The SAP domain of Ku facilitates its efficient loading onto DNA ends
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_043/0009632
Czech Ministry of Education, Youth and Sports
19-21961S
Grantová Agentura České Republiky
TEAMING 857560
HORIZON EUROPE European Innovation Council
LM2023042
MEYS
Masaryk University
PubMed
37850645
PubMed Central
PMC10681742
DOI
10.1093/nar/gkad850
PII: 7321075
Knihovny.cz E-zdroje
- MeSH
- antigen Ku * genetika metabolismus MeSH
- DNA genetika metabolismus MeSH
- kinetika MeSH
- oprava DNA spojením konců MeSH
- oprava DNA * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigen Ku * MeSH
- DNA MeSH
The evolutionarily conserved DNA repair complex Ku serves as the primary sensor of free DNA ends in eukaryotic cells. Its rapid association with DNA ends is crucial for several cellular processes, including non-homologous end joining (NHEJ) DNA repair and telomere protection. In this study, we conducted a transient kinetic analysis to investigate the impact of the SAP domain on individual phases of the Ku-DNA interaction. Specifically, we examined the initial binding, the subsequent docking of Ku onto DNA, and sliding of Ku along DNA. Our findings revealed that the C-terminal SAP domain of Ku70 facilitates the initial phases of the Ku-DNA interaction but does not affect the sliding process. This suggests that the SAP domain may either establish the first interactions with DNA, or stabilize these initial interactions during loading. To assess the biological role of the SAP domain, we generated Arabidopsis plants expressing Ku lacking the SAP domain. Intriguingly, despite the decreased efficiency of the ΔSAP Ku complex in loading onto DNA, the mutant plants exhibited full proficiency in classical NHEJ and telomere maintenance. This indicates that the speed with which Ku loads onto telomeres or DNA double-strand breaks is not the decisive factor in stabilizing these DNA structures.
CEITEC Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
Mari P.O., Florea B.I., Persengiev S.P., Verkaik N.S., Bruggenwirth H.T., Modesti M., Giglia-Mari G., Bezstarosti K., Demmers J.A., Luider T.M.et al. .. Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc. Nat. Acad. Sci. U.S.A. 2006; 103:18597–18602. PubMed PMC
Koike M., Yutoku Y., Koike A.. Accumulation of Ku70 at DNA double-strand breaks in living epithelial cells. Exp. Cell. Res. 2011; 317:2429–2437. PubMed
Chang H.H.Y., Pannunzio N.R., Adachi N., Lieber M.R.. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017; 18:495–506. PubMed PMC
Sui H., Hao M., Chang W., Imamichi T.. The Role of Ku70 as a Cytosolic DNA Sensor in Innate Immunity and Beyond. Front. Cell. Infect. Microbiol. 2021; 11:761983. PubMed PMC
Balestrini A., Ristic D., Dionne I., Liu X.Z., Wyman C., Wellinger R.J., Petrini J.H.. The Ku heterodimer and the metabolism of single-ended DNA double-strand breaks. Cell Rep. 2013; 3:2033–2045. PubMed PMC
Teixeira-Silva A., Ait Saada A., Hardy J., Iraqui I., Nocente M.C., Freon K., Lambert S.A.E.. The end-joining factor Ku acts in the end-resection of double strand break-free arrested replication forks. Nat. Commun. 2017; 8:1982. PubMed PMC
Marcand S. How do telomeres and NHEJ coexist?. Mol. Cell Oncol. 2014; 1:e963438. PubMed PMC
Zahid S., Seif El Dahan M., Iehl F., Fernandez-Varela P., Le Du M.H., Ropars V., Charbonnier J.B. The multifaceted roles of Ku70/80. Int. J. Mol. Sci. 2021; 22:4134. PubMed PMC
Walker J.R., Corpina R.A., Goldberg J.. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001; 412:607–614. PubMed
Yoo S., Dynan W.S.. Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein. Nucleic Acids Res. 1999; 27:4679–4686. PubMed PMC
Britton S., Coates J., Jackson S.P.. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J. Cell Biol. 2013; 202:579–595. PubMed PMC
Valuchova S., Fulnecek J., Prokop Z., Stolt-Bergner P., Janouskova E., Hofr C., Riha K.. Protection of Arabidopsis blunt-ended telomeres is mediated by a physical association with the Ku heterodimer. Plant Cell. 2017; 29:1533–1545. PubMed PMC
Aravind L., Koonin E.V.. SAP - a putative DNA-binding motif involved in chromosomal organization. Trends Biochem. Sci. 2000; 25:112–114. PubMed
Zhang Z., Zhu L., Lin D., Chen F., Chen D.J., Chen Y.. The three-dimensional structure of the C-terminal DNA-binding domain of human Ku70. J. Biol. Chem. 2001; 276:38231–38236. PubMed
Anisenko A.N., Knyazhanskaya E.S., Zatsepin T.S., Gottikh M.B.. Human Ku70 protein binds hairpin RNA and double stranded DNA through two different sites. Biochimie. 2017; 132:85–93. PubMed
Wang J., Dong X., Myung K., Hendrickson E.A., Reeves W.H.. Identification of two domains of the p70 Ku protein mediating dimerization with p80 and DNA binding. J. Biol. Chem. 1998; 273:842–848. PubMed
Hu S., Pluth J.M., Cucinotta F.A.. Putative binding modes of Ku70-SAP domain with double strand DNA: a molecular modeling study. J. Mol. Model. 2012; 18:2163–2174. PubMed
Hnizda A., Tesina P., Nguyen T.B., Kukacka Z., Kater L., Chaplin A.K., Beckmann R., Ascher D.B., Novak P., Blundell T.L.. SAP domain forms a flexible part of DNA aperture in Ku70/80. FEBS J. 2021; 288:4382–4393. PubMed PMC
Rivera-Calzada A., Spagnolo L., Pearl L.H., Llorca O.. Structural model of full-length human Ku70-Ku80 heterodimer and its recognition of DNA and DNA-PKcs. EMBO Rep. 2007; 8:56–62. PubMed PMC
Khan H., Ochi T.. Plant PAXX has an XLF-like function and stimulates DNA end-joining by the Ku–DNA ligase IV-XRCC4 complex. Plant J. 2023; 116:58–68. PubMed
Bundock P., van Attikum H., Hooykaas P.. Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant. Nucleic Acids Res. 2002; 30:3395–3400. PubMed PMC
Gallego M.E., Bleuyard J.Y., Daoudal-Cotterell S., Jallut N., White C.I.. Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J. 2003; 35:557–565. PubMed
Riha K., Watson J.M., Parkey J., Shippen D.E.. Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J. 2002; 21:2819–2826. PubMed PMC
Kazda A., Zellinger B., Rossler M., Derboven E., Kusenda B., Riha K.. Chromosome end protection by blunt-ended telomeres. Genes Dev. 2012; 26:1703–1713. PubMed PMC
Riha K., Shippen D.E.. Ku is required for telomeric C-rich strand maintenance but not for end-to-end chromosome fusions in Arabidopsis. Proc. Nat. Acad. Sci. U.S.A. 2003; 100:611–615. PubMed PMC
Zellinger B., Akimcheva S., Puizina J., Schirato M., Riha K.. Ku suppresses formation of telomeric circles and alternative telomere lengthening in Arabidopsis. Mol. Cell. 2007; 27:163–169. PubMed
Stoynova L., Solorzano R., Collins E.D.. Generation of large deletion mutants from plasmid DNA. BioTechniques. 2004; 36:402–404. PubMed
Fulnecek J., Riha K.. High-throughput protein-nucleic acid interaction assay based on protein-induced fluorescence enhancement. Methods Mol. Biol. 2021; 2209:109–117. PubMed
Johnson K.A., Simpson Z.B., Blom T.. Global Kinetic Explorer: a new computer program for dynamic simulation and fitting of kinetic data. Anal. Biochem. 2009; 387:20–29. PubMed
Yoo S.D., Cho Y.H., Sheen J.. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2007; 2:1565–1572. PubMed
Zhang J.J., Kobert K., Flouri T., Stamatakis A.. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014; 30:614–620. PubMed PMC
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R.. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29:15–21. PubMed PMC
Robinson J.T., Thorvaldsdottir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P.. Integrative genomics viewer. Nat. Biotechnol. 2011; 29:24–26. PubMed PMC
Senior A.W., Evans R., Jumper J., Kirkpatrick J., Sifre L., Green T., Qin C., Zidek A., Nelson A.W.R., Bridgland A.et al. .. Improved protein structure prediction using potentials from deep learning. Nature. 2020; 577:706–710. PubMed
Valuchova S., Fulnecek J., Petrov A.P., Tripsianes K., Riha K.. A rapid method for detecting protein-nucleic acid interactions by protein induced fluorescence enhancement. Sci. Rep. 2016; 6:39653. PubMed PMC
Gallego M.E., Jalut N., White C.I.. Telomerase dependence of telomere lengthening in Ku80 mutant Arabidopsis. Plant Cell. 2003; 15:782–789. PubMed PMC
Fulcher N., Sablowski R.. Hypersensitivity to DNA damage in plant stem cell niches. Proc. Nat. Acad. Sci. U.S.A. 2009; 106:20984–20988. PubMed PMC
Hussain S.S., Majumdar R., Moore G.M., Narang H., Buechelmaier E.S., Bazil M.J., Ravindran P.T., Leeman J.E., Li Y., Jalan M.et al. .. Measuring nonhomologous end-joining, homologous recombination and alternative end-joining simultaneously at an endogenous locus in any transfectable human cell. Nucleic Acids Res. 2021; 49:e74. PubMed PMC
Shen H., Strunks G.D., Klemann B.J., Hooykaas P.J., de Pater S.. CRISPR/Cas9-induced double-strand break repair in Arabidopsis nonhomologous end-joining mutants. G3. 2017; 7:193–202. PubMed PMC
Inagawa T., Wennink T., Lebbink J.H.G., Keijzers G., Florea B.I., Verkaik N.S., van Gent D.C.. C-terminal extensions of Ku70 and Ku80 differentially influence DNA end binding properties. Int. J. Mol. Sci. 2020; 21:6725. PubMed PMC
Ait-Haddou R., Herzog W.. Brownian ratchet models of molecular motors. Cell Biochem. Biophys. 2003; 38:191–214. PubMed
Chen X., Xu X., Chen Y., Cheung J.C., Wang H., Jiang J., de Val N., Fox T., Gellert M., Yang W.. Structure of an activated DNA-PK and its implications for NHEJ. Mol. Cell. 2021; 81:801–810. PubMed PMC
Heacock M., Spangler E., Riha K., Puizina J., Shippen D.E.. Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for chromosome end-joining. EMBO J. 2004; 23:2304–2313. PubMed PMC
Jin S., Weaver D.T.. Double-strand break repair by Ku70 requires heterodimerization with Ku80 and DNA binding functions. EMBO J. 1997; 16:6874–6885. PubMed PMC
Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E.. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021; 30:70–82. PubMed PMC