Thermal and pH Stabilities of i-DNA: Confronting in vitro Experiments with Models and In-Cell NMR Data
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33605024
DOI
10.1002/anie.202016801
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, i-motif, intracellular stability, pH transition, thermal stability,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recent studies indicate that i-DNA, a four-stranded cytosine-rich DNA also known as the i-motif, is actually formed in vivo; however, a systematic study on sequence effects on stability has been missing. Herein, an unprecedented number of different sequences (271) bearing four runs of 3-6 cytosines with different spacer lengths has been tested. While i-DNA stability is nearly independent on total spacer length, the central spacer plays a special role on stability. Stability also depends on the length of the C-tracts at both acidic and neutral pHs. This study provides a global picture on i-DNA stability thanks to the large size of the introduced data set; it reveals unexpected features and allows to conclude that determinants of i-DNA stability do not mirror those of G-quadruplexes. Our results illustrate the structural roles of loops and C-tracts on i-DNA stability, confirm its formation in cells, and allow establishing rules to predict its stability.
ARNA Laboratory Université de Bordeaux INSERM U 1212 CNRS UMR5320 IECB 33607 Pessac France
Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
IBENS Ecole Normale Supérieure CNRS INSERM PSL Research University 75005 Paris France
Zobrazit více v PubMed
K. Gehring, J.-L. Leroy, M. Guéron, Nature 1993, 363, 561-565.
A. L. Lieblein, M. Kramer, A. Dreuw, B. Furtig, H. Schwalbe, Angew. Chem. Int. Ed. 2012, 51, 4067-4070;
Angew. Chem. 2012, 124, 4143-4146.
J.-L. Leroy, M. Guéron, J.-L. Mergny, C. Hélène, Nucleic Acids Res. 1994, 22, 1600-1606;
S. Nonin-Lecomte, J.-L. Leroy, J. Mol. Biol. 2001, 309, 491-506;
A. T. Phan, M. Guéron, J.-L. Leroy, J. Mol. Biol. 2000, 299, 123-144;
X. Han, J.-L. Leroy, M. Guéron, J. Mol. Biol. 1998, 278, 949-965;
K. Snoussi, S. Nonin-Lecomte, J.-L. Leroy, J. Mol. Biol. 2001, 309, 139-153.
A. L. Lieblein, J. Buck, K. Schlepckow, B. Furtig, H. Schwalbe, Angew. Chem. Int. Ed. 2012, 51, 250-253;
Angew. Chem. 2012, 124, 255-259;
A. L. Lieblein, B. Furtig, H. Schwalbe, ChemBioChem 2013, 14, 1226-1230.
E. P. Wright, J. L. Huppert, Z. A. E. Waller, Nucleic Acids Res. 2017, 45, 2951-2959;
R. A. Rogers, A. M. Fleming, C. J. Burrows, Biophys. J. 2018, 114, 1804-1815;
P. Školáková, D. Renčiuk, J. Palacký, D. Krafčík, Z. Dvořáková, I. Kejnovská, K. Bednářová, M. Vorlíčková, Nucleic Acids Res. 2019, 47, 2177-2189.
J.-L. Mergny, L. Lacroix, X. Han, J.-L. Leroy, C. Hélène, J. Am. Chem. Soc. 1995, 117, 8887-8898.
J.-L. Mergny, D. Sen, Chem. Rev. 2019, 119, 6290-6325.
J. J. Alba, A. Sadurni, R. Gargallo, Crit. Rev. Anal. Chem. 2016, 46, 443-454.
K. Leung, K. Chakraborty, A. Saminathan, Y. Krishnan, Nat. Nanotechnol. 2019, 14, 176-183.
M. Debnath, K. Fatma, J. Dash, Angew. Chem. Int. Ed. 2019, 58, 2942-2957;
Angew. Chem. 2019, 131, 2968-2983.
S. Dzatko, M. Krafcikova, R. Hansel-Hertsch, T. Fessl, R. Fiala, T. Loja, D. Krafcik, J.-L. Mergny, S. Foldynova-Trantirkova, L. Trantirek, Angew. Chem. Int. Ed. 2018, 57, 2165-2169;
Angew. Chem. 2018, 130, 2187-2191;
M. Zeraati, D. B. Langley, P. Schofield, A. L. Moye, R. Rouet, W. E. Hughes, T. M. Bryan, M. E. Dinger, D. Christ, Nat. Chem. 2018, 10, 631-637.
E. Belmonte-Reche, J. C. Morales, NAR Genom. Bioinform. 2020, 2, lqz005.
X. Li, Y. Peng, J. Ren, X. Qu, Proc. Natl. Acad. Sci. USA 2006, 103, 19658-19663.
K. Niu, X. Zhang, H. Deng, F. Wu, Y. Ren, H. Xiang, S. Zheng, L. Liu, L. Huang, B. Zeng, S. Li, Q. Xia, Q. Song, S. R. Palli, Q. Feng, Nucleic Acids Res. 2018, 46, 1710-1723;
H. J. Kang, S. Kendrick, S. M. Hecht, L. H. Hurley, J. Am. Chem. Soc. 2014, 136, 4172-4185.
S. Takahashi, J. A. Brazier, N. Sugimoto, Proc. Natl. Acad. Sci. USA 2017, 114, 9605-9610.
B. Mir, I. Serrano, D. Buitrago, M. Orozco, N. Escaja, C. Gonzalez, J. Am. Chem. Soc. 2017, 139, 13985-13988;
I. V. Nesterova, E. E. Nesterov, J. Am. Chem. Soc. 2014, 136, 8843-8846.
A. M. Fleming, K. M. Stewart, G. M. Eyring, T. E. Ball, C. J. Burrows, Org. Biomol. Chem. 2018, 16, 4537-4546;
A. M. Fleming, Y. Ding, R. A. Rogers, J. Zhu, J. Zhu, A. D. Burton, C. B. Carlisle, C. J. Burrows, J. Am. Chem. Soc. 2017, 139, 4682-4689.
A. Sengar, B. Heddi, A. T. Phan, Biochemistry 2014, 53, 7718-7723.
S. Benabou, M. Garavis, S. Lyonnais, R. Eritja, C. Gonzalez, R. Gargallo, Phys. Chem. Chem. Phys. 2016, 18, 7997-8004;
S. M. Reilly, R. K. Morgan, T. A. Brooks, R. M. Wadkins, Biochemistry 2015, 54, 1364-1370;
I. V. Nesterova, J. R. Briscoe, E. E. Nesterov, J. Am. Chem. Soc. 2015, 137, 11234-11237;
S. P. Gurung, C. Schwarz, J. P. Hall, C. J. Cardin, J. A. Brazier, Chem. Commun. 2015, 51, 5630-5632;
T. Fujii, N. Sugimoto, Phys. Chem. Chem. Phys. 2015, 17, 16719-16722;
M. McKim, A. Buxton, C. Johnson, A. Metz, R. D. Sheardy, J. Phys. Chem. B 2016, 120, 7652-7661.
S. Kendrick, Y. Akiyama, S. M. Hecht, L. H. Hurley, J. Am. Chem. Soc. 2009, 131, 17667-17676.
M. Cheng, Y. Cheng, J. Hao, G. Jia, J. Zhou, J.-L. Mergny, C. Li, Nucleic Acids Res. 2018, 46, 9264-9275.
J.-L. Mergny, J. Li, L. Lacroix, S. Amrane, J. B. Chaires, Nucleic Acids Res. 2005, 33, e138.
J.-L. Mergny, L. Lacroix, Nucleic Acids Res. 1998, 26, 4797-4803.
J.-L. Mergny, L. Lacroix, Oligonucleotides 2003, 13, 515-537.
A. Bedrat, L. Lacroix, J.-L. Mergny, Nucleic Acids Res. 2016, 44, 1746-1759.
A. B. Sahakyan, V. S. Chambers, G. Marsico, T. Santner, M. Di Antonio, S. Balasubramanian, Sci. Rep. 2017, 7, 14535.
M. Schmidt, H. Lipson, Science 2009, 324, 81-85.
S. M. Udrescu, M. Tegmark, Sci. Adv. 2020, 6, eaay2631.
N. Iaccarino, M. Cheng, D. Qiu, B. Pagano, J. Amato, A. D. Porzio, J. Zhou, A. Randazzo, J.-L. Mergny, Angew. Chem. Int. Ed. 2021, https://doi.org/10.1002/anie.202016822;
Angew. Chem. 2021, https://doi.org/10.1002/ange.202016822.
V. Brázda, J. Kolomaznik, J. Lysek, M. Bartas, M. Fojta, J. Stastny, J.-L. Mergny, Bioinformatics 2019, 35, 3493-3495;
L. Lacroix, Bioinformatics 2019, 35, 2311-2312.
J. R. Casey, S. Grinstein, J. Orlowski, Nat. Rev. Mol. Cell Biol. 2010, 11, 50-61.
E. Persi, M. Duran-Frigola, M. Damaghi, W. R. Roush, P. Aloy, J. L. Cleveland, R. J. Gillies, E. Ruppin, Nat. Commun. 2018, 9, 2997;
B. A. Webb, M. Chimenti, M. P. Jacobson, D. L. Barber, Nat. Rev. Cancer 2011, 11, 671-677.
In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells
DNA i-motif formation at neutral pH is driven by kinetic partitioning