Hyperpolarized NMR Reveals Low-Populated Folding Intermediates in DNA

. 2025 Dec 17 ; 147 (50) : 46563-46572. [epub] 20251208

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41359044

Nuclear magnetic resonance (NMR) spectroscopy is the only biophysical technique capable of characterizing nucleic acid structures at atomic resolution under near-physiological liquid-state conditions. Still, it is fundamentally limited by intrinsically low sensitivity, particularly when analyzing high-molecular-weight, low-abundance, or polymorphic targets, such as DNAs (DNA). In this study, we demonstrate that hyperpolarized aqueous buffers generated via dissolution dynamic nuclear polarization (dDNP) significantly enhance the 1H NMR signals of multiple DNA motifs. The resonances of labile imino and amino protons of DNAs dissolved in hyperpolarized buffers are enhanced up to ∼200-fold and ∼370-fold, respectively. These intense signals serve a 2-fold purpose: (i) as structural fingerprints of DNA folding topologies and (ii) they enable the direct observation of low-populated folding intermediates in DNA polymorphs, such as G-quadruplexes (G4) and i-motifs (iM), which remain undetectable by standard methods. Thus, our findings establish hyperpolarized NMR as a high-sensitivity method for probing DNA structures and folding intermediates across a wide range of motifs, opening possible avenues in liquid biopsy applications and cell-free DNA.

Zobrazit více v PubMed

Gil S., Hosek T., Solyom Z., Kummerle R., Brutscher B., Pierattelli R., Felli I. C.. NMR spectroscopic studies of intrinsically disordered proteins at near-physiological conditions. Angew. Chem., Int. Ed. Engl. 2013;52(45):11808. doi: 10.1002/anie.201304272. PubMed DOI

Epasto L. M., Che K., Kozak F., Selimovic A., Kadeřávek P., Kurzbach D.. Toward protein NMR at physiological concentrations by hyperpolarized water-Finding and mapping uncharted conformational spaces. Sci. Adv. 2022;8(31):eabq5179. doi: 10.1126/sciadv.abq5179. PubMed DOI PMC

Víšková P., Ištvánková E., Ryneš J., Džatko Š., Loja T., Živković M. L., Rigo R., El-Khoury R., Serrano-Chacon I., Damha M. J., Gonzalez C., Mergny J. L., Foldynova-Trantirkova S., Trantirek L.. In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells. Nat. Commun. 2024;15(1):1992. doi: 10.1038/s41467-024-46221-y. PubMed DOI PMC

Abragam A., Goldman M.. Principles of dynamic nuclear polarisation. Rep. Prog. Phys. 1978;41(3):395–467. doi: 10.1088/0034-4885/41/3/002. DOI

Ernst, R. R. ; Bodenhausen, G. ; Wokaun, A. . Principles of Nuclear Magnetic Resonance in One and Two Dimensions; Clarendon Press, 1987.

Rule, G. ; Hitchens, K. . Fundamentals of Protein NMR Spectroscopy, 1st ed.; Springer: Dordrecht, 2006.

Kovtunov K. V., Pokochueva E. V., Salnikov O. G., Cousin S. F., Kurzbach D., Vuichoud B., Jannin S., Chekmenev E. Y., Goodson B. M., Barskiy D. A., Koptyug I. V.. Hyperpolarized NMR Spectroscopy: d-DNP, PHIP, and SABRE Techniques. Chem.–Asian J. 2018;13:1857–1871. doi: 10.1002/asia.201800551. PubMed DOI PMC

Jannin S., Dumez J. N., Giraudeau P., Kurzbach D.. Application and methodology of dissolution dynamic nuclear polarization in physical, chemical and biological contexts. J. Magn. Reson. 2019;305:41–50. doi: 10.1016/j.jmr.2019.06.001. PubMed DOI PMC

Frydman L., Blazina D.. Ultrafast two-dimensional nuclear magnetic resonance spectroscopy of hyperpolarized solutions. Nat. Phys. 2007;3(6):415–419. doi: 10.1038/nphys597. DOI

Lee Y., Zeng H., Ruedisser S., Gossert A. D., Hilty C.. Nuclear magnetic resonance of hyperpolarized fluorine for characterization of protein-ligand interactions. J. Am. Chem. Soc. 2012;134(42):17448. doi: 10.1021/ja308437h. PubMed DOI

Buratto R., Bornet A., Milani J., Mammoli D., Vuichoud B., Salvi N., Singh M., Laguerre A., Passemard S., Gerber-Lemaire S., Jannin S., Bodenhausen G.. Drug Screening Boosted by Hyperpolarized Long-Lived States in NMR. ChemMedChem. 2014;9(11):2509–2515. doi: 10.1002/cmdc.201402214. PubMed DOI PMC

Stern Q., Milani J., Vuichoud B., Bornet A., Gossert A. D., Bodenhausen G., Jannin S.. Hyperpolarized Water to Study Protein-Ligand Interactions. J. Phys. Chem. Lett. 2015;6(9):1674–1678. doi: 10.1021/acs.jpclett.5b00403. PubMed DOI

Ardenkjaer-Larsen J. H., Fridlund B., Gram A., Hansson G., Hansson L., Lerche M. H., Servin R., Thaning M., Golman K.. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. U.S.A. 2003;100(18):10158. doi: 10.1073/pnas.1733835100. PubMed DOI PMC

Golman K., Ardenaer-Larsen J. H., Petersson J. S., Mansson S., Leunbach I.. Molecular imaging with endogenous substances. Proc. Natl. Acad. Sci. U. S. A. 2003;100(18):10435–10439. doi: 10.1073/pnas.1733836100. PubMed DOI PMC

Gallagher F. A., Kettunen M. I., Day S. E., Hu D. E., Ardenkjaer-Larsen J. H., in’t Zandt R., Jensen P. R., Karlsson M., Golman K., Lerche M. H., Brindle K. M.. Magnetic resonance imaging of pH in vivo using hyperpolarized C-13-labelled bicarbonate. Nature. 2008;453(7197):940. PubMed

Harris T., Szekely O., Frydman L.. On the Potential of Hyperpolarized Water in Biomolecular NMR Studies. J. Phys. Chem. B. 2014;118(12):3281–3290. doi: 10.1021/jp4102916. PubMed DOI PMC

Vuichoud B., Bornet A., de Nanteuil F., Milani J., Canet E., Ji X., Mieville P., Weber E., Kurzbach D., Flamm A., Konrat R., Gossert A. D., Jannin S., Bodenhausen G.. Filterable Agents for Hyperpolarization of Water, Metabolites, and Proteins. Chemistry. 2016;22(41):14696–14700. doi: 10.1002/chem.201602506. PubMed DOI

Kurzbach D., Canet E., Flamm A. G., Jhajharia A., Weber E. M., Konrat R., Bodenhausen G.. Investigation of Intrinsically Disordered Proteins through Exchange with Hyperpolarized Water. Angew. Chem., Int. Ed. Engl. 2017;56(1):389–392. doi: 10.1002/anie.201608903. PubMed DOI

Kim J., Liu M., Hilty C.. Modeling of Polarization Transfer Kinetics in Protein Hydration Using Hyperpolarized Water. J. Phys. Chem. B. 2017;121(27):6492–6498. doi: 10.1021/acs.jpcb.7b03052. PubMed DOI

Kaderavek P., Ferrage F., Bodenhausen G., Kurzbach D.. High-Resolution NMR of Folded Proteins in Hyperpolarized Physiological Solvents. Chemistry. 2018;24(51):13418–13423. doi: 10.1002/chem.201802885. PubMed DOI

Szekely O., Olsen G. L., Felli I. C., Frydman L.. High-resolution 2D NMR of disordered proteins enhanced by hyperpolarized water. Anal. Chem. 2018;90:6169–6177. doi: 10.1021/acs.analchem.8b00585. PubMed DOI

Weber E. M. M., Kurzbach D., Abergel D.. A DNP-hyperpolarized solid-state water NMR MASER: observation and qualitative analysis. Phys. Chem. Chem. Phys. 2019;21(38):21278–21286. doi: 10.1039/C9CP03334C. PubMed DOI

Sadet A., Stavarache C., Bacalum M., Radu M., Bodenhausen G., Kurzbach D., Vasos P. R.. Hyperpolarized Water Enhances Two-Dimensional Proton NMR Correlations: A New Approach for Molecular Interactions. J. Am. Chem. Soc. 2019;141(32):12448–12452. doi: 10.1021/jacs.9b03651. PubMed DOI

Kim J., Mandal R., Hilty C.. Observation of Fast Two-Dimensional NMR Spectra during Protein Folding Using Polarization Transfer from Hyperpolarized Water. J. Phys. Chem. Lett. 2019;10(18):5463–5467. doi: 10.1021/acs.jpclett.9b02197. PubMed DOI

Olsen G. L., Szekely O., Mateos B., Kaderavek P., Ferrage F., Konrat R., Pierattelli R., Felli I. C., Bodenhausen G., Kurzbach D., Frydman L.. Sensitivity-enhanced three-dimensional and carbon-detected two-dimensional NMR of proteins using hyperpolarized water. J. Biomol. NMR. 2020;74(2–3):161–171. doi: 10.1007/s10858-020-00301-5. PubMed DOI PMC

Pinon A. C., Capozzi A., Ardenkjær-Larsen J. H.. Hyperpolarized water through dissolution dynamic nuclear polarization with UV-generated radicals. Commun. Chem. 2020;3(1):57. doi: 10.1038/s42004-020-0301-6. PubMed DOI PMC

Szekely O., Olsen G. L., Novakovic M., Rosenzweig R., Frydman L.. Assessing Site-Specific Enhancements Imparted by Hyperpolarized Water in Folded and Unfolded Proteins by 2D HMQC NMR. J. Am. Chem. Soc. 2020;142(20):9267–9284. doi: 10.1021/jacs.0c00807. PubMed DOI PMC

Novakovic M., Olsen G. L., Pinter G., Hymon D., Furtig B., Schwalbe H., Frydman L.. A 300-fold enhancement of imino nucleic acid resonances by hyperpolarized water provides a new window for probing RNA refolding by 1D and 2D NMR. Proc. Natl. Acad. Sci. U.S.A. 2020;117(5):2449–2455. doi: 10.1073/pnas.1916956117. PubMed DOI PMC

Kim J., Mandal R., Hilty C.. 2D NMR spectroscopy of refolding RNase Sa using polarization transfer from hyperpolarized water. J. Magn. Reson. 2021;326:106942. doi: 10.1016/j.jmr.2021.106942. PubMed DOI

Hilty C., Kurzbach D., Frydman L.. Hyperpolarized water as universal sensitivity booster in biomolecular NMR. Nat. Protoc. 2022;17(7):1621–1657. doi: 10.1038/s41596-022-00693-8. PubMed DOI PMC

Pradhan N., Hilty C.. Cross-Polarization of Insensitive Nuclei from Water Protons for Detection of Protein-Ligand Binding. J. Am. Chem. Soc. 2024;146(36):24754–24758. doi: 10.1021/jacs.4c08241. PubMed DOI PMC

Epasto L. M., Honegger P., Che K., Kozak F., Jorg F., Schroder C., Kurzbach D.. Nuclear Overhauser spectroscopy in hyperpolarized water - chemical vs. magnetic exchange. Chem. Commun. 2022;58(83):11661–11664. doi: 10.1039/D2CC03735A. PubMed DOI PMC

Turhan E., Potzl C., Brandis D., Faglia F., Zachrdla M., Kurzbach D.. Deep Learning for Hyperpolarized NMR of Intrinsically Disordered Proteins Without Resolution Loss: Access to Short-Lived Intermediates. Chemistry. 2025;31:e02067. doi: 10.1002/chem.202502067. PubMed DOI PMC

Zachrdla M., Turhan E., Pötzl C., Sadet A., Vasos P. R., Kurzbach D.. Hyperpolarized nuclear Overhauser enhancement of alanine methyl groups by doubly relayed proton exchange. J. Magn. Reson. 2024;364:107727. doi: 10.1016/j.jmr.2024.107727. PubMed DOI

Kiryutin A. S., Rodin B. A., Yurkovskaya A. V., Ivanov K. L., Kurzbach D., Jannin S., Guarin D., Abergel D., Bodenhausen G.. Transport of hyperpolarized samples in dissolution-DNP experiments. Phys. Chem. Chem. Phys. 2019;21(25):13696–13705. doi: 10.1039/C9CP02600B. PubMed DOI

Negroni M., Guarin D., Che K., Epasto L. M., Turhan E., Selimovic A., Kozak F., Cousin S., Abergel D., Bodenhausen G., Kurzbach D.. Inversion of Hyperpolarized (13)­C NMR Signals through Cross-Correlated Cross-Relaxation in Dissolution DNP Experiments. J. Phys. Chem. B. 2022;126(24):4599–4610. doi: 10.1021/acs.jpcb.2c03375. PubMed DOI PMC

Negroni M., Turhan E., Kress T., Ceillier M., Jannin S., Kurzbach D.. Fremy’s Salt as a Low-Persistence Hyperpolarization Agent: Efficient Dynamic Nuclear Polarization Plus Rapid Radical Scavenging. J. Am. Chem. Soc. 2022;144(45):20680–20686. doi: 10.1021/jacs.2c07960. PubMed DOI PMC

Negroni M., Kurzbach D.. Residue-resolved monitoring of protein hyperpolarization at sub-second time resolution. Commun. Chem. 2021;4(1):147. doi: 10.1038/s42004-021-00587-y. PubMed DOI PMC

Drew H. R., Wing R. M., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R. E.. Structure of a B-DNA dodecamer: conformation and dynamics. Proc. Natl. Acad. Sci. U.S.A. 1981;78(4):2179–2183. doi: 10.1073/pnas.78.4.2179. PubMed DOI PMC

Tereshko V., Minasov G., Egli M.. The Dickerson-Drew B-DNA dodecamer revisited at atomic resolution. J. Am. Chem. Soc. 1999;121(2):470–471. doi: 10.1021/ja9832919. DOI

Wu Z., Delaglio F., Tjandra N., Zhurkin V. B., Bax A.. Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and 31P chemical shift anisotropy. J. Biomol. NMR. 2003;26(4):297–315. doi: 10.1023/A:1024047103398. PubMed DOI

Drsata T., Perez A., Orozco M., Morozov A. V., Sponer J., Lankas F.. Structure, Stiffness and Substates of the Dickerson-Drew Dodecamer. J. Chem. Theory Comput. 2013;9(1):707–721. doi: 10.1021/ct300671y. PubMed DOI PMC

Moe J. G., Russu I. M.. Kinetics and energetics of base-pair opening in 5′-d­(CGCGAATTCGCG)-3′ and a substituted dodecamer containing G.T mismatches. Biochemistry. 1992;31(36):8421. doi: 10.1021/bi00151a005. PubMed DOI

Gueron M., Kochoyan M., Leroy J. L.. A single mode of DNA base-pair opening drives imino proton exchange. Nature. 1987;328(6125):89–92. doi: 10.1038/328089a0. PubMed DOI

Szulik M. W., Voehler M., Stone M. P.. NMR analysis of base-pair opening kinetics in DNA. Curr. Protoc. Nucleic Acid Chem. 2014;59(1):20 1–18. doi: 10.1002/0471142700.nc0720s59. PubMed DOI PMC

Choi S. R., Kim N. H., Jin H. S., Seo Y. J., Lee J., Lee J. H.. Base-pair Opening Dynamics of Nucleic Acids in Relation to Their Biological Function. Comput. Struct. Biotechnol. J. 2019;17:797–804. doi: 10.1016/j.csbj.2019.06.008. PubMed DOI PMC

Snoussi K., Leroy J. L.. Imino proton exchange and base-pair kinetics in RNA duplexes. Biochemistry. 2001;40(30):8898. doi: 10.1021/bi010385d. PubMed DOI

Sklenár̆ V., Felgon J.. Formation of a stable triplex from a single DNA strand. Nature. 1990;345(6278):836. doi: 10.1038/345836a0. PubMed DOI

Ambrus A., Chen D., Dai J., Jones R. A., Yang D.. Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter. Implications for G-quadruplex stabilization. Biochemistry. 2005;44(6):2048. doi: 10.1021/bi048242p. PubMed DOI

Grun J. T., Schwalbe H.. Folding dynamics of polymorphic G-quadruplex structures. Biopolymers. 2022;113(1):e23477. doi: 10.1002/bip.23477. PubMed DOI

Stadlbauer P., Kuhrova P., Vicherek L., Banas P., Otyepka M., Trantirek L., Sponer J.. Parallel G-triplexes and G-hairpins as potential transitory ensembles in the folding of parallel-stranded DNA G-Quadruplexes. Nucleic Acids Res. 2019;47(14):7276–7293. doi: 10.1093/nar/gkz610. PubMed DOI PMC

Stadlbauer P., Kuhrova P., Banas P., Koca J., Bussi G., Trantirek L., Otyepka M., Sponer J.. Hairpins participating in folding of human telomeric sequence quadruplexes studied by standard and T-REMD simulations. Nucleic Acids Res. 2015;43(20):9626. doi: 10.1093/nar/gkv994. PubMed DOI PMC

Hou X. M., Fu Y. B., Wu W. Q., Wang L., Teng F. Y., Xie P., Wang P. Y., Xi X. G.. Involvement of G-triplex and G-hairpin in the multi-pathway folding of human telomeric G-quadruplex. Nucleic Acids Res. 2017;45(19):11401–11412. doi: 10.1093/nar/gkx766. PubMed DOI PMC

Stadlbauer P., Trantirek L., Cheatham T. E. 3rd, Koca J., Sponer J.. Triplex intermediates in folding of human telomeric quadruplexes probed by microsecond-scale molecular dynamics simulations. Biochimie. 2014;105:22–35. doi: 10.1016/j.biochi.2014.07.009. PubMed DOI

Janeček M., Kuhrova P., Mlynsky V., Stadlbauer P., Otyepka M., Bussi G., Sponer J., Banáš P.. Computer Folding of Parallel DNA G-Quadruplex: Hitchhiker’s Guide to the Conformational Space. J. Comput. Chem. 2025;46(1):e27535. doi: 10.1002/jcc.27535. PubMed DOI PMC

Limongelli V., De Tito S., Cerofolini L., Fragai M., Pagano B., Trotta R., Cosconati S., Marinelli L., Novellino E., Bertini I., Randazzo A., Luchinat C., Parrinello M.. The G-triplex DNA. Angew. Chem., Int. Ed. Engl. 2013;52(8):2269–2273. doi: 10.1002/anie.201206522. PubMed DOI

Cerofolini L., Amato J., Giachetti A., Limongelli V., Novellino E., Parrinello M., Fragai M., Randazzo A., Luchinat C.. G-triplex structure and formation propensity. Nucleic Acids Res. 2014;42(21):13393–13404. doi: 10.1093/nar/gku1084. PubMed DOI PMC

Kress T., Che K., Epasto L. M., Kozak F., Negroni M., Olsen G. L., Selimovic A., Kurzbach D.. A novel sample handling system for dissolution dynamic nuclear polarization experiments. Magn. Reson. 2021;2:387–394. doi: 10.5194/mr-2-387-2021. PubMed DOI PMC

Cheng M., Qiu D., Tamon L., Istvankova E., Viskova P., Amrane S., Guedin A., Chen J., Lacroix L., Ju H., Trantirek L., Sahakyan A. B., Zhou J., Mergny J. L.. Thermal and pH Stabilities of i-DNA: Confronting in vitro Experiments with Models and In-Cell NMR Data. Angew. Chem., Int. Ed. Engl. 2021;60(18):10286–10294. doi: 10.1002/anie.202016801. PubMed DOI

Skolakova P., Gajarsky M., Palacky J., Subert D., Renciuk D., Trantirek L., Mergny J. L., Vorlickova M.. DNA i-motif formation at neutral pH is driven by kinetic partitioning. Nucleic Acids Res. 2023;51(6):2950–2962. doi: 10.1093/nar/gkad119. PubMed DOI PMC

Mir B., Serrano I., Buitrago D., Orozco M., Escaja N., Gonzalez C.. Prevalent Sequences in the Human Genome Can Form Mini i-Motif Structures at Physiological pH. J. Am. Chem. Soc. 2017;139(40):13985–13988. doi: 10.1021/jacs.7b07383. PubMed DOI

el Hassan M. A., Calladine C. R.. Propeller-twisting of base-pairs and the conformational mobility of dinucleotide steps in DNA. J. Mol. Biol. 1996;259(1):95–103. doi: 10.1006/jmbi.1996.0304. PubMed DOI

Hudecova I., Smith C. G., Hansel-Hertsch R., Chilamakuri C. S., Morris J. A., Vijayaraghavan A., Heider K., Chandrananda D., Cooper W. N., Gale D., Garcia-Corbacho J., Pacey S., Baird R. D., Rosenfeld N., Mouliere F.. Characteristics, origin, and potential for cancer diagnostics of ultrashort plasma cell-free DNA. Genome Res. 2022;32(2):215–227. doi: 10.1101/gr.275691.121. PubMed DOI PMC

Weber E. M. M., Sicoli G., Vezin H., Frébourg G., Abergel D., Bodenhausen G., Kurzbach D.. Sample Ripening through Nanophase Separation Influences the Performance of Dynamic Nuclear Polarization. Angew. Chem. Int. Ed. 2018;57(18):5171–5175. doi: 10.1002/anie.201800493. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...