinky léků MeSH
- léčivé přípravky chemie MeSH
- lidé MeSH
- ligandy MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární modely MeSH
- protony MeSH
- vazebná místa účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- léčivé přípravky MeSH
- ligandy MeSH
- protony MeSH
Recently, the 1H-detected in-cell NMR spectroscopy has emerged as a unique tool allowing the characterization of interactions between nucleic acid-based targets and drug-like molecules in living human cells. Here, we assess the application potential of 1H and 19F-detected in-cell NMR spectroscopy to profile drugs/ligands targeting DNA G-quadruplexes, arguably the most studied class of anti-cancer drugs targeting nucleic acids. We show that the extension of the original in-cell NMR approach is not straightforward. The severe signal broadening and overlap of 1H in-cell NMR spectra of polymorphic G-quadruplexes and their complexes complicate their quantitative interpretation. Nevertheless, the 1H in-cell NMR can be used to identify drugs that, despite strong interaction in vitro, lose their ability to bind G-quadruplexes in the native environment. The in-cell NMR approach is adjusted to a recently developed 3,5-bis(trifluoromethyl)phenyl probe to monitor the intracellular interaction with ligands using 19F-detected in-cell NMR. The probe allows dissecting polymorphic mixture in terms of number and relative populations of individual G-quadruplex species, including ligand-bound and unbound forms in vitro and in cellulo. Despite the probe's discussed limitations, the 19F-detected in-cell NMR appears to be a promising strategy to profile G-quadruplex-ligand interactions in the complex environment of living cells.
Institute of Biophysics Czech Academy of Sciences Královopolská 135 612 65 Brno Czech Republic
National Centre for Biomolecular Research Masaryk University Kamenice 5 625 00 Brno Czech Republic
Zobrazit více v PubMed
Imming P., Sinning C., Meyer A. Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug Discov. 2006;5:821–834. doi: 10.1038/nrd2132. PubMed DOI
Chaires J.B., Randazzo A., Mergny J.L. Targeting DNA. Biochimie. 2011;93:v–vi. doi: 10.1016/S0300-9084(11)00240-9. PubMed DOI
Wildey M.J., Haunso A., Tudor M., Webb M., Connick J.H. Chapter Five High-Throughput Screening. In: Goodnow R.A., editor. Annual Reports in Medicine Chemistry. Volume 50. Academic Press; Cambridge, MA, USA: 2017. pp. 149–195. Platform Technologies in Drug Discovery and Validation.
Dailey M.M., Hait C., Holt P.A., Maguire J.M., Meier J.B., Miller M.C., Petraccone L., Trent J.O. Structure-based drug design: From nucleic acid to membrane protein targets. Exp. Mol. Pathol. 2009;86:141–150. doi: 10.1016/j.yexmp.2009.01.011. PubMed DOI PMC
Murat P., Singh Y., Defrancq E. Methods for investigating G-quadruplex DNA/ligand interactions. Chem. Soc. Rev. 2011;40:5293–5307. doi: 10.1039/c1cs15117g. PubMed DOI
Pagano B., Cosconati S., Gabelica V., Petraccone L., De Tito S., Marinelli L., La Pietra V., di Leva F.S., Lauri I., Trotta R., et al. State-of-the-art methodologies for the discovery and characterization of DNA G-quadruplex binders. Curr. Pharm. Des. 2012;18:1880–1899. doi: 10.2174/138161212799958332. PubMed DOI
Sheng J., Gan J., Huang Z. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Med. Res. Rev. 2013;33:1119–1173. doi: 10.1002/med.21278. PubMed DOI PMC
Krafcikova M., Dzatko S., Caron C., Granzhan A., Fiala R., Loja T., Teulade-Fichou M.-P., Fessl T., Hänsel-Hertsch R., Mergny J.-L., et al. Monitoring DNA–Ligand Interactions in Living Human Cells Using NMR Spectroscopy. J. Am. Chem. Soc. 2019;141:13281–13285. doi: 10.1021/jacs.9b03031. PubMed DOI
Sink R., Gobec S., Pečar S., Zega A. False positives in the early stages of drug discovery. Curr. Med. Chem. 2010;17:4231–4255. doi: 10.2174/092986710793348545. PubMed DOI
Kotera N., Granzhan A., Teulade-Fichou M.-P. Comparative study of affinity and selectivity of ligands targeting abasic and mismatch sites in DNA using a fluorescence-melting assay. Biochimie. 2016;128:133–137. doi: 10.1016/j.biochi.2016.08.004. PubMed DOI
Fiala R., Špačková N., Foldynová-Trantírková S., Šponer J., Sklenář V., Trantírek L. NMR Cross-Correlated Relaxation Rates Reveal Ion Coordination Sites in DNA. J. Am. Chem. Soc. 2011;133:13790–13793. doi: 10.1021/ja202397p. PubMed DOI
Nakano S., Miyoshi D., Sugimoto N. Effects of Molecular Crowding on the Structures, Interactions, and Functions of Nucleic Acids. Chem. Rev. 2014;114:2733–2758. doi: 10.1021/cr400113m. PubMed DOI
Nakano S., Sugimoto N. Model studies of the effects of intracellular crowding on nucleic acid interactions. Mol. BioSyst. 2016;13:32–41. doi: 10.1039/C6MB00654J. PubMed DOI
Nakano S.-I., Sugimoto N. The structural stability and catalytic activity of DNA and RNA oligonucleotides in the presence of organic solvents. Biophys. Rev. 2016;8:11–23. doi: 10.1007/s12551-015-0188-0. PubMed DOI PMC
Hancock R. Crowding, Entropic Forces, and Confinement: Crucial Factors for Structures and Functions in the Cell Nucleus. Biochemistry. 2018;83:326–337. doi: 10.1134/S0006297918040041. PubMed DOI
Azarkh M., Okle O., Singh V., Seemann I.T., Hartig J.S., Dietrich D.R., Drescher M. Long-range distance determination in a DNA model system inside Xenopus laevis oocytes by in-cell spin-label EPR. Chembiochem. 2011;12:1992–1995. doi: 10.1002/cbic.201100281. PubMed DOI
Krstić I., Hänsel R., Romainczyk O., Engels J.W., Dötsch V., Prisner T.F. Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew. Chem. Int. Ed. Engl. 2011;50:5070–5074. doi: 10.1002/anie.201100886. PubMed DOI
Fessl T., Adamec F., Polívka T., Foldynová-Trantírková S., Vácha F., Trantírek L. Towards characterization of DNA structure under physiological conditions in vivo at the single-molecule level using single-pair FRET. Nucleic Acids Res. 2012;40:e121. doi: 10.1093/nar/gks333. PubMed DOI PMC
Holder I.T., Drescher M., Hartig J.S. Structural characterization of quadruplex DNA with in-cell EPR approaches. Bioorg. Med. Chem. 2013;21:6156–6161. doi: 10.1016/j.bmc.2013.04.014. PubMed DOI
Azarkh M., Singh V., Okle O., Seemann I.T., Dietrich D.R., Hartig J.S., Drescher M. Site-directed spin-labeling of nucleotides and the use of in-cell EPR to determine long-range distances in a biologically relevant environment. Nat. Protoc. 2013;8:131–147. doi: 10.1038/nprot.2012.136. PubMed DOI
Hänsel R., Luh L.M., Corbeski I., Trantirek L., Dötsch V. In-cell NMR and EPR spectroscopy of biomacromolecules. Angew. Chem. Int. Ed. Engl. 2014;53:10300–10314. doi: 10.1002/anie.201311320. PubMed DOI
Salgado G.F., Cazenave C., Kerkour A., Mergny J.-L. G-quadruplex DNA and ligand interaction in living cells using NMR spectroscopy. Chem. Sci. 2015;6:3314–3320. doi: 10.1039/C4SC03853C. PubMed DOI PMC
Giassa I.-C., Rynes J., Fessl T., Foldynova-Trantirkova S., Trantirek L. Advances in the cellular structural biology of nucleic acids. FEBS Lett. 2018;592:1997–2011. doi: 10.1002/1873-3468.13054. PubMed DOI
Manna S., Srivatsan S.G. Fluorescence-based tools to probe G-quadruplexes in cell-free and cellular environments. RSC Adv. 2018;8:25673–25694. doi: 10.1039/C8RA03708F. PubMed DOI PMC
Yamaoki Y., Kiyoishi A., Miyake M., Kano F., Murata M., Nagata T., Katahira M. The first successful observation of in-cell NMR signals of DNA and RNA in living human cells. Phys. Chem. Chem. Phys. 2018;20:2982–2985. doi: 10.1039/C7CP05188C. PubMed DOI
Yamaoki Y., Nagata T., Sakamoto T., Katahira M. Recent progress of in-cell NMR of nucleic acids in living human cells. Biophys. Rev. 2020;12:411–417. doi: 10.1007/s12551-020-00664-x. PubMed DOI PMC
Yamaoki Y., Nagata T., Sakamoto T., Katahira M. Observation of nucleic acids inside living human cells by in-cell NMR spectroscopy. Biophys. Physicobiol. 2020;17:36–41. doi: 10.2142/biophysico.BSJ-2020006. PubMed DOI PMC
Viskova P., Krafcik D., Trantirek L., Foldynova-Trantirkova S. In-Cell NMR Spectroscopy of Nucleic Acids in Human Cells. Curr. Protoc. Nucleic Acid Chem. 2019;76:e71. doi: 10.1002/cpnc.71. PubMed DOI
Dzatko S., Fiala R., Hänsel-Hertsch R., Foldynova-Trantirkova S., Trantirek L. Chapter 16: In-cell NMR Spectroscopy of Nucleic Acids. Royal Society of Chemistry; Cambridge, UK: 2019. pp. 272–297.
Bao H.-L., Xu Y. Telomeric DNA–RNA-hybrid G-quadruplex exists in environmental conditions of HeLa cells. Chem. Commun. 2020;56:6547–6550. doi: 10.1039/D0CC02053B. PubMed DOI
Collauto A., von Bülow S., Gophane D.B., Saha S., Stelzl L.S., Hummer G., Sigurdsson S.T., Prisner T.F. Compaction of RNA Duplexes in the Cell*. Angew. Chem. Int. Ed. Engl. 2020;59:23025–23029. doi: 10.1002/anie.202009800. PubMed DOI PMC
Juliusson H.Y., Sigurdsson S.T. Reduction Resistant and Rigid Nitroxide Spin-Labels for DNA and RNA. J. Org. Chem. 2020;85:4036–4046. doi: 10.1021/acs.joc.9b02988. PubMed DOI
Broft P., Dzatko S., Krafcikova M., Wacker A., Hänsel-Hertsch R., Dötsch V., Trantirek L., Schwalbe H. In-Cell NMR Spectroscopy of Functional Riboswitch Aptamers in Eukaryotic Cells. Angew. Chem. Int. Ed. Engl. 2021;60:865–872. doi: 10.1002/anie.202007184. PubMed DOI PMC
Hänsel R., Foldynová-Trantírková S., Löhr F., Buck J., Bongartz E., Bamberg E., Schwalbe H., Dötsch V., Trantírek L. Evaluation of Parameters Critical for Observing Nucleic Acids Inside Living Xenopus laevis Oocytes by In-Cell NMR Spectroscopy. J. Am. Chem. Soc. 2009;131:15761–15768. doi: 10.1021/ja9052027. PubMed DOI
Hänsel R., Foldynová-Trantírková S., Dötsch V., Trantírek L. Investigation of quadruplex structure under physiological conditions using in-cell NMR. Top. Curr. Chem. 2013;330:47–65. doi: 10.1007/128_2012_332. PubMed DOI
Hänsel R., Löhr F., Trantirek L., Dötsch V. High-resolution insight into G-overhang architecture. J. Am. Chem. Soc. 2013;135:2816–2824. doi: 10.1021/ja312403b. PubMed DOI
Bao H.-L., Ishizuka T., Sakamoto T., Fujimoto K., Uechi T., Kenmochi N., Xu Y. Characterization of human telomere RNA G-quadruplex structures in vitro and in living cells using 19F NMR spectroscopy. Nucleic Acids Res. 2017;45:5501–5511. doi: 10.1093/nar/gkx109. PubMed DOI PMC
Bao H.-L., Xu Y. Investigation of higher-order RNA G-quadruplex structures in vitro and in living cells by 19F NMR spectroscopy. Nat. Protoc. 2018;13:652–665. doi: 10.1038/nprot.2017.156. PubMed DOI
Manna S., Sarkar D., Srivatsan S.G. A Dual-App Nucleoside Probe Provides Structural Insights into the Human Telomeric Overhang in Live Cells. J. Am. Chem. Soc. 2018;140:12622–12633. doi: 10.1021/jacs.8b08436. PubMed DOI PMC
Hänsel R., Löhr F., Foldynová-Trantírková S., Bamberg E., Trantírek L., Dötsch V. The parallel G-quadruplex structure of vertebrate telomeric repeat sequences is not the preferred folding topology under physiological conditions. Nucleic Acids Res. 2011;39:5768–5775. doi: 10.1093/nar/gkr174. PubMed DOI PMC
Krafcikova M., Hänsel-Hertsch R., Trantirek L., Foldynova-Trantirkova S. In Cell NMR Spectroscopy: Investigation of G-Quadruplex Structures Inside Living Xenopus laevis Oocytes. In: Yang D., Lin C., editors. G-Quadruplex Nucleic Acids: Methods and Protocols. Springer; New York, NY, USA: 2019. pp. 397–405. Methods in Molecular Biology. PubMed
Dzatko S., Krafcikova M., Hänsel-Hertsch R., Fessl T., Fiala R., Loja T., Krafcik D., Mergny J.-L., Foldynova-Trantirkova S., Trantirek L. Evaluation of the Stability of DNA i-Motifs in the Nuclei of Living Mammalian Cells. Angew. Chem. Int. Ed. Engl. 2018;57:2165–2169. doi: 10.1002/anie.201712284. PubMed DOI PMC
Bao H.-L., Liu H.-S., Xu Y. Hybrid-type and two-tetrad antiparallel telomere DNA G-quadruplex structures in living human cells. Nucleic Acids Res. 2019;47:4940–4947. doi: 10.1093/nar/gkz276. PubMed DOI PMC
Cheng M., Qiu D., Tamon L., Ištvánková E., Víšková P., Amrane S., Guédin A., Chen J., Lacroix L., Ju H., et al. Thermal and pH Stabilities of i-DNA: Confronting in vitro Experiments with Models and In-Cell NMR Data. Angew. Chem. Int. Ed. Engl. 2021 doi: 10.1002/anie.202016801. PubMed DOI
Huppert J.L., Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005;33:2908–2916. doi: 10.1093/nar/gki609. PubMed DOI PMC
Huppert J.L., Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007;35:406–413. doi: 10.1093/nar/gkl1057. PubMed DOI PMC
Spiegel J., Adhikari S., Balasubramanian S. The Structure and Function of DNA G-Quadruplexes. Trends Chem. 2020;2:123–136. doi: 10.1016/j.trechm.2019.07.002. PubMed DOI PMC
Varshney D., Spiegel J., Zyner K., Tannahill D., Balasubramanian S. The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell. Biol. 2020;21:459–474. doi: 10.1038/s41580-020-0236-x. PubMed DOI PMC
Dai J., Carver M., Yang D. Polymorphism of human telomeric quadruplex structures. Biochimie. 2008;90:1172–1183. doi: 10.1016/j.biochi.2008.02.026. PubMed DOI PMC
Vorlíčková M., Kejnovská I., Sagi J., Renčiuk D., Bednářová K., Motlová J., Kypr J. Circular dichroism and guanine quadruplexes. Methods. 2012;57:64–75. doi: 10.1016/j.ymeth.2012.03.011. PubMed DOI
Lim K.W., Ng V.C.M., Martín-Pintado N., Heddi B., Phan A.T. Structure of the human telomere in Na+ solution: An antiparallel (2+2) G-quadruplex scaffold reveals additional diversity. Nucleic Acids Res. 2013;41:10556–10562. doi: 10.1093/nar/gkt771. PubMed DOI PMC
You H., Zeng X., Xu Y., Lim C.J., Efremov A.K., Phan A.T., Yan J. Dynamics and stability of polymorphic human telomeric G-quadruplex under tension. Nucleic Acids Res. 2014;42:8789–8795. doi: 10.1093/nar/gku581. PubMed DOI PMC
Dolinnaya N.G., Ogloblina A.M., Yakubovskaya M.G. Structure, Properties, and Biological Relevance of the DNA and RNA G-Quadruplexes: Overview 50 Years after Their Discovery. Biochemistry. 2016;81:1602–1649. doi: 10.1134/S0006297916130034. PubMed DOI PMC
Winnerdy F.R., Bakalar B., Maity A., Vandana J.J., Mechulam Y., Schmitt E., Phan A.T. NMR solution and X-ray crystal structures of a DNA molecule containing both right- and left-handed parallel-stranded G-quadruplexes. Nucleic Acids Res. 2019;47:8272–8281. doi: 10.1093/nar/gkz349. PubMed DOI PMC
Ma Y., Iida K., Nagasawa K. Topologies of G-quadruplex: Biological functions and regulation by ligands. Biochem. Biophys. Res. Commun. 2020;531:3–17. doi: 10.1016/j.bbrc.2019.12.103. PubMed DOI
