Role of STN1 and DNA polymerase α in telomere stability and genome-wide replication in Arabidopsis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25299252
PubMed Central
PMC4191939
DOI
10.1371/journal.pgen.1004682
PII: PGENETICS-D-13-03425
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis genetika metabolismus MeSH
- chromozomální proteiny, nehistonové genetika metabolismus MeSH
- DNA-polymerasa I genetika metabolismus MeSH
- exodeoxyribonukleasy metabolismus MeSH
- genom rostlinný MeSH
- heterochromatin genetika metabolismus MeSH
- mutace MeSH
- proteiny buněčného cyklu genetika metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- replikace DNA MeSH
- telomerasa genetika metabolismus MeSH
- telomery * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromozomální proteiny, nehistonové MeSH
- DNA-polymerasa I MeSH
- exodeoxyribonuclease I MeSH Prohlížeč
- exodeoxyribonukleasy MeSH
- heterochromatin MeSH
- proteiny buněčného cyklu MeSH
- proteiny huseníčku MeSH
- STN1 protein, Arabidopsis MeSH Prohlížeč
- telomerasa MeSH
- TERT protein, Arabidopsis MeSH Prohlížeč
- XR5 protein, Arabidopsis MeSH Prohlížeč
The CST (Cdc13/CTC1-STN1-TEN1) complex was proposed to have evolved kingdom specific roles in telomere capping and replication. To shed light on its evolutionary conserved function, we examined the effect of STN1 dysfunction on telomere structure in plants. STN1 inactivation in Arabidopsis leads to a progressive loss of telomeric DNA and the onset of telomeric defects depends on the initial telomere size. While EXO1 aggravates defects associated with STN1 dysfunction, it does not contribute to the formation of long G-overhangs. Instead, these G-overhangs arise, at least partially, from telomerase-mediated telomere extension indicating a deficiency in C-strand fill-in synthesis. Analysis of hypomorphic DNA polymerase α mutants revealed that the impaired function of a general replication factor mimics the telomeric defects associated with CST dysfunction. Furthermore, we show that STN1-deficiency hinders re-replication of heterochromatic regions to a similar extent as polymerase α mutations. This comparative analysis of stn1 and pol α mutants suggests that STN1 plays a genome-wide role in DNA replication and that chromosome-end deprotection in stn1 mutants may represent a manifestation of aberrant replication through telomeres.
Campus Science Support Facilities Next Generation Sequencing Facility Vienna Austria
Gregor Mendel Institute Austrian Academy of Sciences Vienna Austria
Zobrazit více v PubMed
Watson JM, Riha K (2010) Comparative biology of telomeres: where plants stand. FEBS Lett 584: 3752–3759. PubMed PMC
Nelson AD, Shippen DE (2012) Surprises from the chromosome front: lessons from Arabidopsis on telomeres and telomerase. Cold Spring Harb Symp Quant Biol 77: 7–15. PubMed PMC
de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19: 2100–2110. PubMed
Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, et al. (1999) Mammalian telomeres end in a large duplex loop. Cell 97: 503–514. PubMed
Wang RC, Smogorzewska A, de Lange T (2004) Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119: 355–368. PubMed
Poulet A, Buisson R, Faivre-Moskalenko C, Koelblen M, Amiard S, et al. (2009) TRF2 promotes, remodels and protects telomeric Holliday junctions. Embo J 28: 641–651. PubMed PMC
Gao H, Cervantes RB, Mandell EK, Otero JH, Lundblad V (2007) RPA-like proteins mediate yeast telomere function. Nat Struct Mol Biol 14: 208–214. PubMed
Garvik B, Carson M, Hartwell L (1995) Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 15: 6128–6138. PubMed PMC
Grandin N, Damon C, Charbonneau M (2001) Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. Embo J 20: 1173–1183. PubMed PMC
Xu L, Petreaca RC, Gasparyan HJ, Vu S, Nugent CI (2009) TEN1 is essential for CDC13-mediated telomere capping. Genetics 183: 793–810. PubMed PMC
Maringele L, Lydall D (2002) EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev 16: 1919–1933. PubMed PMC
Chandra A, Hughes TR, Nugent CI, Lundblad V (2001) Cdc13 both positively and negatively regulates telomere replication. Genes Dev 15: 404–414. PubMed PMC
Qi H, Zakian VA (2000) The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase- associated est1 protein. Genes Dev 14: 1777–1788. PubMed PMC
Grossi S, Puglisi A, Dmitriev PV, Lopes M, Shore D (2004) Pol12, the B subunit of DNA polymerase alpha, functions in both telomere capping and length regulation. Genes Dev 18: 992–1006. PubMed PMC
Surovtseva YV, Churikov D, Boltz KA, Song X, Lamb JC, et al. (2009) Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol Cell 36: 207–218. PubMed PMC
Miyake Y, Nakamura M, Nabetani A, Shimamura S, Tamura M, et al. (2009) RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol Cell 36: 193–206. PubMed
Bryan C, Rice C, Harkisheimer M, Schultz DC, Skordalakes E (2013) Structure of the human telomeric Stn1-Ten1 capping complex. PLoS One 8: e66756. PubMed PMC
Chen LY, Redon S, Lingner J (2012) The human CST complex is a terminator of telomerase activity. Nature 488: 540–544. PubMed
Gu P, Min JN, Wang Y, Huang C, Peng T, et al. (2012) CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion. EMBO J 31: 2309–2321. PubMed PMC
Stewart JA, Wang F, Chaiken MF, Kasbek C, Chastain PD 2nd, et al. (2012) Human CST promotes telomere duplex replication and general replication restart after fork stalling. EMBO J 31: 3537–3549. PubMed PMC
Huang C, Dai X, Chai W (2012) Human Stn1 protects telomere integrity by promoting efficient lagging-strand synthesis at telomeres and mediating C-strand fill-in. Cell Res 22: 1681–1695. PubMed PMC
Kasbek C, Wang F, Price CM (2013) Human TEN1 maintains telomere integrity and functions in genome-wide replication restart. J Biol Chem 288: 30139–30150. PubMed PMC
Wang F, Stewart JA, Kasbek C, Zhao Y, Wright WE, et al. (2012) Human CST has independent functions during telomere duplex replication and C-strand fill-in. Cell Rep 2: 1096–1103. PubMed PMC
Wu P, Takai H, de Lange T (2012) Telomeric 3′ Overhangs Derive from Resection by Exo1 and Apollo and Fill-In by POT1b-Associated CST. Cell 150: 39–52. PubMed PMC
Chen LY, Lingner J (2013) CST for the grand finale of telomere replication. Nucleus 4: 277–282. PubMed PMC
Song X, Leehy K, Warrington RT, Lamb JC, Surovtseva YV, et al. (2008) STN1 protects chromosome ends in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105: 19815–19820. PubMed PMC
Leehy KA, Lee JR, Song X, Renfrew KB, Shippen DE (2013) MERISTEM DISORGANIZATION1 encodes TEN1, an essential telomere protein that modulates telomerase processivity in Arabidopsis. Plant Cell 25: 1343–1354. PubMed PMC
Boltz KA, Leehy K, Song X, Nelson AD, Shippen DE (2012) ATR cooperates with CTC1 and STN1 to maintain telomeres and genome integrity in Arabidopsis. Mol Biol Cell 23: 1558–1568. PubMed PMC
Amiard S, Depeiges A, Allain E, White CI, Gallego ME (2011) Arabidopsis ATM and ATR kinases prevent propagation of genome damage caused by telomere dysfunction. Plant Cell 23: 4254–4265. PubMed PMC
Price CM, Boltz KA, Chaiken MF, Stewart JA, Beilstein MA, et al. (2010) Evolution of CST function in telomere maintenance. Cell Cycle 9: 3157–3165. PubMed PMC
Kazda A, Zellinger B, Rossler M, Derboven E, Kusenda B, et al. (2012) Chromosome end protection by blunt-ended telomeres. Genes Dev 26: 1703–1713. PubMed PMC
Riha K, McKnight TD, Griffing LR, Shippen DE (2001) Living with genome instability: plant responses to telomere dysfunction. Science 291: 1797–1800. PubMed
Fitzgerald MS, Riha K, Gao F, Ren S, McKnight TD, et al. (1999) Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc Natl Acad Sci U S A 96: 14813–14818. PubMed PMC
Casteel DE, Zhuang S, Zeng Y, Perrino FW, Boss GR, et al. (2009) A DNA polymerase-{alpha}{middle dot}primase cofactor with homology to replication protein A-32 regulates DNA replication in mammalian cells. J Biol Chem 284: 5807–5818. PubMed PMC
Chen LY, Majerska J, Lingner J (2013) Molecular basis of telomere syndrome caused by CTC1 mutations. Genes Dev 27: 2099–2108. PubMed PMC
Barrero JM, Gonzalez-Bayon R, del Pozo JC, Ponce MR, Micol JL (2007) INCURVATA2 encodes the catalytic subunit of DNA Polymerase alpha and interacts with genes involved in chromatin-mediated cellular memory in Arabidopsis thaliana. Plant Cell 19: 2822–2838. PubMed PMC
