Protection of Arabidopsis Blunt-Ended Telomeres Is Mediated by a Physical Association with the Ku Heterodimer
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28584163
PubMed Central
PMC5502450
DOI
10.1105/tpc.17.00064
PII: tpc.17.00064
Knihovny.cz E-zdroje
- MeSH
- antigen Ku genetika metabolismus MeSH
- Arabidopsis genetika metabolismus MeSH
- DNA rostlinná genetika MeSH
- oprava DNA genetika MeSH
- telomery genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigen Ku MeSH
- DNA rostlinná MeSH
Telomeres form specialized chromatin that protects natural chromosome termini from being recognized as DNA double-strand breaks. Plants possess unusual blunt-ended telomeres that are unable to form t-loops or complex with single-strand DNA binding proteins, raising the question of the mechanism behind their protection. We have previously suggested that blunt-ended telomeres in Arabidopsis thaliana are protected by Ku, a DNA repair factor with a high affinity for DNA ends. In nonhomologous end joining, Ku loads onto broken DNA via a channel consisting of positively charged amino acids. Here, we demonstrate that while association of Ku with plant telomeres also depends on this channel, Ku's requirements for DNA binding differ between DNA repair and telomere protection. We show that a Ku complex proficient in DNA loading but impaired in translocation along DNA is able to protect blunt-ended telomeres but is deficient in DNA repair. This suggests that Ku physically sequesters blunt-ended telomeres within its DNA binding channel, shielding them from other DNA repair machineries.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Gregor Mendel Institute Austrian Academy of Sciences Vienna Biocenter 1030 Vienna Austria
Zobrazit více v PubMed
Andrews B.J., Lehman J.A., Turchi J.J. (2006). Kinetic analysis of the Ku-DNA binding activity reveals a redox-dependent alteration in protein structure that stimulates dissociation of the Ku-DNA complex. J. Biol. Chem. 281: 13596–13603. PubMed PMC
Arnoult N., Karlseder J. (2015). Complex interactions between the DNA-damage response and mammalian telomeres. Nat. Struct. Mol. Biol. 22: 859–866. PubMed PMC
Balestrini A., Ristic D., Dionne I., Liu X.Z., Wyman C., Wellinger R.J., Petrini J.H. (2013). The Ku heterodimer and the metabolism of single-ended DNA double-strand breaks. Cell Reports 3: 2033–2045. PubMed PMC
Bombarde O., Boby C., Gomez D., Frit P., Giraud-Panis M.J., Gilson E., Salles B., Calsou P. (2010). TRF2/RAP1 and DNA-PK mediate a double protection against joining at telomeric ends. EMBO J. 29: 1573–1584. PubMed PMC
Bundock P., van Attikum H., Hooykaas P. (2002). Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant. Nucleic Acids Res. 30: 3395–3400. PubMed PMC
Celli G.B., Denchi E.L., de Lange T. (2006). Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat. Cell Biol. 8: 885–890. PubMed
Chico L., Ciudad T., Hsu M., Lue N.F., Larriba G. (2011). The Candida albicans Ku70 modulates telomere length and structure by regulating both telomerase and recombination. PLoS One 6: e23732. PubMed PMC
Cifuentes-Rojas C., Kannan K., Tseng L., Shippen D.E. (2011). Two RNA subunits and POT1a are components of Arabidopsis telomerase. Proc. Natl. Acad. Sci. USA 108: 73–78. PubMed PMC
Cifuentes-Rojas C., Nelson A.D., Boltz K.A., Kannan K., She X., Shippen D.E. (2012). An alternative telomerase RNA in Arabidopsis modulates enzyme activity in response to DNA damage. Genes Dev. 26: 2512–2523. PubMed PMC
d’Adda di Fagagna F., Hande M.P., Tong W.M., Roth D., Lansdorp P.M., Wang Z.Q., Jackson S.P. (2001). Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr. Biol. 11: 1192–1196. PubMed
Derboven E., Ekker H., Kusenda B., Bulankova P., Riha K. (2014). Role of STN1 and DNA polymerase α in telomere stability and genome-wide replication in Arabidopsis. PLoS Genet. 10: e1004682. PubMed PMC
de Sena-Tomás C., Yu E.Y., Calzada A., Holloman W.K., Lue N.F., Pérez-Martín J. (2015). Fungal Ku prevents permanent cell cycle arrest by suppressing DNA damage signaling at telomeres. Nucleic Acids Res. 43: 2138–2151. PubMed PMC
Fattah F., Lee E.H., Weisensel N., Wang Y., Lichter N., Hendrickson E.A. (2010). Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells. PLoS Genet. 6: e1000855. PubMed PMC
Fell V.L., Schild-Poulter C. (2015). The Ku heterodimer: function in DNA repair and beyond. Mutat. Res. Rev. Mutat. Res. 763: 15–29. PubMed
Ferreira M.G., Cooper J.P. (2001). The fission yeast Taz1 protein protects chromosomes from Ku-dependent end-to-end fusions. Mol. Cell 7: 55–63. PubMed
Fulcher N., Sablowski R. (2009). Hypersensitivity to DNA damage in plant stem cell niches. Proc. Natl. Acad. Sci. USA 106: 20984–20988. PubMed PMC
Fulcher N., Derboven E., Valuchova S., Riha K. (2014). If the cap fits, wear it: an overview of telomeric structures over evolution. Cell. Mol. Life Sci. 71: 847–865. PubMed PMC
Gallego M.E., Jalut N., White C.I. (2003). Telomerase dependence of telomere lengthening in Ku80 mutant Arabidopsis. Plant Cell 15: 782–789. PubMed PMC
Göhring J., Fulcher N., Jacak J., Riha K. (2014). TeloTool: a new tool for telomere length measurement from terminal restriction fragment analysis with improved probe intensity correction. Nucleic Acids Res. 42: e21. PubMed PMC
Gravel S., Larrivée M., Labrecque P., Wellinger R.J. (1998). Yeast Ku as a regulator of chromosomal DNA end structure. Science 280: 741–744. PubMed
Hammel M., et al. (2011). XRCC4 protein interactions with XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. J. Biol. Chem. 286: 32638–32650. PubMed PMC
Hass E.P., Zappulla D.C. (2015). The Ku subunit of telomerase binds Sir4 to recruit telomerase to lengthen telomeres in S. cerevisiae. eLife 4: 10.7554/eLife.07750. PubMed PMC
Hsu H.L., Gilley D., Blackburn E.H., Chen D.J. (1999). Ku is associated with the telomere in mammals. Proc. Natl. Acad. Sci. USA 96: 12454–12458. PubMed PMC
Kaufmann K., Muiño J.M., Østerås M., Farinelli L., Krajewski P., Angenent G.C. (2010). Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Nat. Protoc. 5: 457–472. PubMed
Kazda A., Zellinger B., Rössler M., Derboven E., Kusenda B., Riha K. (2012). Chromosome end protection by blunt-ended telomeres. Genes Dev. 26: 1703–1713. PubMed PMC
Kysela B., Doherty A.J., Chovanec M., Stiff T., Ameer-Beg S.M., Vojnovic B., Girard P.M., Jeggo P.A. (2003). Ku stimulation of DNA ligase IV-dependent ligation requires inward movement along the DNA molecule. J. Biol. Chem. 278: 22466–22474. PubMed
Lee K.J., Saha J., Sun J., Fattah K.R., Wang S.C., Jakob B., Chi L., Wang S.Y., Taucher-Scholz G., Davis A.J., Chen D.J. (2016). Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase. Nucleic Acids Res. 44: 1732–1745. PubMed PMC
Lehman J.A., Hoelz D.J., Turchi J.J. (2008). DNA-dependent conformational changes in the Ku heterodimer. Biochemistry 47: 4359–4368. PubMed PMC
Lopez C.R., Ribes-Zamora A., Indiviglio S.M., Williams C.L., Haricharan S., Bertuch A.A. (2011). Ku must load directly onto the chromosome end in order to mediate its telomeric functions. PLoS Genet. 7: e1002233. PubMed PMC
Mari P.O., Florea B.I., Persengiev S.P., Verkaik N.S., Brüggenwirth H.T., Modesti M., Giglia-Mari G., Bezstarosti K., Demmers J.A., Luider T.M., Houtsmuller A.B., van Gent D.C. (2006). Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc. Natl. Acad. Sci. USA 103: 18597–18602. PubMed PMC
Maringele L., Lydall D. (2002). EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev. 16: 1919–1933. PubMed PMC
Martin S.G., Laroche T., Suka N., Grunstein M., Gasser S.M. (1999). Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97: 621–633. PubMed
Martínez P., Blasco M.A. (2015). Replicating through telomeres: a means to an end. Trends Biochem. Sci. 40: 504–515. PubMed
Masson C., Bury-Moné S., Guiot E., Saez-Cirion A., Schoëvaërt-Brossault D., Brachet-Ducos C., Delelis O., Subra F., Jeanson-Leh L., Mouscadet J.F. (2007). Ku80 participates in the targeting of retroviral transgenes to the chromatin of CHO cells. J. Virol. 81: 7924–7932. PubMed PMC
