Spectroscopic studies of sequence-dependent conformational transitions in asymmetric G/C rich double-stranded DNA
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
22-29738S
Grantová Agentura České Republiky
PubMed
40504244
DOI
10.1007/s00249-025-01767-7
PII: 10.1007/s00249-025-01767-7
Knihovny.cz E-zdroje
- Klíčová slova
- Circular dichroism spectroscopy, Conformation equilibrium, Cytosine i-motif, DNA, Guanine quadruplex,
- Publikační typ
- časopisecké články MeSH
Nucleic acids, molecules essential for all life, can adopt many alternative structures besides the well-known right-handed double helix, some of which have been reported to exist and function in vivo. One of the most appropriate methods for structural studies of nucleic acids is circular dichroism spectroscopy, utilizing structure-induced chirality due to the asymmetric winding of absorbing nucleobases. Using electronic CD and absorption spectroscopies in combination with melting experiments, we analyzed a conformational equilibrium between DNA double helix and two alternative conformations of nucleic acids, cytosine i-motifs and guanine quadruplexes, as a function of the primary structure of model G/C-rich sequences, containing blocks of G and C runs in particular DNA strands. This paper is a part of special issue dedicated to 70th anniversary of the Biophysical Institute of the Czech Academy of Sciences, where circular dichroism spectroscopy of nucleic acids has been used successfully and impactfully for many years.
Zobrazit více v PubMed
Arora A, Nair DR, Maiti S (2009) Effect of flanking bases on quadruplex stability and Watson–Crick duplex competition. FEBS J 276:3628–3640 PubMed DOI
Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem 5:182–186 PubMed DOI PMC
Boncina M, Lah J, Prislan I, Vesnaver G (2012) Energetic basis of human telomeric DNA folding into G-quadruplex structures. J Am Chem Soc 134:9657–9663 PubMed DOI
Bucek P, Jaumot J, Aviñó A, Eritja R, Gargallo R (2009) pH-modulated Watson–Crick duplex-quadruplex equilibria of guanine-rich and cytosine-rich DNA sequences 140 base pairs upstream of the c-kit transcription initiation site. Chemistry 15:12663–12671 PubMed DOI
Chambers VS, Marsico G, Boutell JM, Di Antonio M, Smith GP, Balasubramanian S (2015) High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotech 33:877–881 DOI
Cheng M, Qiu D, Tamon L, Ištvánková E, Víšková P, Amrane S, Guédin A, Chen J, Lacroix L, Ju H, Trantírek L, Sahakyan AB, Zhou J, Mergny JL (2021) Thermal and pH stabilities of i-DNA: confronting in vitro experiments with models and in-cell NMR data. Angew Chem Int Ed Engl 60:10286–10294 PubMed DOI
Cui Y, Kong D, Ghimire C, Xu C, Mao H (2016) Mutually exclusive formation of G-quadruplex and i-motif is a general phenomenon governed by steric hindrance in duplex DNA. Biochemistry 55:2291–2299 PubMed DOI
Devi G, Winnerdy FR, Ang JCY, Lim KW, Phan AT (2022) Four-layered intramolecular parallel G-quadruplex with non-nucleotide loops: an ultra-stable self-folded DNA nano-scaffold. ACS Nano 16:533–540 PubMed DOI
Dhakal S, Yu Z, Konik R, Cui Y, Koirala D, Mao H (2012) G-quadruplex and i-motif are mutually exclusive in ILPR double-stranded DNA. Biophys J 102:2575–2584 PubMed DOI PMC
Diggins L, Ross D, Bhanot S, Corallo R, Daley R, Patel K, Lewis O, Donahue S, Thaddeus J, Hiers L, Syed C, Eagerton D, Mohanty BK (2025) CD spectra reveal the state of G-quadruplexes and i-motifs in repeated and other DNA sequences. Biophys Rep 5:100187
Dvořáková Z, Vorlíčková M, Renčiuk D (2017) Spectroscopic insights into quadruplexes of five-repeat telomere DNA sequences upon G-block damage. Biochimica Et Biophysica Acta (BBA) Gen Subj 1861:2750–2757 DOI
Dvorakova Z, Renciuk D, Kejnovska I, Skolakova P, Bednarova K, Sagi J, Vorlickova M (2018) i-Motif of cytosine-rich human telomere DNA fragments containing natural base lesions. Nucleic Acids Res 46:1624–1634 PubMed DOI PMC
Dzatko S, Krafcikova M, Hänsel-Hertsch R, Fessl T, Fiala R, Loja T, Krafcik D, Mergny JL, Foldynova-Trantirkova S, Trantirek L (2018) Evaluation of the stability of DNA i-motifs in the nuclei of living mammalian cells. Angew Chem Int Ed Engl 57:2165–2169 PubMed DOI PMC
Fleming AM, Zhou J, Wallace SS, Burrows CJ (2015) A role for the fifth G-track in G-quadruplex forming oncogene promoter sequences during oxidative stress: do these “spare tires” have an evolved function? ACS Cent Sci 1:226–233 PubMed DOI PMC
Gehring K, Leroy JL, Guéron M (1993) A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature 363:561–565 PubMed DOI
Gellert M, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci USA 48:2013–3000 PubMed DOI PMC
Ghezzo M, Trajkovski M, Plavec J, Sissi C (2023) A screening protocol for exploring loop length requirements for the formation of a three cytosine-cytosine(+) base-paired i-motif. Angew Chem Int Ed Engl 62:e202309327 PubMed DOI
Guedin A, De Cian A, Gros J, Lacroix L, Mergny JL (2008) Sequence effects in single-base loops for quadruplexes. Biochimie 90:686–696 PubMed DOI
Guédin A, Alberti P, Mergny J-L (2009) Stability of intramolecular quadruplexes: sequence effects in the central loop. Nucleic Acids Res 37:5559–5567 PubMed DOI PMC
Harkness RW, Mittermaier AK (2016) G-register exchange dynamics in guanine quadruplexes. Nucleic Acids Res 44:3481–3494 PubMed DOI PMC
Hazel P, Huppert J, Balasubramanian S, Neidle S (2004) Loop-length-dependent folding of G-quadruplexes. J Am Chem Soc 126:16405–16415 PubMed DOI
Jamroskovic J, Deiana M, Sabouri N (2022) Probing the folding pathways of four-stranded intercalated cytosine-rich motifs at single base-pair resolution. Biochimie 199:81–91 PubMed DOI
Jaumot J, Eritja R, Tauler R, Gargallo R (2006) Resolution of a structural competition involving dimeric G-quadruplex and its C-rich complementary strand. Nucleic Acids Res 34:206–216 PubMed DOI PMC
Kejnovska I, Renciuk D, Palacky J, Vorlickova M (2019) CD Study of the G-quadruplex conformation. In: Yang D, Lin C (eds) G-quadruplex nucleic acids: methods and protocols, vol 2035. Humana Press Inc, Totowa, pp 25–44 DOI
Kendrick S, Hurley LH (2010) The role of G-quadruplex/i-motif secondary structures as cis-acting regulatory elements. Pure Appl Chem 82:1609–1621 PubMed DOI PMC
Kim SE, Hong SC (2023) Two opposing effects of monovalent cations on the stability of i-motif structure. J Phys Chem B 127:1932–1939 PubMed DOI
König SLB, Huppert JL, Sigel RKO, Evans AC (2013) Distance-dependent duplex DNA destabilization proximal to G-quadruplex/i-motif sequences. Nucleic Acids Res 41:7453–7461 PubMed DOI PMC
Kumar N, Sahoo B, Varun KAS, Maiti S (2008) Effect of loop length variation on quadruplex-Watson Crick duplex competition. Nucleic Acids Res 36:4433–4442 PubMed DOI PMC
Kypr J, Kejnovska I, Renciuk D, Vorlickova M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37:1713–1725 PubMed DOI PMC
Li Y, Zon G, Wilson WD (1991) NMR and molecular modeling evidence for a G.A mismatch base pair in a purine-rich DNA duplex. Proc Natl Acad Sci USA 88:26–30 PubMed DOI PMC
Li W, Wu P, Ohmichi T, Sugimoto N (2002) Characterization and thermodynamic properties of quadruplex/duplex competition. FEBS Lett 526:77–81 PubMed DOI
Li K, Yatsunyk L, Neidle S (2021) Water spines and networks in G-quadruplex structures. Nucleic Acids Res 49:519–528 PubMed DOI
Mendoza O, Elezgaray J, Mergny J-L (2015) Kinetics of quadruplex to duplex conversion. Biochimie 118:225–233 PubMed DOI
Mergny JL, Lacroix L (2003) Analysis of thermal melting curves. Oligonucleotides 13:515–537 PubMed DOI
Neidle S (1999) Nucleic acid structure. Oxford University Press Inc., New York
Neidle S, Balasubramanian S (2006) Quadruplex nucleic acids. Royal Society of Chemistry, London, Cambridge
Peña Martinez CD, Zeraati M, Rouet R, Mazigi O, Henry JY, Gloss B, Kretzmann JA, Evans CW, Ruggiero E, Zanin I, Marušič M, Plavec J, Richter SN, Bryan TM, Smith NM, Dinger ME, Kummerfeld S, Christ D (2024) Human genomic DNA is widely interspersed with i-motif structures. Embo J 43:4786–4804 PubMed DOI PMC
Phan AT, Mergny JL (2002) Human telomeric DNA: G-quadruplex, i-motif and watson-crick double helix. Nucleic Acids Res 30:4618–4625 PubMed DOI PMC
Pohl FM, Jovin TM (1972) Salt-induced cooperative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly(dG-dC). J Mol Biol 67:375–396 PubMed DOI
Renciuk D, Kejnovska I, Skolakova P, Bednarova K, Motlova J, Vorlickova M (2009) Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions. Nucleic Acids Res 37:6625–6634 PubMed DOI PMC
Rodriguez J, Domínguez A, Aviñó A, Borgonovo G, Eritja R, Mazzini S, Gargallo R (2023) Exploring the stabilizing effect on the i-motif of neighboring structural motifs and drugs. Int J Biol Macromol 242:124794 PubMed DOI
Saxena S, Joshi S, Shankaraswamy J, Tyagi S, Kukreti S (2017) Magnesium and molecular crowding of the cosolutes stabilize the i-motif structure at physiological pH. Biopolymers 107:e23018 DOI
Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334:364–366 PubMed DOI
Školáková P, Renčiuk D, Palacký J, Krafčík D, Dvořáková Z, Kejnovská I, Bednářová K, Vorlíčková M (2019) Systematic investigation of sequence requirements for DNA i-motif formation. Nucleic Acids Res 47:2177–2189 PubMed DOI PMC
Školáková P, Gajarský M, Palacký J, Šubert D, Renčiuk D, Trantírek L, Mergny JL, Vorlíčková M (2023) DNA i-motif formation at neutral pH is driven by kinetic partitioning. Nucleic Acids Res 51:2950–2962 PubMed DOI PMC
Tafech A, Stéphanou A (2024) On the importance of acidity in cancer cells and therapy. Biology 13:225 PubMed DOI PMC
Tao S, Run Y, Monchaud D, Zhang W (2024) i-Motif DNA: identification, formation, and cellular functions. Trends Genet 40:853–867 PubMed DOI
Trajkovski M, Plavec J (2020) Chasing particularities of guanine- and cytosine-rich DNA strands. Molecules 25:434 PubMed DOI PMC
Tran PLT, Rieu M, Hodeib S, Joubert A, Ouellet J, Alberti P, Bugaut A, Allemand JF, Boulé JB, Croquette V (2021) Folding and persistence times of intramolecular G-quadruplexes transiently embedded in a DNA duplex. Nucleic Acids Res 49:5189–5201 PubMed DOI PMC
Víšková P, Ištvánková E, Ryneš J, Džatko Š, Loja T, Živković ML, Rigo R, El-Khoury R, Serrano-Chacón I, Damha MJ, González C, Mergny JL, Foldynová-Trantírková S, Trantírek L (2024) In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells. Nat Commun 15:1992 PubMed DOI PMC
Vorlickova M, Chladkova J, Kejnovska I, Fialova M, Kypr J (2005a) Guanine tetraplex topology of human telomere DNA is governed by the number of (TTAGGG) repeats. Nucleic Acids Res 33:5851–5860 PubMed DOI PMC
Vorlickova M, Kypr J, Sklenar V (2005b) Nucleic acids: spectroscopic methods. In: Worsfold PJ, Townshend A, Poole CF (eds) Encyclopedia of analytical science, vol 6, 2nd edn. Elsevier, Oxford, pp 391–399 DOI
Vorlickova M, Bednarova K, Kejnovska I, Kypr J (2007) Intramolecular and intermolecular guanine quadruplexes of DNA in aqueous salt and ethanol solutions. Biopolymers 86:1–10 PubMed DOI
Wang G, Vasquez KM (2023) Dynamic alternative DNA structures in biology and disease. Nat Rev Genet 24:211–234 PubMed DOI
Wright EP, Huppert JL, Waller Zoë AE (2017) Identification of multiple genomic DNA sequences which form i-motif structures at neutral pH. Nucleic Acids Res 45:2951–2959 PubMed DOI PMC
Zeraati M, Langley DB, Schofield P, Moye AL, Rouet R, Hughes WE, Bryan TM, Dinger ME, Christ D (2018) I-motif DNA structures are formed in the nuclei of human cells. Nat Chem 10:631–637 PubMed DOI
Zhang X, Zhang Y, Zhang W (2020) Dynamic topology of double-stranded telomeric DNA studied by single-molecule manipulation in vitro. Nucleic Acids Res 48:6458–6470 PubMed DOI PMC