Using Centromere Mediated Genome Elimination to Elucidate the Functional Redundancy of Candidate Telomere Binding Proteins in Arabidopsis thaliana
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26779251
PubMed Central
PMC4700174
DOI
10.3389/fgene.2015.00349
Knihovny.cz E-zdroje
- Klíčová slova
- centromere, haploid, protein family, telobox, telomeres,
- Publikační typ
- časopisecké články MeSH
Proteins that bind to telomeric DNA form the key structural and functional constituents of telomeres. While telomere binding proteins have been described in the majority of organisms, their identity in plants remains unknown. Several protein families containing a telomere binding motif known as the telobox have been previously described in Arabidopsis thaliana. Nonetheless, functional evidence for their involvement at telomeres has not been obtained, likely due to functional redundancy. Here we performed genetic analysis on the TRF-like family consisting of six proteins (TRB1, TRP1, TRFL1, TRFL2, TRFL4, and TRF9) which have previously shown to bind telomeric DNA in vitro. We used haploid genetics to create multiple knock-out plants deficient for all six proteins of this gene family. These plants did not exhibit changes in telomere length, or phenotypes associated with telomere dysfunction. This data demonstrates that this telobox protein family is not involved in telomere maintenance in Arabidopsis. Phylogenetic analysis in major plant lineages revealed early diversification of telobox proteins families indicating that telomere function may be associated with other telobox proteins.
Central European Institute of Technology Masaryk University Brno Czech Republic
Gregor Mendel Institute Austrian Academy of Sciences Vienna Austria
Zobrazit více v PubMed
Bilaud T., Koering C. E., Binet-Brasselet E., Ancelin K., Pollice A., Gasser S. M., et al. (1996). The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. PubMed DOI PMC
Celli G. B., de Lange T. (2005). DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. PubMed DOI
de Lange T. (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. PubMed DOI
Derboven E., Ekker H., Kusenda B., Bulankova P., Riha K. (2014). Role of STN1 and DNA polymerase alpha in telomere stability and genome-wide replication in PubMed DOI PMC
Fulcher N., Teubenbacher A., Kerdaffrec E., Farlow A., Nordborg M., Riha K. (2015). Genetic architecture of natural variation of telomere length in PubMed DOI PMC
Gohring J., Fulcher N., Jacak J., Riha K. (2014). TeloTool: a new tool for telomere length measurement from terminal restriction fragment analysis with improved probe intensity correction. PubMed DOI PMC
Hofr C., Sultesova P., Zimmermann M., Mozgova I., Prochazkova Schrumpfova P., Wimmerova M., et al. (2009). Single-Myb-histone proteins from PubMed DOI
Hong J. P., Byun M. Y., Koo D. H., An K., Bang J. W., Chung I. K., et al. (2007). Suppression of RICE TELOMERE BINDING PROTEIN 1 results in severe and gradual developmental defects accompanied by genome instability in rice. PubMed DOI PMC
Hwang M. G., Cho M. H. (2007). PubMed DOI PMC
Karamysheva Z. N., Surovtseva Y. V., Vespa L., Shakirov E. V., Shippen D. E. (2004). A C-terminal Myb extension domain defines a novel family of double-strand telomeric DNA-binding proteins in PubMed DOI
Kazda A., Zellinger B., Rossler M., Derboven E., Kusenda B., Riha K. (2012). Chromosome end protection by blunt-ended telomeres. PubMed DOI PMC
Ko S., Jun S. H., Bae H., Byun J. S., Han W., Park H., et al. (2008). Structure of the DNA-binding domain of NgTRF1 reveals unique features of plant telomere-binding proteins. PubMed DOI PMC
Ko S., Yu E. Y., Shin J., Yoo H. H., Tanaka T., Kim W. T., et al. (2009). Solution structure of the DNA binding domain of rice telomere binding protein RTBP1. PubMed DOI
Kuchar M., Fajkus J. (2004). Interactions of putative telomere-binding proteins in PubMed DOI
Marian C. O., Bordoli S. J., Goltz M., Santarella R. A., Jackson L. P., Danilevskaya O., et al. (2003). The maize Single myb histone 1 gene, Smh1, belongs to a novel gene family and encodes a protein that binds telomere DNA repeats in vitro. PubMed DOI PMC
Moriguchi R., Kanahama K., Kanayama Y. (2006). Characterization and expression analysis of the tomato telomere-binding protein LeTBP1. DOI
Moriguchi R., Ohata K., Kanahama K., Takahashi H., Nishiyama M., Kanayama Y. (2011). Suppression of telomere-binding protein gene expression represses seed and fruit development in tomato. PubMed DOI
Mozgova I., Schrumpfova P. P., Hofr C., Fajkus J. (2008). Functional characterization of domains in AtTRB1, a putative telomere-binding protein in PubMed DOI
Ravi M., Chan S. W. (2010). Haploid plants produced by centromere-mediated genome elimination. PubMed DOI
Ravi M., Marimuthu M. P., Tan E. H., Maheshwari S., Henry I. M., Marin-Rodriguez B., et al. (2014). A haploid genetics toolbox for PubMed DOI
Riha K., Mcknight T. D., Griffing L. R., Shippen D. E. (2001). Living with genome instability: plant responses to telomere dysfunction. PubMed DOI
Riha K., Watson J. M., Parkey J., Shippen D. E. (2002). Telomere length deregulation and enhanced sensitivity to genotoxic stress in PubMed DOI PMC
Schrumpfova P., Kuchar M., Mikova G., Skrisovska L., Kubicarova T., Fajkus J. (2004). Characterization of two PubMed DOI
Schrumpfova P. P., Vychodilova I., Dvorackova M., Majerska J., Dokladal L., Schorova S., et al. (2014). Telomere repeat binding proteins are functional components of PubMed DOI PMC
Seymour D. K., Filiault D. L., Henry I. M., Monson-Miller J., Ravi M., Pang A., et al. (2012). Rapid creation of PubMed DOI PMC
Sfeir A., Kosiyatrakul S. T., Hockemeyer D., Macrae S. L., Karlseder J., Schildkraut C. L., et al. (2009). Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. PubMed DOI PMC
Shakirov E. V., Shippen D. E. (2004). Length regulation and dynamics of individual telomere tracts in wild-type PubMed DOI PMC
Song X., Leehy K., Warrington R. T., Lamb J. C., Surovtseva Y. V., Shippen D. E. (2008). STN1 protects chromosome ends in PubMed DOI PMC
Surovtseva Y. V., Churikov D., Boltz K. A., Song X., Lamb J. C., Warrington R., et al. (2009). Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. PubMed DOI PMC
Tremousaygue D., Manevski A., Bardet C., Lescure N., Lescure B. (1999). Plant interstitial telomere motifs participate in the control of gene expression in root meristems. PubMed DOI
van Steensel B., de Lange T. (1997). Control of telomere length by the human telomeric protein TRF1. PubMed DOI
van Steensel B., Smogorzewska A., De Lange T. (1998). TRF2 protects human telomeres from end-to-end fusions. PubMed DOI
Wang R. C., Smogorzewska A., De Lange T. (2004). Homologous recombination generates T-loop-sized deletions at human telomeres. PubMed DOI
Watson J. M., Riha K. (2010). Comparative biology of telomeres: where plants stand. PubMed DOI PMC
Wijnker E., Van Dun K., De Snoo C. B., Lelivelt C. L., Keurentjes J. J., Naharudin N. S., et al. (2012). Reverse breeding in PubMed DOI
Yang S. W., Kim S. K., Kim W. T. (2004). Perturbation of NgTRF1 expression induces apoptosis-like cell death in tobacco BY-2 cells and implicates NgTRF1 in the control of telomere length and stability. PubMed DOI PMC
Zellinger B., Riha K. (2007). Composition of plant telomeres. PubMed DOI
Telomeres in Plants and Humans: Not So Different, Not So Similar
An armadillo-domain protein participates in a telomerase interaction network
Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell