The SAP domain of Ku facilitates its efficient loading onto DNA ends

. 2023 Nov 27 ; 51 (21) : 11706-11716.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37850645

Grantová podpora
CZ.02.1.01/0.0/0.0/17_043/0009632 Czech Ministry of Education, Youth and Sports
19-21961S Grantová Agentura České Republiky
TEAMING 857560 HORIZON EUROPE European Innovation Council
LM2023042 MEYS
Masaryk University

The evolutionarily conserved DNA repair complex Ku serves as the primary sensor of free DNA ends in eukaryotic cells. Its rapid association with DNA ends is crucial for several cellular processes, including non-homologous end joining (NHEJ) DNA repair and telomere protection. In this study, we conducted a transient kinetic analysis to investigate the impact of the SAP domain on individual phases of the Ku-DNA interaction. Specifically, we examined the initial binding, the subsequent docking of Ku onto DNA, and sliding of Ku along DNA. Our findings revealed that the C-terminal SAP domain of Ku70 facilitates the initial phases of the Ku-DNA interaction but does not affect the sliding process. This suggests that the SAP domain may either establish the first interactions with DNA, or stabilize these initial interactions during loading. To assess the biological role of the SAP domain, we generated Arabidopsis plants expressing Ku lacking the SAP domain. Intriguingly, despite the decreased efficiency of the ΔSAP Ku complex in loading onto DNA, the mutant plants exhibited full proficiency in classical NHEJ and telomere maintenance. This indicates that the speed with which Ku loads onto telomeres or DNA double-strand breaks is not the decisive factor in stabilizing these DNA structures.

Zobrazit více v PubMed

Mari P.O., Florea B.I., Persengiev S.P., Verkaik N.S., Bruggenwirth H.T., Modesti M., Giglia-Mari G., Bezstarosti K., Demmers J.A., Luider T.M.et al. .. Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc. Nat. Acad. Sci. U.S.A. 2006; 103:18597–18602. PubMed PMC

Koike M., Yutoku Y., Koike A.. Accumulation of Ku70 at DNA double-strand breaks in living epithelial cells. Exp. Cell. Res. 2011; 317:2429–2437. PubMed

Chang H.H.Y., Pannunzio N.R., Adachi N., Lieber M.R.. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017; 18:495–506. PubMed PMC

Sui H., Hao M., Chang W., Imamichi T.. The Role of Ku70 as a Cytosolic DNA Sensor in Innate Immunity and Beyond. Front. Cell. Infect. Microbiol. 2021; 11:761983. PubMed PMC

Balestrini A., Ristic D., Dionne I., Liu X.Z., Wyman C., Wellinger R.J., Petrini J.H.. The Ku heterodimer and the metabolism of single-ended DNA double-strand breaks. Cell Rep. 2013; 3:2033–2045. PubMed PMC

Teixeira-Silva A., Ait Saada A., Hardy J., Iraqui I., Nocente M.C., Freon K., Lambert S.A.E.. The end-joining factor Ku acts in the end-resection of double strand break-free arrested replication forks. Nat. Commun. 2017; 8:1982. PubMed PMC

Marcand S. How do telomeres and NHEJ coexist?. Mol. Cell Oncol. 2014; 1:e963438. PubMed PMC

Zahid S., Seif El Dahan M., Iehl F., Fernandez-Varela P., Le Du M.H., Ropars V., Charbonnier J.B. The multifaceted roles of Ku70/80. Int. J. Mol. Sci. 2021; 22:4134. PubMed PMC

Walker J.R., Corpina R.A., Goldberg J.. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001; 412:607–614. PubMed

Yoo S., Dynan W.S.. Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein. Nucleic Acids Res. 1999; 27:4679–4686. PubMed PMC

Britton S., Coates J., Jackson S.P.. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J. Cell Biol. 2013; 202:579–595. PubMed PMC

Valuchova S., Fulnecek J., Prokop Z., Stolt-Bergner P., Janouskova E., Hofr C., Riha K.. Protection of Arabidopsis blunt-ended telomeres is mediated by a physical association with the Ku heterodimer. Plant Cell. 2017; 29:1533–1545. PubMed PMC

Aravind L., Koonin E.V.. SAP - a putative DNA-binding motif involved in chromosomal organization. Trends Biochem. Sci. 2000; 25:112–114. PubMed

Zhang Z., Zhu L., Lin D., Chen F., Chen D.J., Chen Y.. The three-dimensional structure of the C-terminal DNA-binding domain of human Ku70. J. Biol. Chem. 2001; 276:38231–38236. PubMed

Anisenko A.N., Knyazhanskaya E.S., Zatsepin T.S., Gottikh M.B.. Human Ku70 protein binds hairpin RNA and double stranded DNA through two different sites. Biochimie. 2017; 132:85–93. PubMed

Wang J., Dong X., Myung K., Hendrickson E.A., Reeves W.H.. Identification of two domains of the p70 Ku protein mediating dimerization with p80 and DNA binding. J. Biol. Chem. 1998; 273:842–848. PubMed

Hu S., Pluth J.M., Cucinotta F.A.. Putative binding modes of Ku70-SAP domain with double strand DNA: a molecular modeling study. J. Mol. Model. 2012; 18:2163–2174. PubMed

Hnizda A., Tesina P., Nguyen T.B., Kukacka Z., Kater L., Chaplin A.K., Beckmann R., Ascher D.B., Novak P., Blundell T.L.. SAP domain forms a flexible part of DNA aperture in Ku70/80. FEBS J. 2021; 288:4382–4393. PubMed PMC