Melnikova L., Biessmann H., Georgiev P. (2005). The Ku protein complex is involved in length regulation of Drosophila telomeres. Genetics 170: 221–235. PubMed PMC
Pardo B., Marcand S. (2005). Rap1 prevents telomere fusions by nonhomologous end joining. EMBO J. 24: 3117–3127. PubMed PMC
Pfingsten J.S., Goodrich K.J., Taabazuing C., Ouenzar F., Chartrand P., Cech T.R. (2012). Mutually exclusive binding of telomerase RNA and DNA by Ku alters telomerase recruitment model. Cell 148: 922–932. PubMed PMC
Ribes-Zamora A., Indiviglio S.M., Mihalek I., Williams C.L., Bertuch A.A. (2013). TRF2 interaction with Ku heterotetramerization interface gives insight into c-NHEJ prevention at human telomeres. Cell Reports 5: 194–206. PubMed PMC
Riha K., Shippen D.E. (2003). Ku is required for telomeric C-rich strand maintenance but not for end-to-end chromosome fusions in Arabidopsis. Proc. Natl. Acad. Sci. USA 100: 611–615. PubMed PMC
Riha K., Heacock M.L., Shippen D.E. (2006). The role of the nonhomologous end-joining DNA double-strand break repair pathway in telomere biology. Annu. Rev. Genet. 40: 237–277. PubMed
Riha K., Watson J.M., Parkey J., Shippen D.E. (2002). Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J. 21: 2819–2826. PubMed PMC
Rivera-Calzada A., Spagnolo L., Pearl L.H., Llorca O. (2007). Structural model of full-length human Ku70-Ku80 heterodimer and its recognition of DNA and DNA-PKcs. EMBO Rep. 8: 56–62. PubMed PMC
Roberts S.A., Ramsden D.A. (2007). Loading of the nonhomologous end joining factor, Ku, on protein-occluded DNA ends. J. Biol. Chem. 282: 10605–10613. PubMed
Samper E., Goytisolo F.A., Slijepcevic P., van Buul P.P., Blasco M.A. (2000). Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep. 1: 244–252. PubMed PMC
Smogorzewska A., Karlseder J., Holtgreve-Grez H., Jauch A., de Lange T. (2002). DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr. Biol. 12: 1635–1644. PubMed
Stennett E.M., Ciuba M.A., Lin S., Levitus M. (2015). Demystifying PIFE: the photophysics behind the protein-induced fluorescence enhancement phenomenon in Cy3. J. Phys. Chem. Lett. 6: 1819–1823. PubMed
Turchi J.J., Henkels K.M., Zhou Y. (2000). Cisplatin-DNA adducts inhibit translocation of the Ku subunits of DNA-PK. Nucleic Acids Res. 28: 4634–4641. PubMed PMC
Valuchova S., Fulnecek J., Petrov A.P., Tripsianes K., Riha K. (2016). A rapid method for detecting protein-nucleic acid interactions by protein induced fluorescence enhancement. Sci. Rep. 6: 39653. PubMed PMC
Vaquero-Sedas M.I., Vega-Palas M.A. (2014). Determination of Arabidopsis thaliana telomere length by PCR. Sci. Rep. 4: 5540. PubMed PMC
Walker J.R., Corpina R.A., Goldberg J. (2001). Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412: 607–614. PubMed
Wang M., Wu W., Wu W., Rosidi B., Zhang L., Wang H., Iliakis G. (2006). PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 34: 6170–6182. PubMed PMC
Wang Y., Ghosh G., Hendrickson E.A. (2009). Ku86 represses lethal telomere deletion events in human somatic cells. Proc. Natl. Acad. Sci. USA 106: 12430–12435. PubMed PMC
West C.E., Waterworth W.M., Story G.W., Sunderland P.A., Jiang Q., Bray C.M. (2002). Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo. Plant J. 31: 517–528. PubMed
Yoo S., Dynan W.S. (1999). Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein. Nucleic Acids Res. 27: 4679–4686. PubMed PMC
Yoo S., Kimzey A., Dynan W.S. (1999). Photocross-linking of an oriented DNA repair complex. Ku bound at a single DNA end. J. Biol. Chem. 274: 20034–20039. PubMed
Zellinger B., Akimcheva S., Puizina J., Schirato M., Riha K. (2007). Ku suppresses formation of telomeric circles and alternative telomere lengthening in Arabidopsis. Mol. Cell 27: 163–169. PubMed
The SAP domain of Ku facilitates its efficient loading onto DNA ends
A CENH3 mutation promotes meiotic exit and restores fertility in SMG7-deficient Arabidopsis
Telomeres in Plants and Humans: Not So Different, Not So Similar