Luchinat E., Barbieri L., Campbell T.F., Banci L. Real-Time Quantitative In-Cell NMR: Ligand Binding and Protein Oxidation Monitored in Human Cells Using Multivariate Curve Resolution. Anal. Chem. 2020;92:9997–10006. doi: 10.1021/acs.analchem.0c01677. PubMed DOI PMC
Luchinat E., Barbieri L., Cremonini M., Nocentini A., Supuran C.T., Banci L. Drug Screening in Human Cells by NMR Spectroscopy Allows the Early Assessment of Drug Potency. Angew. Chem. Int. Ed. 2020;59:6535–6539. doi: 10.1002/anie.201913436. PubMed DOI PMC
Luchinat E., Barbieri L., Cremonini M., Nocentini A., Supuran C.T., Banci L. Intracellular Binding/Unbinding Kinetics of Approved Drugs to Carbonic Anhydrase II Observed by in-Cell NMR. ACS Chem. Biol. 2020;15:2792–2800. doi: 10.1021/acschembio.0c00590. PubMed DOI PMC
Barbieri L., Luchinat E. Monitoring Protein-Ligand Interactions in Human Cells by Real-Time Quantitative In-Cell NMR using a High Cell Density Bioreactor. J. Vis. Exp. 2021 doi: 10.3791/62323. PubMed DOI
Ishizuka T., Bao H.-L., Xu Y. 19F NMR Spectroscopy for the Analysis of DNA G-Quadruplex Structures Using 19F-Labeled Nucleobase. Methods Mol. Biol. 2019;2035:407–433. doi: 10.1007/978-1-4939-9666-7_26. PubMed DOI
Nambiar M., Goldsmith G., Moorthy B.T., Lieber M.R., Joshi M.V., Choudhary B., Hosur R.V., Raghavan S.C. Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma. Nucleic Acids Res. 2011;39:936–948. doi: 10.1093/nar/gkq824. PubMed DOI PMC
Read M., Harrison R.J., Romagnoli B., Tanious F.A., Gowan S.H., Reszka A.P., Wilson W.D., Kelland L.R., Neidle S. Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc. Natl. Acad. Sci. USA. 2001;98:4844–4849. doi: 10.1073/pnas.081560598. PubMed DOI PMC
Harrison R.J., Cuesta J., Chessari G., Read M.A., Basra S.K., Reszka A.P., Morrell J., Gowan S.M., Incles C.M., Tanious F.A., et al. Trisubstituted acridine derivatives as potent and selective telomerase inhibitors. J. Med. Chem. 2003;46:4463–4476. doi: 10.1021/jm0308693. PubMed DOI
Gowan S.M., Harrison J.R., Patterson L., Valenti M., Read M.A., Neidle S., Kelland L.R. A G-quadruplex-interactive potent small-molecule inhibitor of telomerase exhibiting in vitro and in vivo antitumor activity. Mol. Pharmacol. 2002;61:1154–1162. doi: 10.1124/mol.61.5.1154. PubMed DOI
Zhou G., Liu X., Li Y., Xu S., Ma C., Wu X., Cheng Y., Yu Z., Zhao G., Chen Y. Telomere targeting with a novel G-quadruplex-interactive ligand BRACO-19 induces T-loop disassembly and telomerase displacement in human glioblastoma cells. Oncotarget. 2016;7:14925–14939. doi: 10.18632/oncotarget.7483. PubMed DOI PMC
Liu C., Zhou B., Geng Y., Tam D.Y., Feng R., Miao H., Xu N., Shi X., You Y., Hong Y., et al. A chair-type G-quadruplex structure formed by a human telomeric variant DNA in K+ solution. Chem. Sci. 2018;10:218–226. doi: 10.1039/C8SC03813A. PubMed DOI PMC
Kerkour A., Marquevielle J., Ivashchenko S., Yatsunyk L.A., Mergny J.-L., Salgado G.F. High-resolution three-dimensional NMR structure of the KRAS proto-oncogene promoter reveals key features of a G-quadruplex involved in transcriptional regulation. J. Biol. Chem. 2017;292:8082–8091. doi: 10.1074/jbc.M117.781906. PubMed DOI PMC
Nicoludis J.M., Barrett S.P., Mergny J.-L., Yatsunyk L.A. Interaction of human telomeric DNA with N-methyl mesoporphyrin IX. Nucleic Acids Res. 2012;40:5432–5447. doi: 10.1093/nar/gks152. PubMed DOI PMC
Tippana R., Xiao W., Myong S. G-quadruplex conformation and dynamics are determined by loop length and sequence. Nucleic Acids Res. 2014;42:8106–8114. doi: 10.1093/nar/gku464. PubMed DOI PMC
Sasaki S., Ma Y., Ishizuka T., Bao H.-L., Hirokawa T., Xu Y., Tera M., Nagasawa K. Linear consecutive hexaoxazoles as G4 ligands inducing chair-type anti-parallel topology of a telomeric G-quadruplex. RSC Adv. 2020;10:43319–43323. doi: 10.1039/D0RA09413G. PubMed DOI PMC
De Cian A., Delemos E., Mergny J.-L., Teulade-Fichou M.-P., Monchaud D. Highly efficient G-quadruplex recognition by bisquinolinium compounds. J. Am. Chem. Soc. 2007;129:1856–1857. doi: 10.1021/ja067352b. PubMed DOI
De Cian A., Cristofari G., Reichenbach P., De Lemos E., Monchaud D., Teulade-Fichou M.-P., Shin-Ya K., Lacroix L., Lingner J., Mergny J.-L. Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proc. Natl. Acad. Sci. USA. 2007;104:17347–17352. doi: 10.1073/pnas.0707365104. PubMed DOI PMC
De Cian A., Grellier P., Mouray E., Depoix D., Bertrand H., Monchaud D., Teulade-Fichou M.-P., Mergny J.-L., Alberti P. Plasmodium telomeric sequences: Structure, stability and quadruplex targeting by small compounds. Chembiochem. 2008;9:2730–2739. doi: 10.1002/cbic.200800330. PubMed DOI
Piazza A., Boulé J.-B., Lopes J., Mingo K., Largy E., Teulade-Fichou M.-P., Nicolas A. Genetic instability triggered by G-quadruplex interacting Phen-DC compounds in Saccharomyces cerevisiae. Nucleic Acids Res. 2010;38:4337–4348. doi: 10.1093/nar/gkq136. PubMed DOI PMC
Chung W.J., Heddi B., Hamon F., Teulade-Fichou M.-P., Phan A.T. Solution Structure of a G-quadruplex Bound to the Bisquinolinium Compound Phen-DC3. Angew. Chem. Int. Ed. 2014;53:999–1002. doi: 10.1002/anie.201308063. PubMed DOI
Sharaf N.G., Barnes C.O., Charlton L.M., Young G.B., Pielak G.J. A bioreactor for in-cell protein NMR. J. Magn. Reson. 2010;202:140–146. doi: 10.1016/j.jmr.2009.10.008. PubMed DOI PMC
Kubo S., Nishida N., Udagawa Y., Takarada O., Ogino S., Shimada I. A Gel-Encapsulated Bioreactor System for NMR Studies of Protein–Protein Interactions in Living Mammalian Cells. Angew. Chem. Int. Ed. 2013;52:1208–1211. doi: 10.1002/anie.201207243. PubMed DOI
Inomata K., Kamoshida H., Ikari M., Ito Y., Kigawa T. Impact of cellular health conditions on the protein folding state in mammalian cells. Chem. Commun. 2017;53:11245–11248. doi: 10.1039/C7CC06004A. PubMed DOI
Burz D.S., Breindel L., Shekhtman A. Improved sensitivity and resolution of in-cell NMR spectra. Methods Enzymol. 2019;621:305–328. doi: 10.1016/bs.mie.2019.02.029. PubMed DOI PMC
Sklenář V., Bax A. Spin-echo water suppression for the generation of pure-phase two-dimensional NMR spectra. J. Magn. Reson. (1969) 1987;74:469–479. doi: 10.1016/0022-2364(87)90269-1. DOI