Liu J, Ren X, Yin H, Wang Y, Xia R, et al. (2010) Mutation in the catalytic subunit of DNA polymerase alpha influences transcriptional gene silencing and homologous recombination in Arabidopsis. Plant J 61: 36–45. PubMed
Heacock M, Spangler E, Riha K, Puizina J, Shippen DE (2004) Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for chromosome end-joining. Embo J 23: 2304–2313. PubMed PMC
Zellinger B, Akimcheva S, Puizina J, Schirato M, Riha K (2007) Ku suppresses formation of telomeric circles and alternative telomere lengthening in Arabidopsis. Mol Cell 27: 163–169. PubMed
Jacob Y, Feng S, LeBlanc CA, Bernatavichute YV, Stroud H, et al. (2009) ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat Struct Mol Biol 16: 763–768. PubMed PMC
Jacob Y, Stroud H, Leblanc C, Feng S, Zhuo L, et al. (2010) Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases. Nature 466: 987–991. PubMed PMC
Zubko MK, Guillard S, Lydall D (2004) Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Genetics 168: 103–115. PubMed PMC
Dewar JM, Lydall D (2010) Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping. EMBO J 29: 4020–4034. PubMed PMC
Martin V, Du LL, Rozenzhak S, Russell P (2007) Protection of telomeres by a conserved Stn1-Ten1 complex. Proc Natl Acad Sci U S A 104: 14038–14043. PubMed PMC
Miller KM, Rog O, Cooper JP (2006) Semi-conservative DNA replication through telomeres requires Taz1. Nature 440: 824–828. PubMed
Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J, et al. (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138: 90–103. PubMed PMC
Schaetzlein S, Kodandaramireddy NR, Ju Z, Lechel A, Stepczynska A, et al. (2007) Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional mice. Cell 130: 863–877. PubMed PMC
Ngo HP, Lydall D (2010) Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9. PLoS Genet 6: e1001072. PubMed PMC
Watson JM, Shippen DE (2007) Telomere rapid deletion regulates telomere length in Arabidopsis thaliana. Mol Cell Biol 27: 1706–1715. PubMed PMC
Bonetti D, Clerici M, Anbalagan S, Martina M, Lucchini G, et al. (2010) Shelterin-like proteins and Yku inhibit nucleolytic processing of Saccharomyces cerevisiae telomeres. PLoS Genet 6: e1000966. PubMed PMC
Nakaoka H, Nishiyama A, Saito M, Ishikawa F (2012) Xenopus laevis Ctc1-Stn1-Ten1 (xCST) protein complex is involved in priming DNA synthesis on single-stranded DNA template in Xenopus egg extract. J Biol Chem 287: 619–627. PubMed PMC
Yan S, Michael WM (2009) TopBP1 and DNA polymerase alpha-mediated recruitment of the 9-1-1 complex to stalled replication forks: implications for a replication restart-based mechanism for ATR checkpoint activation. Cell Cycle 8: 2877–2884. PubMed
Gasparyan HJ, Xu L, Petreaca RC, Rex AE, Small VY, et al. (2009) Yeast telomere capping protein Stn1 overrides DNA replication control through the S phase checkpoint. Proc Natl Acad Sci U S A 106: 2206–2211. PubMed PMC
Riha K, Watson JM, Parkey J, Shippen DE (2002) Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. Embo J 21: 2819–2826. PubMed PMC
Gohring J, Fulcher N, Jacak J, Riha K (2014) TeloTool: a new tool for telomere length measurement from terminal restriction fragment analysis with improved probe intensity correction. Nucleic Acids Res 42: e21. PubMed PMC
Heacock ML, Idol RA, Friesner JD, Britt AB, Shippen DE (2007) Telomere dynamics and fusion of critically shortened telomeres in plants lacking DNA ligase IV. Nucleic Acids Res 35: 6490–6500. PubMed PMC
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359. PubMed PMC
Stroud H, Hale CJ, Feng S, Caro E, Jacob Y, et al. (2012) DNA methyltransferases are required to induce heterochromatic re-replication in Arabidopsis. PLoS Genet 8: e1002808. PubMed PMC
Marco-Sola S, Sammeth M, Guigo R, Ribeca P (2012) The GEM mapper: fast, accurate and versatile alignment by filtration. Nat Methods 9: 1185–1188. PubMed
A CENH3 mutation promotes meiotic exit and restores fertility in SMG7-deficient Arabidopsis
Telomeres in Plants and Humans: Not So Different, Not So Similar
Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell