A rapid method for detecting protein-nucleic acid interactions by protein induced fluorescence enhancement
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28008962
PubMed Central
PMC5180085
DOI
10.1038/srep39653
PII: srep39653
Knihovny.cz E-zdroje
- MeSH
- anizotropie MeSH
- antigen Ku chemie MeSH
- deoxyribonukleasa BamHI metabolismus MeSH
- DNA chemie MeSH
- fluorescence MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční mikroskopie MeSH
- fluorescenční spektrometrie * MeSH
- genetická transkripce MeSH
- ionty MeSH
- lidé MeSH
- nukleové kyseliny chemie MeSH
- oprava DNA MeSH
- proteiny chemie MeSH
- proteosyntéza MeSH
- replikace DNA MeSH
- RNA chemie MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigen Ku MeSH
- deoxyribonukleasa BamHI MeSH
- DNA MeSH
- fluorescenční barviva MeSH
- ionty MeSH
- nukleové kyseliny MeSH
- proteiny MeSH
- RNA MeSH
Many fundamental biological processes depend on intricate networks of interactions between proteins and nucleic acids and a quantitative description of these interactions is important for understanding cellular mechanisms governing DNA replication, transcription, or translation. Here we present a versatile method for rapid and quantitative assessment of protein/nucleic acid (NA) interactions. This method is based on protein induced fluorescence enhancement (PIFE), a phenomenon whereby protein binding increases the fluorescence of Cy3-like dyes. PIFE has mainly been used in single molecule studies to detect protein association with DNA or RNA. Here we applied PIFE for steady state quantification of protein/NA interactions by using microwell plate fluorescence readers (mwPIFE). We demonstrate the general applicability of mwPIFE for examining various aspects of protein/DNA interactions with examples from the restriction enzyme BamHI, and the DNA repair complexes Ku and XPF/ERCC1. These include determination of sequence and structure binding specificities, dissociation constants, detection of weak interactions, and the ability of a protein to translocate along DNA. mwPIFE represents an easy and high throughput method that does not require protein labeling and can be applied to a wide range of applications involving protein/NA interactions.
Zobrazit více v PubMed
Jolma A. et al.. DNA-binding specificities of human transcription factors. Cell 152, 327–339, doi: 10.1016/j.cell.2012.12.009 (2013). PubMed DOI
Hallikas O. et al.. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell 124, 47–59, doi: 10.1016/j.cell.2005.10.042 (2006). PubMed DOI
Luscombe N. M., Laskowski R. A. & Thornton J. M. Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res 29, 2860–2874 (2001). PubMed PMC
Yap J. L. et al.. Small-molecule inhibitors of dimeric transcription factors: Antagonism of protein-protein and protein-DNA interactions. Medchemcomm 3, 541–551, doi: 10.1039/c2md00289b (2012). DOI
Dey B. et al.. DNA-protein interactions: methods for detection and analysis. Molecular and cellular biochemistry 365, 279–299, doi: 10.1007/s11010-012-1269-z (2012). PubMed DOI
Mahapatra L., Mao C., Andruska N., Zhang C. & Shapiro D. J. High-throughput fluorescence anisotropy screen for inhibitors of the oncogenic mRNA binding protein, IMP-1. Journal of biomolecular screening 19, 427–436, doi: 10.1177/1087057113499633 (2014). PubMed DOI PMC
Owicki J. C. Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. Journal of biomolecular screening 5, 297–306 (2000). PubMed
Heyduk T. & Heyduk E. Molecular beacons for detecting DNA binding proteins. Nat Biotechnol 20, 171–176, doi: 10.1038/nbt0202-171 (2002). PubMed DOI
Stennett E. M., Ciuba M. A., Lin S. & Levitus M. Demystifying PIFE: The Photophysics Behind the Protein-Induced Fluorescence Enhancement Phenomenon in Cy3. The journal of physical chemistry letters 6, 1819–1823, doi: 10.1021/acs.jpclett.5b00613 (2015). PubMed DOI
Aramendia P. F., Negri R. M. & Sanroman E. Temperature-Dependence of Fluorescence and Photoisomerization in Symmetrical Carbocyanines - Influence of Medium Viscosity and Molecular-Structure. J Phys Chem-Us 98, 3165–3173, doi: 10.1021/J100063a020 (1994). DOI
Sundstroem V. & Gillbro T. Viscosity-dependent isomerization yields of some cyanine dyes. A picosecond laser spectroscopy study. J Phys Chem 1788–1794 (1982).
Hwang H. & Myong S. Protein induced fluorescence enhancement (PIFE) for probing protein-nucleic acid interactions. Chemical Society reviews 43, 1221–1229, doi: 10.1039/c3cs60201j (2014). PubMed DOI PMC
Myong S. et al.. Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent translocase on double-stranded RNA. Science 323, 1070–1074, doi: 10.1126/science.1168352 (2009). PubMed DOI PMC
Tomko E. J., Fischer C. J. & Lohman T. M. Ensemble methods for monitoring enzyme translocation along single stranded nucleic acids. Methods 51, 269–276, doi: 10.1016/j.ymeth.2010.03.010 (2010). PubMed DOI PMC
Fischer C. J., Tomko E. J., Wu C. G. & Lohman T. M. Fluorescence methods to study DNA translocation and unwinding kinetics by nucleic acid motors. Methods Mol Biol 875, 85–104, doi: 10.1007/978-1-61779-806-1_5 (2012). PubMed DOI PMC
Antony E. et al.. Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA. Mol Cell 35, 105–115, doi: 10.1016/j.molcel.2009.05.026 (2009). PubMed DOI PMC
Hwang H., Kim H. & Myong S. Protein induced fluorescence enhancement as a single molecule assay with short distance sensitivity. Proc Natl Acad Sci USA 108, 7414–7418, doi: 10.1073/pnas.1017672108 (2011). PubMed DOI PMC
Viadiu H. & Aggarwal A. K. The role of metals in catalysis by the restriction endonuclease BamHI. Nat Struct Biol 5, 910–916, doi: 10.1038/2352 (1998). PubMed DOI
Nowotny M. & Gaur V. Structure and mechanism of nucleases regulated by SLX4. Curr Opin Struct Biol 36, 97–105, doi: 10.1016/j.sbi.2016.01.003 (2016). PubMed DOI
Tripsianes K. et al.. The structure of the human ERCC1/XPF interaction domains reveals a complementary role for the two proteins in nucleotide excision repair. Structure 13, 1849–1858, doi: 10.1016/j.str.2005.08.014 (2005). PubMed DOI
de Laat W. L., Appeldoorn E., Jaspers N. G. & Hoeijmakers J. H. DNA structural elements required for ERCC1-XPF endonuclease activity. J Biol Chem 273, 7835–7842 (1998). PubMed
Bowles M. et al.. Fluorescence-based incision assay for human XPF–ERCC1 activity identifies important elements of DNA junction recognition. Nucleic Acids Research, doi: 10.1093/nar/gks284 (2012). PubMed DOI PMC
Enzlin J. H. & Scharer O. D. The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif. EMBO J 21, 2045–2053, doi: 10.1093/emboj/21.8.2045 (2002). PubMed DOI PMC
Tsodikov O. V., Enzlin J. H., Scharer O. D. & Ellenberger T. Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF-ERCC1. Proc Natl Acad Sci USA 102, 11236–11241, doi: 10.1073/pnas.0504341102 (2005). PubMed DOI PMC
Walker J. R., Corpina R. A. & Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412, 607–614 (2001). PubMed
Yoo S., Kimzey A. & Dynan W. S. Photocross-linking of an oriented DNA repair complex. Ku bound at a single DNA end. J Biol Chem 274, 20034–20039 (1999). PubMed
Arosio D. et al.. Studies on the mode of Ku interaction with DNA. J Biol Chem 277, 9741–9748 (2002). PubMed
Fischer C. J., Maluf N. K. & Lohman T. M. Mechanism of ATP-dependent translocation of E.coli UvrD monomers along single-stranded DNA. J Mol Biol 344, 1287–1309, doi: 10.1016/j.jmb.2004.10.005 (2004). PubMed DOI
Luo G., Wang M., Konigsberg W. H. & Xie X. S. Single-molecule and ensemble fluorescence assays for a functionally important conformational change in T7 DNA polymerase. Proc Natl Acad Sci USA 104, 12610–12615, doi: 10.1073/pnas.0700920104 (2007). PubMed DOI PMC
Song D., Graham T. G. & Loparo J. J. A general approach to visualize protein binding and DNA conformation without protein labelling. Nature communications 7, 10976, doi: 10.1038/ncomms10976 (2016). PubMed DOI PMC
Sorokina M., Koh H. R., Patel S. S. & Ha T. Fluorescent lifetime trajectories of a single fluorophore reveal reaction intermediates during transcription initiation. Journal of the American Chemical Society 131, 9630–9631, doi: 10.1021/ja902861f (2009). PubMed DOI PMC
Markiewicz R. P., Vrtis K. B., Rueda D. & Romano L. J. Single-molecule microscopy reveals new insights into nucleotide selection by DNA polymerase I. Nucleic Acids Res 40, 7975–7984, doi: 10.1093/nar/gks523 (2012). PubMed DOI PMC
The SAP domain of Ku facilitates its efficient loading onto DNA ends