Rivera-Calzada A., Spagnolo L., Pearl L.H., Llorca O.. Structural model of full-length human Ku70-Ku80 heterodimer and its recognition of DNA and DNA-PKcs. EMBO Rep. 2007; 8:56–62. PubMed PMC

Khan H., Ochi T.. Plant PAXX has an XLF-like function and stimulates DNA end-joining by the Ku–DNA ligase IV-XRCC4 complex. Plant J. 2023; 116:58–68. PubMed

Bundock P., van Attikum H., Hooykaas P.. Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant. Nucleic Acids Res. 2002; 30:3395–3400. PubMed PMC

Gallego M.E., Bleuyard J.Y., Daoudal-Cotterell S., Jallut N., White C.I.. Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J. 2003; 35:557–565. PubMed

Riha K., Watson J.M., Parkey J., Shippen D.E.. Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J. 2002; 21:2819–2826. PubMed PMC

Kazda A., Zellinger B., Rossler M., Derboven E., Kusenda B., Riha K.. Chromosome end protection by blunt-ended telomeres. Genes Dev. 2012; 26:1703–1713. PubMed PMC

Riha K., Shippen D.E.. Ku is required for telomeric C-rich strand maintenance but not for end-to-end chromosome fusions in Arabidopsis. Proc. Nat. Acad. Sci. U.S.A. 2003; 100:611–615. PubMed PMC

Zellinger B., Akimcheva S., Puizina J., Schirato M., Riha K.. Ku suppresses formation of telomeric circles and alternative telomere lengthening in Arabidopsis. Mol. Cell. 2007; 27:163–169. PubMed

Stoynova L., Solorzano R., Collins E.D.. Generation of large deletion mutants from plasmid DNA. BioTechniques. 2004; 36:402–404. PubMed

Fulnecek J., Riha K.. High-throughput protein-nucleic acid interaction assay based on protein-induced fluorescence enhancement. Methods Mol. Biol. 2021; 2209:109–117. PubMed

Johnson K.A., Simpson Z.B., Blom T.. Global Kinetic Explorer: a new computer program for dynamic simulation and fitting of kinetic data. Anal. Biochem. 2009; 387:20–29. PubMed

Yoo S.D., Cho Y.H., Sheen J.. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2007; 2:1565–1572. PubMed

Zhang J.J., Kobert K., Flouri T., Stamatakis A.. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014; 30:614–620. PubMed PMC

Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R.. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29:15–21. PubMed PMC

Robinson J.T., Thorvaldsdottir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P.. Integrative genomics viewer. Nat. Biotechnol. 2011; 29:24–26. PubMed PMC

Senior A.W., Evans R., Jumper J., Kirkpatrick J., Sifre L., Green T., Qin C., Zidek A., Nelson A.W.R., Bridgland A.et al. .. Improved protein structure prediction using potentials from deep learning. Nature. 2020; 577:706–710. PubMed

Valuchova S., Fulnecek J., Petrov A.P., Tripsianes K., Riha K.. A rapid method for detecting protein-nucleic acid interactions by protein induced fluorescence enhancement. Sci. Rep. 2016; 6:39653. PubMed PMC

Gallego M.E., Jalut N., White C.I.. Telomerase dependence of telomere lengthening in Ku80 mutant Arabidopsis. Plant Cell. 2003; 15:782–789. PubMed PMC

Fulcher N., Sablowski R.. Hypersensitivity to DNA damage in plant stem cell niches. Proc. Nat. Acad. Sci. U.S.A. 2009; 106:20984–20988. PubMed PMC

Hussain S.S., Majumdar R., Moore G.M., Narang H., Buechelmaier E.S., Bazil M.J., Ravindran P.T., Leeman J.E., Li Y., Jalan M.et al. .. Measuring nonhomologous end-joining, homologous recombination and alternative end-joining simultaneously at an endogenous locus in any transfectable human cell. Nucleic Acids Res. 2021; 49:e74. PubMed PMC

Shen H., Strunks G.D., Klemann B.J., Hooykaas P.J., de Pater S.. CRISPR/Cas9-induced double-strand break repair in Arabidopsis nonhomologous end-joining mutants. G3. 2017; 7:193–202. PubMed PMC

Inagawa T., Wennink T., Lebbink J.H.G., Keijzers G., Florea B.I., Verkaik N.S., van Gent D.C.. C-terminal extensions of Ku70 and Ku80 differentially influence DNA end binding properties. Int. J. Mol. Sci. 2020; 21:6725. PubMed PMC

Ait-Haddou R., Herzog W.. Brownian ratchet models of molecular motors. Cell Biochem. Biophys. 2003; 38:191–214. PubMed

Chen X., Xu X., Chen Y., Cheung J.C., Wang H., Jiang J., de Val N., Fox T., Gellert M., Yang W.. Structure of an activated DNA-PK and its implications for NHEJ. Mol. Cell. 2021; 81:801–810. PubMed PMC

Heacock M., Spangler E., Riha K., Puizina J., Shippen D.E.. Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for chromosome end-joining. EMBO J. 2004; 23:2304–2313. PubMed PMC

Jin S., Weaver D.T.. Double-strand break repair by Ku70 requires heterodimerization with Ku80 and DNA binding functions. EMBO J. 1997; 16:6874–6885. PubMed PMC

Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E.. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021; 30:70–82. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...