Using Centromere Mediated Genome Elimination to Elucidate the Functional Redundancy of Candidate Telomere Binding Proteins in Arabidopsis thaliana
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26779251
PubMed Central
PMC4700174
DOI
10.3389/fgene.2015.00349
Knihovny.cz E-zdroje
- Klíčová slova
- centromere, haploid, protein family, telobox, telomeres,
- Publikační typ
- časopisecké články MeSH
Proteins that bind to telomeric DNA form the key structural and functional constituents of telomeres. While telomere binding proteins have been described in the majority of organisms, their identity in plants remains unknown. Several protein families containing a telomere binding motif known as the telobox have been previously described in Arabidopsis thaliana. Nonetheless, functional evidence for their involvement at telomeres has not been obtained, likely due to functional redundancy. Here we performed genetic analysis on the TRF-like family consisting of six proteins (TRB1, TRP1, TRFL1, TRFL2, TRFL4, and TRF9) which have previously shown to bind telomeric DNA in vitro. We used haploid genetics to create multiple knock-out plants deficient for all six proteins of this gene family. These plants did not exhibit changes in telomere length, or phenotypes associated with telomere dysfunction. This data demonstrates that this telobox protein family is not involved in telomere maintenance in Arabidopsis. Phylogenetic analysis in major plant lineages revealed early diversification of telobox proteins families indicating that telomere function may be associated with other telobox proteins.
Central European Institute of Technology Masaryk University Brno Czech Republic
Gregor Mendel Institute Austrian Academy of Sciences Vienna Austria
Zobrazit více v PubMed
Bilaud T., Koering C. E., Binet-Brasselet E., Ancelin K., Pollice A., Gasser S. M., et al. (1996). The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res. 24 1294–1303. 10.1093/nar/24.7.1294 PubMed DOI PMC
Celli G. B., de Lange T. (2005). DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat. Cell Biol. 7 712–718. 10.1038/ncb1275 PubMed DOI
de Lange T. (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19 2100–2110. 10.1101/gad.1346005 PubMed DOI
Derboven E., Ekker H., Kusenda B., Bulankova P., Riha K. (2014). Role of STN1 and DNA polymerase alpha in telomere stability and genome-wide replication in Arabidopsis. PLoS Genet. 10:e1004682 10.1371/journal.pgen.1004682 PubMed DOI PMC
Fulcher N., Teubenbacher A., Kerdaffrec E., Farlow A., Nordborg M., Riha K. (2015). Genetic architecture of natural variation of telomere length in Arabidopsis thaliana. Genetics 199 625–635. 10.1534/genetics.114.172163 PubMed DOI PMC
Gohring J., Fulcher N., Jacak J., Riha K. (2014). TeloTool: a new tool for telomere length measurement from terminal restriction fragment analysis with improved probe intensity correction. Nucleic Acids Res. 42 e21. 10.1093/nar/gkt1315 PubMed DOI PMC
Hofr C., Sultesova P., Zimmermann M., Mozgova I., Prochazkova Schrumpfova P., Wimmerova M., et al. (2009). Single-Myb-histone proteins from Arabidopsis thaliana: a quantitative study of telomere-binding specificity and kinetics. Biochem. J. 419 221–228. 10.1042/BJ20082195 PubMed DOI
Hong J. P., Byun M. Y., Koo D. H., An K., Bang J. W., Chung I. K., et al. (2007). Suppression of RICE TELOMERE BINDING PROTEIN 1 results in severe and gradual developmental defects accompanied by genome instability in rice. Plant Cell 19 1770–1781. 10.1105/tpc.107.051953 PubMed DOI PMC
Hwang M. G., Cho M. H. (2007). Arabidopsis thaliana telomeric DNA-binding protein 1 is required for telomere length homeostasis and its Myb-extension domain stabilizes plant telomeric DNA binding. Nucleic Acids Res. 35 1333–1342. 10.1093/nar/gkm043 PubMed DOI PMC
Karamysheva Z. N., Surovtseva Y. V., Vespa L., Shakirov E. V., Shippen D. E. (2004). A C-terminal Myb extension domain defines a novel family of double-strand telomeric DNA-binding proteins in Arabidopsis. J. Biol. Chem. 279 47799–47807. 10.1074/jbc.M407938200 PubMed DOI
Kazda A., Zellinger B., Rossler M., Derboven E., Kusenda B., Riha K. (2012). Chromosome end protection by blunt-ended telomeres. Genes Dev. 26 1703–1713. 10.1101/gad.194944.112 PubMed DOI PMC
Ko S., Jun S. H., Bae H., Byun J. S., Han W., Park H., et al. (2008). Structure of the DNA-binding domain of NgTRF1 reveals unique features of plant telomere-binding proteins. Nucleic Acids Res. 36 2739–2755. 10.1093/nar/gkn030 PubMed DOI PMC
Ko S., Yu E. Y., Shin J., Yoo H. H., Tanaka T., Kim W. T., et al. (2009). Solution structure of the DNA binding domain of rice telomere binding protein RTBP1. Biochemistry 48 827–838. 10.1021/bi801270g PubMed DOI
Kuchar M., Fajkus J. (2004). Interactions of putative telomere-binding proteins in Arabidopsis thaliana: identification of functional TRF2 homolog in plants. FEBS Lett. 578 311–315. 10.1016/j.febslet.2004.11.021 PubMed DOI
Marian C. O., Bordoli S. J., Goltz M., Santarella R. A., Jackson L. P., Danilevskaya O., et al. (2003). The maize Single myb histone 1 gene, Smh1, belongs to a novel gene family and encodes a protein that binds telomere DNA repeats in vitro. Plant Physiol. 133 1336–1350. 10.1104/pp.103.026856 PubMed DOI PMC
Moriguchi R., Kanahama K., Kanayama Y. (2006). Characterization and expression analysis of the tomato telomere-binding protein LeTBP1. Plant Sci. 171 166–174. 10.1016/j.plantsci.2006.03.010 DOI
Moriguchi R., Ohata K., Kanahama K., Takahashi H., Nishiyama M., Kanayama Y. (2011). Suppression of telomere-binding protein gene expression represses seed and fruit development in tomato. J. Plant Physiol. 168 1927–1933. 10.1016/j.jplph.2011.05.009 PubMed DOI
Mozgova I., Schrumpfova P. P., Hofr C., Fajkus J. (2008). Functional characterization of domains in AtTRB1, a putative telomere-binding protein in Arabidopsis thaliana. Phytochemistry 69 1814–1819. 10.1016/j.phytochem.2008.04.001 PubMed DOI
Ravi M., Chan S. W. (2010). Haploid plants produced by centromere-mediated genome elimination. Nature 464 615–618. 10.1038/nature08842 PubMed DOI
Ravi M., Marimuthu M. P., Tan E. H., Maheshwari S., Henry I. M., Marin-Rodriguez B., et al. (2014). A haploid genetics toolbox for Arabidopsis thaliana. Nat. Commun. 5 5334 10.1038/ncomms6334 PubMed DOI
Riha K., Mcknight T. D., Griffing L. R., Shippen D. E. (2001). Living with genome instability: plant responses to telomere dysfunction. Science 291 1797–1800. 10.1126/science.1057110 PubMed DOI
Riha K., Watson J. M., Parkey J., Shippen D. E. (2002). Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J. 21 2819–2826. 10.1093/emboj/21.11.2819 PubMed DOI PMC
Schrumpfova P., Kuchar M., Mikova G., Skrisovska L., Kubicarova T., Fajkus J. (2004). Characterization of two Arabidopsis thaliana myb-like proteins showing affinity to telomeric DNA sequence. Genome 47 316–324. 10.1139/g03-136 PubMed DOI
Schrumpfova P. P., Vychodilova I., Dvorackova M., Majerska J., Dokladal L., Schorova S., et al. (2014). Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase. Plant J. 77 770–781. 10.1111/tpj.12428 PubMed DOI PMC
Seymour D. K., Filiault D. L., Henry I. M., Monson-Miller J., Ravi M., Pang A., et al. (2012). Rapid creation of Arabidopsis doubled haploid lines for quantitative trait locus mapping. Proc. Natl. Acad. Sci. U.S.A. 109 4227–4232. 10.1073/pnas.1117277109 PubMed DOI PMC
Sfeir A., Kosiyatrakul S. T., Hockemeyer D., Macrae S. L., Karlseder J., Schildkraut C. L., et al. (2009). Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138 90–103. 10.1016/j.cell.2009.06.021 PubMed DOI PMC
Shakirov E. V., Shippen D. E. (2004). Length regulation and dynamics of individual telomere tracts in wild-type Arabidopsis. Plant Cell 16 1959–1967. 10.1105/tpc.104.023093 PubMed DOI PMC
Song X., Leehy K., Warrington R. T., Lamb J. C., Surovtseva Y. V., Shippen D. E. (2008). STN1 protects chromosome ends in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 105 19815–19820. 10.1073/pnas.0807867105 PubMed DOI PMC
Surovtseva Y. V., Churikov D., Boltz K. A., Song X., Lamb J. C., Warrington R., et al. (2009). Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol. Cell 36 207–218. 10.1016/j.molcel.2009.09.017 PubMed DOI PMC
Tremousaygue D., Manevski A., Bardet C., Lescure N., Lescure B. (1999). Plant interstitial telomere motifs participate in the control of gene expression in root meristems. Plant J. 20 553–561. 10.1046/j.1365-313X.1999.00627.x PubMed DOI
van Steensel B., de Lange T. (1997). Control of telomere length by the human telomeric protein TRF1. Nature 385 740–743. 10.1038/385740a0 PubMed DOI
van Steensel B., Smogorzewska A., De Lange T. (1998). TRF2 protects human telomeres from end-to-end fusions. Cell 92 401–413. 10.1016/S0092-8674(00)80932-0 PubMed DOI
Wang R. C., Smogorzewska A., De Lange T. (2004). Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119 355–368. 10.1016/j.cell.2004.10.011 PubMed DOI
Watson J. M., Riha K. (2010). Comparative biology of telomeres: where plants stand. FEBS Lett. 584 3752–3759. 10.1016/j.febslet.2010.06.017 PubMed DOI PMC
Wijnker E., Van Dun K., De Snoo C. B., Lelivelt C. L., Keurentjes J. J., Naharudin N. S., et al. (2012). Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant. Nat. Genet. 44 467–470. 10.1038/ng.2203 PubMed DOI
Yang S. W., Kim S. K., Kim W. T. (2004). Perturbation of NgTRF1 expression induces apoptosis-like cell death in tobacco BY-2 cells and implicates NgTRF1 in the control of telomere length and stability. Plant Cell 16 3370–3385. 10.1105/tpc.104.026278 PubMed DOI PMC
Zellinger B., Riha K. (2007). Composition of plant telomeres. Biochim. Biophys. Acta 1769 399–409. 10.1016/j.bbaexp.2007.02.001 PubMed DOI
Telomeres in Plants and Humans: Not So Different, Not So Similar
An armadillo-domain protein participates in a telomerase interaction network
Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell