In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells

. 2024 Mar 05 ; 15 (1) : 1992. [epub] 20240305

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38443388

Grantová podpora
CZ.02.2.69/0.0/0.0/20_079/0017045 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.1.01/0.0/0.0/15_003/0000477 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
Discovery Grant Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
ANR-21-CE44-0005-01 Agence Nationale de la Recherche (French National Research Agency)

Odkazy

PubMed 38443388
PubMed Central PMC10914786
DOI 10.1038/s41467-024-46221-y
PII: 10.1038/s41467-024-46221-y
Knihovny.cz E-zdroje

I-Motifs (iM) are non-canonical DNA structures potentially forming in the accessible, single-stranded, cytosine-rich genomic regions with regulatory roles. Chromatin, protein interactions, and intracellular properties seem to govern iM formation at sites with i-motif formation propensity (iMFPS) in human cells, yet their specific contributions remain unclear. Using in-cell NMR with oligonucleotide iMFPS models, we monitor iM-associated structural equilibria in asynchronous and cell cycle-synchronized HeLa cells at 37 °C. Our findings show that iMFPS displaying pHT < 7 under reference in vitro conditions occur predominantly in unfolded states in cells, while those with pHT > 7 appear as a mix of folded and unfolded states depending on the cell cycle phase. Comparing these results with previous data obtained using an iM-specific antibody (iMab) reveals that cell cycle-dependent iM formation has a dual origin, and iM formation concerns only a tiny fraction (possibly 1%) of genomic sites with iM formation propensity. We propose a comprehensive model aligning observations from iMab and in-cell NMR and enabling the identification of iMFPS capable of adopting iM structures under physiological conditions in living human cells. Our results suggest that many iMFPS may have biological roles linked to their unfolded states.

Zobrazit více v PubMed

Gehring K, Leroy J-L, Guéron M. A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature. 1993;363:561–565. doi: 10.1038/363561a0. PubMed DOI

Lieblein AL, Krämer M, Dreuw A, Fürtig B, Schwalbe H. The nature of hydrogen bonds in cytidine⋅⋅⋅H+⋅⋅⋅Cytidine DNA base pairs. Angew. Chem. Int. Ed. 2012;51:4067–4070. doi: 10.1002/anie.201200549. PubMed DOI

Abou Assi H, Garavís M, González C, Damha MJ, i-Motif DNA. structural features and significance to cell biology. Nucleic Acids Res. 2018;46:8038–8056. doi: 10.1093/nar/gky735. PubMed DOI PMC

Iaccarino N, et al. Assessing the influence of pH and cationic strength on i-motif DNA structure. Anal. Bioanal. Chem. 2019;411:7473–7479. doi: 10.1007/s00216-019-02120-6. PubMed DOI

Bhavsar-Jog YP, Van Dornshuld E, Brooks TA, Tschumper GS, Wadkins RM. Epigenetic modification, dehydration, and molecular crowding effects on the thermodynamics of i-motif structure formation from C-rich DNA. Biochemistry. 2014;53:1586–94. doi: 10.1021/bi401523b. PubMed DOI PMC

Reilly, S. M., Morgan, R. K., Brooks, T. A. & Wadkins, R. M. Effect of interior loop length on the thermal stability and pK(a) of i-motif DNA. Biochemistry54, 1364–1370 (2015). PubMed PMC

Fujii T, Sugimoto N. Loop nucleotides impact the stability of intrastrand i-motif structures at neutral pH. Phys. Chem. Chem. Phys. 2015;17:16719–16722. doi: 10.1039/C5CP02794B. PubMed DOI

Saxena S, Joshi S, Shankaraswamy J, Tyagi S, Kukreti S. Magnesium and molecular crowding of the cosolutes stabilize the i-motif structure at physiological pH. Biopolymers. 2017;107:e23018. doi: 10.1002/bip.23018. PubMed DOI

Fleming A, et al. Unraveling the 4 n − 1 rule for DNA i-motif stability: base pairs vs. loop lengths. Org. Biomol. Chem. 2018;16:4537–4546. doi: 10.1039/C8OB01198B. PubMed DOI

Gurung P, et al. The importance of loop length on the stability of i-motif structures. Chem. Commun. 2015;51:5630–5632. doi: 10.1039/C4CC07279K. PubMed DOI PMC

Školáková P, et al. Systematic investigation of sequence requirements for DNA i-motif formation. Nucleic Acids Res. 2019;47:2177–2189. doi: 10.1093/nar/gkz046. PubMed DOI PMC

Debnath M, Fatma K, Dash J. Chemical regulation of DNA i-Motifs for nanobiotechnology and therapeutics. Angew. Chem. 2019;131:2968–2983. doi: 10.1002/ange.201813288. PubMed DOI

Mergny J-L, Sen D. DNA quadruple helices in nanotechnology. Chem. Rev. 2019;119:6290–6325. doi: 10.1021/acs.chemrev.8b00629. PubMed DOI

Lacroix L, et al. Identification of two human nuclear proteins that recognise the cytosine-rich strand of human telomeres in vitro. Nucleic Acids Res. 2000;28:1564–1575. doi: 10.1093/nar/28.7.1564. PubMed DOI PMC

Kang H-J, Kendrick S, Hecht SM, Hurley LH. The transcriptional complex between the BCL2 i-Motif and hnRNP LL is a molecular switch for control of gene expression that can be modulated by small. Mol. J. Am. Chem. Soc. 2014;136:4172–4185. doi: 10.1021/ja4109352. PubMed DOI PMC

Bandiera A, et al. Cytosine-block telomeric type DNA-binding activity of hnRNP proteins from human cell lines. Arch. Biochem. Biophys. 2003;409:305–314. doi: 10.1016/S0003-9861(02)00413-7. PubMed DOI

Yazdani K, et al. Decoding complexity in biomolecular recognition of DNA i-motifs with microarrays. Nucleic Acids Res. 2023;51:12020–12030. doi: 10.1093/nar/gkad981. PubMed DOI PMC

Školáková P, et al. Composite 5-methylations of cytosines modulate i-motif stability in a sequence-specific manner: Implications for DNA nanotechnology and epigenetic regulation of plant telomeric DNA. Biochim. Biophys. Acta Gen. Subj. 2020;1864:129651. doi: 10.1016/j.bbagen.2020.129651. PubMed DOI

Xu B, Devi G, Shao F. Regulation of telomeric i-motif stability by 5-methylcytosine and 5-hydroxymethylcytosine modification. Org. Biomol. Chem. 2015;13:5646–51. doi: 10.1039/C4OB02646B. PubMed DOI

Cui J, Waltman P, Le VH, Lewis EA. The effect of molecular crowding on the stability of human c-MYC promoter sequence I-Motif at neutral pH. Molecules. 2013;18:12751–12767. doi: 10.3390/molecules181012751. PubMed DOI PMC

Rajendran A, Nakano S, Sugimoto N. Molecular crowding of the cosolutes induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral pH. Chem. Commun. 2010;46:1299–1301. doi: 10.1039/b922050j. PubMed DOI

Sun D, Hurley LH. The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. J. Med. Chem. 2009;52:2863–74. doi: 10.1021/jm900055s. PubMed DOI PMC

Selvam S, Mandal S, Mao H. Quantification of chemical and mechanical effects on the formation of the G-Quadruplex and i-Motif in duplex DNA. Biochemistry. 2017;56:4616–4625. doi: 10.1021/acs.biochem.7b00279. PubMed DOI

Jonchhe S, et al. Duplex DNA is weakened in nanoconfinement. J. Am. Chem. Soc. 2020;142:10042–10049. doi: 10.1021/jacs.0c01978. PubMed DOI PMC

Pramanik S, Nagatoishi S, Sugimoto N. DNA tetraplex structure formation from human telomeric repeat motif (TTAGGG):(CCCTAA) in nanocavity water pools of reverse micelles. Chem. Commun. 2012;48:4815–4817. doi: 10.1039/c2cc30622k. PubMed DOI

Kendrick S, et al. The dynamic character of the BCL2 promoter i-Motif provides a mechanism for modulation of gene expression by compounds that bind selectively to the alternative DNA hairpin structure. J. Am. Chem. Soc. 2014;136:4161–4171. doi: 10.1021/ja410934b. PubMed DOI PMC

Sutherland C, Cui Y, Mao H, Hurley LH. A mechanosensor mechanism controls the G-Quadruplex/i-Motif molecular switch in the MYC promoter NHE III1. J. Am. Chem. Soc. 2016;138:14138–14151. doi: 10.1021/jacs.6b09196. PubMed DOI

Ma X, et al. Genome-wide characterization of i-motifs and their potential roles in the stability and evolution of transposable elements in rice. Nucleic Acids Res. 2022;50:3226–3238. doi: 10.1093/nar/gkac121. PubMed DOI PMC

Zeraati M, et al. I-motif DNA structures are formed in the nuclei of human cells. Nat. Chem. 2018;10:631–637. doi: 10.1038/s41557-018-0046-3. PubMed DOI

King JJ, et al. DNA G-Quadruplex and i-Motif structure formation is interdependent in human cells. J. Am. Chem. Soc. 2020;142:20600–20604. doi: 10.1021/jacs.0c11708. PubMed DOI

Martinez, C. D. P. et al. Human genomic DNA is widely interspersed with i-motif structures. Preprint at 10.1101/2022.04.14.488274 (2022).

Zanin I, et al. Genome-wide mapping of i-motifs reveals their association with transcription regulation in live human cells. Nucleic Acids Res. 2023;51:8309–8321. doi: 10.1093/nar/gkad626. PubMed DOI PMC

Cheng M, et al. Thermal and pH stabilities of i-DNA: confronting in vitro experiments with models and in-cell NMR data. Angew. Chem. Int. Ed. 2021;60:10286–10294. doi: 10.1002/anie.202016801. PubMed DOI

Dzatko S, et al. Evaluation of the stability of DNA i-motifs in the nuclei of living mammalian cells. Angew. Chem. Int. Ed. 2018;57:2165–2169. doi: 10.1002/anie.201712284. PubMed DOI PMC

Leroy J-L, Guéron M, Mergny J-L, Hélène C. Intramolecular folding of a fragment of the cytosine-rich strand of telomeric DNA into an i-motif. Nucleic Acids Res. 1994;22:1600–1606. doi: 10.1093/nar/22.9.1600. PubMed DOI PMC

Zhou J, et al. Formation of i -motif structure at neutral and slightly alkaline pH. Mol. Biosyst. 2010;6:580–586. doi: 10.1039/B919600E. PubMed DOI

Theillet F-X, Luchinat E, In-cell NMR. Why and how? Prog. Nucl. Magn. Reson. Spectrosc. 2022;132–133:1–112. doi: 10.1016/j.pnmrs.2022.04.002. PubMed DOI

Theillet FX. In-cell structural biology by NMR: the benefits of the atomic scale. Chem. Rev. 2022;122:9497–9570. doi: 10.1021/acs.chemrev.1c00937. PubMed DOI

Hänsel R, Foldynova-Trantirkova S, Dötsch V, Trantirek L. Investigation of quadruplex structure under physiological conditions using in-cell NMR. Top. Curr. Chem. 2013;330:47–65. doi: 10.1007/128_2012_332. PubMed DOI

Hänsel R, Luh LM, Corbeski I, Trantirek L, Dötsch V. In-cell NMR and EPR spectroscopy of biomacromolecules. Angew. Chem. Int. Ed. Engl. 2014;53:10300–14. doi: 10.1002/anie.201311320. PubMed DOI

Harbers, M. Shift-western blotting: separate analysis of protein and DNA from protein–DNA complexes. in Western Blotting: Methods and Protocols (eds Kurien, B. T. & Scofield, R. H.) 355–373 (Springer, 2015). PubMed

Du Z, et al. X-ray crystallographic and NMR studies of protein–protein and protein–nucleic acid interactions involving the KH domains from human poly(C)-binding protein-2. RNA. 2007;13:1043–1051. doi: 10.1261/rna.410107. PubMed DOI PMC

Brazier JA, Shah A, Brown GD. I-Motif formation in gene promoters: unusually stable formation in sequences complementary to known G-quadruplexes. Chem. Commun. 2012;48:10739–10741. doi: 10.1039/c2cc30863k. PubMed DOI

Rogers RA, Fleming AM, Burrows CJ. Rapid screen of potential i-motif forming sequences in DNA repair gene promoters. ACS Omega. 2018;3:9630–9635. doi: 10.1021/acsomega.8b01551. PubMed DOI PMC

Roy B, et al. Interaction of individual structural domains of hnRNP LL with the BCL2 promoter i-motif DNA. J. Am. Chem. Soc. 2016;138:10950–10962. doi: 10.1021/jacs.6b05036. PubMed DOI

Shen J, et al. Promoter G-quadruplex folding precedes transcription and is controlled by chromatin. Genome Biol. 2021;22:143. doi: 10.1186/s13059-021-02346-7. PubMed DOI PMC

Spiegel J, et al. G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biol. 2021;22:117. doi: 10.1186/s13059-021-02324-z. PubMed DOI PMC

Spear JS, White KA. Single-cell intracellular pH dynamics regulate the cell cycle by timing the G1 exit and G2 transition. J. Cell. Sci. 2023;136:jcs260458. doi: 10.1242/jcs.260458. PubMed DOI PMC

Odermatt PD, et al. Variations of intracellular density during the cell cycle arise from tip-growth regulation in fission yeast. eLife. 2021;10:e64901. doi: 10.7554/eLife.64901. PubMed DOI PMC

Wright EP, Huppert JL, Waller ZAE. Identification of multiple genomic DNA sequences which form i-motif structures at neutral pH. Nucleic Acids Res. 2017;45:2951–2959. doi: 10.1093/nar/gkx090. PubMed DOI PMC

Jonchhe S, et al. Decreased water activity in nanoconfinement contributes to the folding of G-quadruplex and i-motif structures. Proc. Natl. Acad. Sci. 2018;115:9539–9544. doi: 10.1073/pnas.1805939115. PubMed DOI PMC

Liu L, Kim BG, Feroze U, Macgregor RB, Jr, Chalikian TV. Probing the ionic atmosphere and hydration of the c-MYC i-motif. J. Am. Chem. Soc. 2018;140:2229–2238. doi: 10.1021/jacs.7b11537. PubMed DOI

Shirude PS, Okumus B, Ying L, Ha T, Balasubramanian S. Single-molecule conformational analysis of G-quadruplex formation in the promoter DNA duplex of the proto-oncogene C-Kit. J. Am. Chem. Soc. 2007;129:7484–7485. doi: 10.1021/ja070497d. PubMed DOI PMC

Boissieras, J. et al. iMab Antibody Binds Single-Stranded Cytosine-Rich Sequences and Unfolds DNA i-Motifs. Preprint at 10.1101/2023.11.21.568054 (2023). PubMed PMC

Hoffman EA, Frey BL, Smith LM, Auble DT. Formaldehyde crosslinking: a tool for the study of chromatin complexes. J. Biol. Chem. 2015;290:26404–26411. doi: 10.1074/jbc.R115.651679. PubMed DOI PMC

Lannes L, Young P, Richter C, Morgner N, Schwalbe H. Interaction of the N-terminal tandem domains of hnRNP LL with the BCL2 promoter i-motif DNA sequence. ChemBioChem. 2017;18:2033–2044. doi: 10.1002/cbic.201700390. PubMed DOI

Chalikian TV, et al. Duplex-tetraplex equilibria in guanine- and cytosine-rich DNA. Biophys. Chem. 2020;267:106473. doi: 10.1016/j.bpc.2020.106473. PubMed DOI

Yamaoki Y, et al. The first successful observation of in-cell NMR signals of DNA and RNA in living human cells. Phys. Chem. Chem. Phys. 2018;20:2982–2985. doi: 10.1039/C7CP05188C. PubMed DOI

Whitfield ML, et al. Stem-loop binding protein, the protein that binds the 3′ end of histone mRNA, is cell cycle regulated by both translational and posttranslational mechanisms. Mol. Cell. Biol. 2000;20:4188–4198. doi: 10.1128/MCB.20.12.4188-4198.2000. PubMed DOI PMC

Jackman J, O’Connor PM. Methods for synchronizing cells at specific stages of the cell cycle. Curr. Protoc. Cell Biol. 1998;00:8.3.1–8.3.20. doi: 10.1002/0471143030.cb0803s00. PubMed DOI

Kubo S, et al. A gel-encapsulated bioreactor system for NMR studies of protein–protein interactions in living mammalian cells. Angew. Chem. 2013;125:1246–1249. doi: 10.1002/ange.201207243. PubMed DOI

Sklenář V, Bax A. Spin-echo water suppression for the generation of pure-phase two-dimensional NMR. Spectra J. Magn. Reson. 1969. 1987;74:469–479.

Viskova, P., Rynes, J., Foldynova-Trantirkova, S. & Trantirek, L. Source data: In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells figshare. Dataset. 10.6084/m9.figshare.25011938.v4 (2024). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...