Hyperpolarized NMR Reveals Low-Populated Folding Intermediates in DNA
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41359044
PubMed Central
PMC12715797
DOI
10.1021/jacs.5c17542
Knihovny.cz E-zdroje
- MeSH
- DNA * chemie MeSH
- G-kvadruplexy MeSH
- konformace nukleové kyseliny MeSH
- nukleární magnetická rezonance biomolekulární * metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA * MeSH
Nuclear magnetic resonance (NMR) spectroscopy is the only biophysical technique capable of characterizing nucleic acid structures at atomic resolution under near-physiological liquid-state conditions. Still, it is fundamentally limited by intrinsically low sensitivity, particularly when analyzing high-molecular-weight, low-abundance, or polymorphic targets, such as DNAs (DNA). In this study, we demonstrate that hyperpolarized aqueous buffers generated via dissolution dynamic nuclear polarization (dDNP) significantly enhance the 1H NMR signals of multiple DNA motifs. The resonances of labile imino and amino protons of DNAs dissolved in hyperpolarized buffers are enhanced up to ∼200-fold and ∼370-fold, respectively. These intense signals serve a 2-fold purpose: (i) as structural fingerprints of DNA folding topologies and (ii) they enable the direct observation of low-populated folding intermediates in DNA polymorphs, such as G-quadruplexes (G4) and i-motifs (iM), which remain undetectable by standard methods. Thus, our findings establish hyperpolarized NMR as a high-sensitivity method for probing DNA structures and folding intermediates across a wide range of motifs, opening possible avenues in liquid biopsy applications and cell-free DNA.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Institute of Human Genetics University Hospital Cologne 50931 Cologne Germany
Zobrazit více v PubMed
Gil S., Hosek T., Solyom Z., Kummerle R., Brutscher B., Pierattelli R., Felli I. C.. NMR spectroscopic studies of intrinsically disordered proteins at near-physiological conditions. Angew. Chem., Int. Ed. Engl. 2013;52(45):11808. doi: 10.1002/anie.201304272. PubMed DOI
Epasto L. M., Che K., Kozak F., Selimovic A., Kadeřávek P., Kurzbach D.. Toward protein NMR at physiological concentrations by hyperpolarized water-Finding and mapping uncharted conformational spaces. Sci. Adv. 2022;8(31):eabq5179. doi: 10.1126/sciadv.abq5179. PubMed DOI PMC
Víšková P., Ištvánková E., Ryneš J., Džatko Š., Loja T., Živković M. L., Rigo R., El-Khoury R., Serrano-Chacon I., Damha M. J., Gonzalez C., Mergny J. L., Foldynova-Trantirkova S., Trantirek L.. In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells. Nat. Commun. 2024;15(1):1992. doi: 10.1038/s41467-024-46221-y. PubMed DOI PMC
Abragam A., Goldman M.. Principles of dynamic nuclear polarisation. Rep. Prog. Phys. 1978;41(3):395–467. doi: 10.1088/0034-4885/41/3/002. DOI
Ernst, R. R. ; Bodenhausen, G. ; Wokaun, A. . Principles of Nuclear Magnetic Resonance in One and Two Dimensions; Clarendon Press, 1987.
Rule, G. ; Hitchens, K. . Fundamentals of Protein NMR Spectroscopy, 1st ed.; Springer: Dordrecht, 2006.
Kovtunov K. V., Pokochueva E. V., Salnikov O. G., Cousin S. F., Kurzbach D., Vuichoud B., Jannin S., Chekmenev E. Y., Goodson B. M., Barskiy D. A., Koptyug I. V.. Hyperpolarized NMR Spectroscopy: d-DNP, PHIP, and SABRE Techniques. Chem.–Asian J. 2018;13:1857–1871. doi: 10.1002/asia.201800551. PubMed DOI PMC
Jannin S., Dumez J. N., Giraudeau P., Kurzbach D.. Application and methodology of dissolution dynamic nuclear polarization in physical, chemical and biological contexts. J. Magn. Reson. 2019;305:41–50. doi: 10.1016/j.jmr.2019.06.001. PubMed DOI PMC
Frydman L., Blazina D.. Ultrafast two-dimensional nuclear magnetic resonance spectroscopy of hyperpolarized solutions. Nat. Phys. 2007;3(6):415–419. doi: 10.1038/nphys597. DOI
Lee Y., Zeng H., Ruedisser S., Gossert A. D., Hilty C.. Nuclear magnetic resonance of hyperpolarized fluorine for characterization of protein-ligand interactions. J. Am. Chem. Soc. 2012;134(42):17448. doi: 10.1021/ja308437h. PubMed DOI
Buratto R., Bornet A., Milani J., Mammoli D., Vuichoud B., Salvi N., Singh M., Laguerre A., Passemard S., Gerber-Lemaire S., Jannin S., Bodenhausen G.. Drug Screening Boosted by Hyperpolarized Long-Lived States in NMR. ChemMedChem. 2014;9(11):2509–2515. doi: 10.1002/cmdc.201402214. PubMed DOI PMC
Stern Q., Milani J., Vuichoud B., Bornet A., Gossert A. D., Bodenhausen G., Jannin S.. Hyperpolarized Water to Study Protein-Ligand Interactions. J. Phys. Chem. Lett. 2015;6(9):1674–1678. doi: 10.1021/acs.jpclett.5b00403. PubMed DOI
Ardenkjaer-Larsen J. H., Fridlund B., Gram A., Hansson G., Hansson L., Lerche M. H., Servin R., Thaning M., Golman K.. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. U.S.A. 2003;100(18):10158. doi: 10.1073/pnas.1733835100. PubMed DOI PMC
Golman K., Ardenaer-Larsen J. H., Petersson J. S., Mansson S., Leunbach I.. Molecular imaging with endogenous substances. Proc. Natl. Acad. Sci. U. S. A. 2003;100(18):10435–10439. doi: 10.1073/pnas.1733836100. PubMed DOI PMC
Gallagher F. A., Kettunen M. I., Day S. E., Hu D. E., Ardenkjaer-Larsen J. H., in’t Zandt R., Jensen P. R., Karlsson M., Golman K., Lerche M. H., Brindle K. M.. Magnetic resonance imaging of pH in vivo using hyperpolarized C-13-labelled bicarbonate. Nature. 2008;453(7197):940. PubMed
Harris T., Szekely O., Frydman L.. On the Potential of Hyperpolarized Water in Biomolecular NMR Studies. J. Phys. Chem. B. 2014;118(12):3281–3290. doi: 10.1021/jp4102916. PubMed DOI PMC
Vuichoud B., Bornet A., de Nanteuil F., Milani J., Canet E., Ji X., Mieville P., Weber E., Kurzbach D., Flamm A., Konrat R., Gossert A. D., Jannin S., Bodenhausen G.. Filterable Agents for Hyperpolarization of Water, Metabolites, and Proteins. Chemistry. 2016;22(41):14696–14700. doi: 10.1002/chem.201602506. PubMed DOI
Kurzbach D., Canet E., Flamm A. G., Jhajharia A., Weber E. M., Konrat R., Bodenhausen G.. Investigation of Intrinsically Disordered Proteins through Exchange with Hyperpolarized Water. Angew. Chem., Int. Ed. Engl. 2017;56(1):389–392. doi: 10.1002/anie.201608903. PubMed DOI
Kim J., Liu M., Hilty C.. Modeling of Polarization Transfer Kinetics in Protein Hydration Using Hyperpolarized Water. J. Phys. Chem. B. 2017;121(27):6492–6498. doi: 10.1021/acs.jpcb.7b03052. PubMed DOI
Kaderavek P., Ferrage F., Bodenhausen G., Kurzbach D.. High-Resolution NMR of Folded Proteins in Hyperpolarized Physiological Solvents. Chemistry. 2018;24(51):13418–13423. doi: 10.1002/chem.201802885. PubMed DOI
Szekely O., Olsen G. L., Felli I. C., Frydman L.. High-resolution 2D NMR of disordered proteins enhanced by hyperpolarized water. Anal. Chem. 2018;90:6169–6177. doi: 10.1021/acs.analchem.8b00585. PubMed DOI
Weber E. M. M., Kurzbach D., Abergel D.. A DNP-hyperpolarized solid-state water NMR MASER: observation and qualitative analysis. Phys. Chem. Chem. Phys. 2019;21(38):21278–21286. doi: 10.1039/C9CP03334C. PubMed DOI
Sadet A., Stavarache C., Bacalum M., Radu M., Bodenhausen G., Kurzbach D., Vasos P. R.. Hyperpolarized Water Enhances Two-Dimensional Proton NMR Correlations: A New Approach for Molecular Interactions. J. Am. Chem. Soc. 2019;141(32):12448–12452. doi: 10.1021/jacs.9b03651. PubMed DOI
Kim J., Mandal R., Hilty C.. Observation of Fast Two-Dimensional NMR Spectra during Protein Folding Using Polarization Transfer from Hyperpolarized Water. J. Phys. Chem. Lett. 2019;10(18):5463–5467. doi: 10.1021/acs.jpclett.9b02197. PubMed DOI
Olsen G. L., Szekely O., Mateos B., Kaderavek P., Ferrage F., Konrat R., Pierattelli R., Felli I. C., Bodenhausen G., Kurzbach D., Frydman L.. Sensitivity-enhanced three-dimensional and carbon-detected two-dimensional NMR of proteins using hyperpolarized water. J. Biomol. NMR. 2020;74(2–3):161–171. doi: 10.1007/s10858-020-00301-5. PubMed DOI PMC
Pinon A. C., Capozzi A., Ardenkjær-Larsen J. H.. Hyperpolarized water through dissolution dynamic nuclear polarization with UV-generated radicals. Commun. Chem. 2020;3(1):57. doi: 10.1038/s42004-020-0301-6. PubMed DOI PMC
Szekely O., Olsen G. L., Novakovic M., Rosenzweig R., Frydman L.. Assessing Site-Specific Enhancements Imparted by Hyperpolarized Water in Folded and Unfolded Proteins by 2D HMQC NMR. J. Am. Chem. Soc. 2020;142(20):9267–9284. doi: 10.1021/jacs.0c00807. PubMed DOI PMC
Novakovic M., Olsen G. L., Pinter G., Hymon D., Furtig B., Schwalbe H., Frydman L.. A 300-fold enhancement of imino nucleic acid resonances by hyperpolarized water provides a new window for probing RNA refolding by 1D and 2D NMR. Proc. Natl. Acad. Sci. U.S.A. 2020;117(5):2449–2455. doi: 10.1073/pnas.1916956117. PubMed DOI PMC
Kim J., Mandal R., Hilty C.. 2D NMR spectroscopy of refolding RNase Sa using polarization transfer from hyperpolarized water. J. Magn. Reson. 2021;326:106942. doi: 10.1016/j.jmr.2021.106942. PubMed DOI
Hilty C., Kurzbach D., Frydman L.. Hyperpolarized water as universal sensitivity booster in biomolecular NMR. Nat. Protoc. 2022;17(7):1621–1657. doi: 10.1038/s41596-022-00693-8. PubMed DOI PMC
Pradhan N., Hilty C.. Cross-Polarization of Insensitive Nuclei from Water Protons for Detection of Protein-Ligand Binding. J. Am. Chem. Soc. 2024;146(36):24754–24758. doi: 10.1021/jacs.4c08241. PubMed DOI PMC
Epasto L. M., Honegger P., Che K., Kozak F., Jorg F., Schroder C., Kurzbach D.. Nuclear Overhauser spectroscopy in hyperpolarized water - chemical vs. magnetic exchange. Chem. Commun. 2022;58(83):11661–11664. doi: 10.1039/D2CC03735A. PubMed DOI PMC
Turhan E., Potzl C., Brandis D., Faglia F., Zachrdla M., Kurzbach D.. Deep Learning for Hyperpolarized NMR of Intrinsically Disordered Proteins Without Resolution Loss: Access to Short-Lived Intermediates. Chemistry. 2025;31:e02067. doi: 10.1002/chem.202502067. PubMed DOI PMC
Zachrdla M., Turhan E., Pötzl C., Sadet A., Vasos P. R., Kurzbach D.. Hyperpolarized nuclear Overhauser enhancement of alanine methyl groups by doubly relayed proton exchange. J. Magn. Reson. 2024;364:107727. doi: 10.1016/j.jmr.2024.107727. PubMed DOI
Kiryutin A. S., Rodin B. A., Yurkovskaya A. V., Ivanov K. L., Kurzbach D., Jannin S., Guarin D., Abergel D., Bodenhausen G.. Transport of hyperpolarized samples in dissolution-DNP experiments. Phys. Chem. Chem. Phys. 2019;21(25):13696–13705. doi: 10.1039/C9CP02600B. PubMed DOI
Negroni M., Guarin D., Che K., Epasto L. M., Turhan E., Selimovic A., Kozak F., Cousin S., Abergel D., Bodenhausen G., Kurzbach D.. Inversion of Hyperpolarized (13)C NMR Signals through Cross-Correlated Cross-Relaxation in Dissolution DNP Experiments. J. Phys. Chem. B. 2022;126(24):4599–4610. doi: 10.1021/acs.jpcb.2c03375. PubMed DOI PMC
Negroni M., Turhan E., Kress T., Ceillier M., Jannin S., Kurzbach D.. Fremy’s Salt as a Low-Persistence Hyperpolarization Agent: Efficient Dynamic Nuclear Polarization Plus Rapid Radical Scavenging. J. Am. Chem. Soc. 2022;144(45):20680–20686. doi: 10.1021/jacs.2c07960. PubMed DOI PMC
Negroni M., Kurzbach D.. Residue-resolved monitoring of protein hyperpolarization at sub-second time resolution. Commun. Chem. 2021;4(1):147. doi: 10.1038/s42004-021-00587-y. PubMed DOI PMC
Drew H. R., Wing R. M., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R. E.. Structure of a B-DNA dodecamer: conformation and dynamics. Proc. Natl. Acad. Sci. U.S.A. 1981;78(4):2179–2183. doi: 10.1073/pnas.78.4.2179. PubMed DOI PMC
Tereshko V., Minasov G., Egli M.. The Dickerson-Drew B-DNA dodecamer revisited at atomic resolution. J. Am. Chem. Soc. 1999;121(2):470–471. doi: 10.1021/ja9832919. DOI
Wu Z., Delaglio F., Tjandra N., Zhurkin V. B., Bax A.. Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and 31P chemical shift anisotropy. J. Biomol. NMR. 2003;26(4):297–315. doi: 10.1023/A:1024047103398. PubMed DOI
Drsata T., Perez A., Orozco M., Morozov A. V., Sponer J., Lankas F.. Structure, Stiffness and Substates of the Dickerson-Drew Dodecamer. J. Chem. Theory Comput. 2013;9(1):707–721. doi: 10.1021/ct300671y. PubMed DOI PMC
Moe J. G., Russu I. M.. Kinetics and energetics of base-pair opening in 5′-d(CGCGAATTCGCG)-3′ and a substituted dodecamer containing G.T mismatches. Biochemistry. 1992;31(36):8421. doi: 10.1021/bi00151a005. PubMed DOI
Gueron M., Kochoyan M., Leroy J. L.. A single mode of DNA base-pair opening drives imino proton exchange. Nature. 1987;328(6125):89–92. doi: 10.1038/328089a0. PubMed DOI
Szulik M. W., Voehler M., Stone M. P.. NMR analysis of base-pair opening kinetics in DNA. Curr. Protoc. Nucleic Acid Chem. 2014;59(1):20 1–18. doi: 10.1002/0471142700.nc0720s59. PubMed DOI PMC
Choi S. R., Kim N. H., Jin H. S., Seo Y. J., Lee J., Lee J. H.. Base-pair Opening Dynamics of Nucleic Acids in Relation to Their Biological Function. Comput. Struct. Biotechnol. J. 2019;17:797–804. doi: 10.1016/j.csbj.2019.06.008. PubMed DOI PMC
Snoussi K., Leroy J. L.. Imino proton exchange and base-pair kinetics in RNA duplexes. Biochemistry. 2001;40(30):8898. doi: 10.1021/bi010385d. PubMed DOI
Sklenár̆ V., Felgon J.. Formation of a stable triplex from a single DNA strand. Nature. 1990;345(6278):836. doi: 10.1038/345836a0. PubMed DOI
Ambrus A., Chen D., Dai J., Jones R. A., Yang D.. Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter. Implications for G-quadruplex stabilization. Biochemistry. 2005;44(6):2048. doi: 10.1021/bi048242p. PubMed DOI
Grun J. T., Schwalbe H.. Folding dynamics of polymorphic G-quadruplex structures. Biopolymers. 2022;113(1):e23477. doi: 10.1002/bip.23477. PubMed DOI
Stadlbauer P., Kuhrova P., Vicherek L., Banas P., Otyepka M., Trantirek L., Sponer J.. Parallel G-triplexes and G-hairpins as potential transitory ensembles in the folding of parallel-stranded DNA G-Quadruplexes. Nucleic Acids Res. 2019;47(14):7276–7293. doi: 10.1093/nar/gkz610. PubMed DOI PMC
Stadlbauer P., Kuhrova P., Banas P., Koca J., Bussi G., Trantirek L., Otyepka M., Sponer J.. Hairpins participating in folding of human telomeric sequence quadruplexes studied by standard and T-REMD simulations. Nucleic Acids Res. 2015;43(20):9626. doi: 10.1093/nar/gkv994. PubMed DOI PMC
Hou X. M., Fu Y. B., Wu W. Q., Wang L., Teng F. Y., Xie P., Wang P. Y., Xi X. G.. Involvement of G-triplex and G-hairpin in the multi-pathway folding of human telomeric G-quadruplex. Nucleic Acids Res. 2017;45(19):11401–11412. doi: 10.1093/nar/gkx766. PubMed DOI PMC
Stadlbauer P., Trantirek L., Cheatham T. E. 3rd, Koca J., Sponer J.. Triplex intermediates in folding of human telomeric quadruplexes probed by microsecond-scale molecular dynamics simulations. Biochimie. 2014;105:22–35. doi: 10.1016/j.biochi.2014.07.009. PubMed DOI
Janeček M., Kuhrova P., Mlynsky V., Stadlbauer P., Otyepka M., Bussi G., Sponer J., Banáš P.. Computer Folding of Parallel DNA G-Quadruplex: Hitchhiker’s Guide to the Conformational Space. J. Comput. Chem. 2025;46(1):e27535. doi: 10.1002/jcc.27535. PubMed DOI PMC
Limongelli V., De Tito S., Cerofolini L., Fragai M., Pagano B., Trotta R., Cosconati S., Marinelli L., Novellino E., Bertini I., Randazzo A., Luchinat C., Parrinello M.. The G-triplex DNA. Angew. Chem., Int. Ed. Engl. 2013;52(8):2269–2273. doi: 10.1002/anie.201206522. PubMed DOI
Cerofolini L., Amato J., Giachetti A., Limongelli V., Novellino E., Parrinello M., Fragai M., Randazzo A., Luchinat C.. G-triplex structure and formation propensity. Nucleic Acids Res. 2014;42(21):13393–13404. doi: 10.1093/nar/gku1084. PubMed DOI PMC
Kress T., Che K., Epasto L. M., Kozak F., Negroni M., Olsen G. L., Selimovic A., Kurzbach D.. A novel sample handling system for dissolution dynamic nuclear polarization experiments. Magn. Reson. 2021;2:387–394. doi: 10.5194/mr-2-387-2021. PubMed DOI PMC
Cheng M., Qiu D., Tamon L., Istvankova E., Viskova P., Amrane S., Guedin A., Chen J., Lacroix L., Ju H., Trantirek L., Sahakyan A. B., Zhou J., Mergny J. L.. Thermal and pH Stabilities of i-DNA: Confronting in vitro Experiments with Models and In-Cell NMR Data. Angew. Chem., Int. Ed. Engl. 2021;60(18):10286–10294. doi: 10.1002/anie.202016801. PubMed DOI
Skolakova P., Gajarsky M., Palacky J., Subert D., Renciuk D., Trantirek L., Mergny J. L., Vorlickova M.. DNA i-motif formation at neutral pH is driven by kinetic partitioning. Nucleic Acids Res. 2023;51(6):2950–2962. doi: 10.1093/nar/gkad119. PubMed DOI PMC
Mir B., Serrano I., Buitrago D., Orozco M., Escaja N., Gonzalez C.. Prevalent Sequences in the Human Genome Can Form Mini i-Motif Structures at Physiological pH. J. Am. Chem. Soc. 2017;139(40):13985–13988. doi: 10.1021/jacs.7b07383. PubMed DOI
el Hassan M. A., Calladine C. R.. Propeller-twisting of base-pairs and the conformational mobility of dinucleotide steps in DNA. J. Mol. Biol. 1996;259(1):95–103. doi: 10.1006/jmbi.1996.0304. PubMed DOI
Hudecova I., Smith C. G., Hansel-Hertsch R., Chilamakuri C. S., Morris J. A., Vijayaraghavan A., Heider K., Chandrananda D., Cooper W. N., Gale D., Garcia-Corbacho J., Pacey S., Baird R. D., Rosenfeld N., Mouliere F.. Characteristics, origin, and potential for cancer diagnostics of ultrashort plasma cell-free DNA. Genome Res. 2022;32(2):215–227. doi: 10.1101/gr.275691.121. PubMed DOI PMC
Weber E. M. M., Sicoli G., Vezin H., Frébourg G., Abergel D., Bodenhausen G., Kurzbach D.. Sample Ripening through Nanophase Separation Influences the Performance of Dynamic Nuclear Polarization. Angew. Chem. Int. Ed. 2018;57(18):5171–5175. doi: 10.1002/anie.201800493. PubMed DOI