Poly (ADP-ribose) polymerase in yeasts: characterization and involvement in telomere maintenance

. 2025 Sep 05 ; 53 (17) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40923756

Grantová podpora
APVV-23-0056 Slovak Research and Development Agency
APVV-19-0068 Slovak Research and Development Agency
APVV 22-0144 Slovak Research and Development Agency
Ministry of Education
1/0031/24 Sport of the Slovak republic
1/0234/23 Sport of the Slovak republic
1R01ES031635-01 NIH HHS - United States
Operation Program of Integrated Infrastructure
European Regional Development Fund
MEYS
CR
CEITEC institutional
CANTAR project
Az. 10.21.1.027MN Fritz Thyssen Foundation

Poly (ADP-ribose) polymerases (PARPs) are enzymes catalyzing the post-translational addition of chains of ADP-ribose moieties to proteins. In most eukaryotic cells, their primary protein targets are involved in DNA recombination, repair, and chromosome maintenance. Even though this group of enzymes is quite common in both eukaryotes and prokaryotes, no PARP homologs have been described so far in ascomycetous yeasts, leaving their potential roles in this group of organisms unexplored. Here, we characterize Pyl1 protein of Yarrowia lipolytica as the first candidate of PARP in yeasts. We show that the expression of PYL1 gene is increased in mutants lacking either subunit of telomerase and identified several of its candidate protein targets in vivo. We demonstrate that Pyl1p is a functional PARP that undergoes auto-PARylation and PARylates YlKu70/80 complex. We also show that overexpression of PYL1 in Y. lipolytica cells results in dissociation of YlKu80 from telomeres in vivo, supporting the role of Pyl1p in telomere protection and maintenance. Based on our observations, we propose Pyl1p and its homologs identified in other yeast species represent a distinct class of PARPs, thus substantiating a more detailed investigation of their roles in these organisms.

Zobrazit více v PubMed

Lüscher  B, Ahel  I, Altmeyer  M  et al.  ADP-ribosyltransferases, an update on function and nomenclature. Nat Commun. 2022; 289:D543–52. PubMed PMC

Burzio  LO, Riquelme  PT, Koide  SS  ADP ribosylation of rat liver nucleosomal core histones. J Biol Chem. 1979; 254:3029–37. 10.1016/S0021-9258(17)30178-3. PubMed DOI

Chaudhuri  RA, Nussenzweig  A  The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017; 18:610–21. 10.1038/nrm.2017.53. PubMed DOI PMC

Gibson  BA, Kraus  WL  New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol. 2012; 13:411–24. 10.1038/nrm3376. PubMed DOI

Durkacz  BW, Omidiji  O, Gray  DA  et al.  ADP-ribose)n participates in DNA excision repair. Nature. 1980; 283:593–6. 10.1038/283593a0. PubMed DOI

Benjamin  RC, Gill  DM  ADP-ribosylation in mammalian cell ghosts. Dependence of poly(ADP-ribose) synthesis on strand breakage in DNA. J Biol Chem. 1980; 255:10493–501. 10.1016/S0021-9258(19)70490-6. PubMed DOI

Dockery  LE, Gunderson  CC, Moore  KN  Rucaparib: the past, present, and future of a newly approved PARP inhibitor for ovarian cancer. Onco Targets Ther. 2017; 10:3029–37. 10.2147/OTT.S114714. PubMed DOI PMC

Fong  PC, Boss  DS, Yap  TA  et al.  Inhibition of poly(ADP-Ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009; 361:123–34. 10.1056/NEJMoa0900212. PubMed DOI

van Beek  L, McClay  É, Patel  S  et al.  PARP power: a structural perspective on PARP1, PARP2, and PARP3 in DNA damage repair and nucleosome remodelling. Int J Mol Sci. 2021; 22:5112. 10.3390/ijms22105112. PubMed DOI PMC

Langelier  MF, Planck  JL, Roy  S  et al.  Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science. 2012; 336:728–32. 10.1126/science.1216338. PubMed DOI PMC

Liu  C, Vyas  A, Kassab  MA  et al.  The role of poly ADP-ribosylation in the first wave of DNA damage response. Nucleic Acids Res. 2017; 45:8129–41. 10.1093/nar/gkx565. PubMed DOI PMC

Yang  G, Liu  C, Chen  SH  et al.  Super-resolution imaging identifies PARP1 and the ku complex acting as DNA double-strand break sensors. Nucleic Acids Res. 2018; 46:3446–57. 10.1093/nar/gky088. PubMed DOI PMC

Han  Y, Jin  F, Xie  Y  et al.  DNAPKcs PARylation regulates DNAPK kinase activity in the DNA damage response. Mol Med Rep. 2019; 20:3609–16. PubMed PMC

Reber  JM, Božić-Petković  J, Lippmann  M  et al.  PARP1 and XRCC1 exhibit a reciprocal relationship in genotoxic stress response. Cell Biol Toxicol. 2023; 39:345–64. 10.1007/s10565-022-09739-9. PubMed DOI PMC

Miwa  M, Tanaka  M, Matsushima  T  et al.  Purification and properties of a glycohydrolase from calf thymus splitting ribose-ribose linkages of poly(adenosine diphosphate ribose). J Biol Chem. 1974; 249:3475–82. 10.1016/S0021-9258(19)42597-0. PubMed DOI

Beneke  S, Cohausz  O, Malanga  M  et al.  Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1. Nucleic Acids Res. 2008; 36:6309–17. 10.1093/nar/gkn615. PubMed DOI PMC

Gomez  M, Wu  J, Schreiber  V  et al.  PARP1 Is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomeres. Mol Biol Cell. 2006; 17:1686–96. 10.1091/mbc.e05-07-0672. PubMed DOI PMC

Di  Fagagna FDA, Hande  MP, Tong  WM  et al.  Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability. Nat Genet. 1999; 23:76–80. 10.1038/12680. PubMed DOI

Chen  JL, Greider  CW  Telomerase RNA structure and function: implications for dyskeratosis congenita. Trends Biochem Sci. 2004; 29:183–92. 10.1016/j.tibs.2004.02.003. PubMed DOI

De  Lange T  Shelterin-mediated telomere protection. Annu Rev Genet. 2018; 52:223–47. 10.1146/annurev-genet-032918-021921. PubMed DOI

De  Lange T  Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005; 19:2100–10. 10.1101/gad.1346005. PubMed DOI

Wright  JH, Zakian  VA  Protein-DNA interactions in soluble telosomes from PubMed DOI PMC

Greenwood  J, Patel  H, Cech  TR  et al.  Fission yeast telosomes: non-canonical histone-containing chromatin structures dependent on shelterin and RNA. Nucleic Acids Res. 2018; 46:8865. 10.1093/nar/gky605. PubMed DOI PMC

Wellinger  RJ, Zakian  VA  Everything you ever wanted to know about PubMed DOI PMC

Červenák  F, Sepšiová  R, Nosek  J  et al.  Step-by-step evolution of telomeres: lessons from yeasts. Genome Biol Evol. 2020; 13:evaa268. PubMed PMC

Červenák  F, Juríková  K, Sepšiová  R  et al.  Double-stranded telomeric DNA binding proteins: diversity matters. Cell Cycle. 2017; 16:1568–77. PubMed PMC

Kramara  J, Willcox  S, Gunisova  S  et al.  Tay1 protein, a novel telomere binding factor from Yarrowia lipolytica. J Biol Chem. 2010; 285:38078–92. 10.1074/jbc.M110.127605. PubMed DOI PMC

Visacka  K, Hofr  C, Willcox  S  et al.  Synergism of the two Myb domains of Tay1 protein results in high affinity binding to telomeres. J Biol Chem. 2012; 287:32206–15. 10.1074/jbc.M112.385591. PubMed DOI PMC

Červenák  F, Juríková  K, Devillers  H  et al.  Identification of telomerase RNAs in species of the PubMed PMC

Kinsky  S, Mihalikova  A, Kramara  J  et al.  Lack of the catalytic subunit of telomerase leads to growth defects accompanied by structural changes at the chromosomal ends in PubMed DOI

Lendvay  TS, Morris  DK, Sah  J  et al.  Senescence mutants of PubMed DOI PMC

Nakamura  TM, Morin  GB, Chapman  KB  et al.  Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997; 277:955–9. 10.1126/science.277.5328.955. PubMed DOI

Stellwagen  AE, Haimberger  ZW, Veatch  JR  et al.  Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev. 2003; 17:2384–95. 10.1101/gad.1125903. PubMed DOI PMC

Baumann  P, Cech  TR  Protection of telomeres by the Ku protein in fission yeast. Mol Biol Cell. 2000; 11:3265–75. 10.1091/mbc.11.10.3265. PubMed DOI PMC

Gravel  S, Larrivée  M, Labrecque  P  et al.  Yeast Ku as a regulator of chromosomal DNA end structure. Science. 1998; 280:741–4. 10.1126/science.280.5364.741. PubMed DOI

Porter  SE, Greenwell  PW, Ritchie  KB  et al.  The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in PubMed DOI PMC

Boulton  SJ, Jackson  SP  Identification of a PubMed DOI PMC

Chico  L, Ciudad  T, Hsu  M  et al.  The PubMed DOI PMC

Valuchova  S, Fulnecek  J, Prokop  Z  et al.  Protection of PubMed DOI PMC

Espejel  S, Franco  S, Rodríguez-Perales  S  et al.  Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J. 2002; 21:2207–19. 10.1093/emboj/21.9.2207. PubMed DOI PMC

Bundock  P, van Attikum  H, Hooykaas  P  Increased telomere length and hypersensitivity to DNA damaging agents in an PubMed DOI PMC

Riha  K, Watson  JM, Parkey  J  et al.  Telomere length deregulation and enhanced sensitivity to genotoxic stress in PubMed DOI PMC

Gallego  ME, Jalut  N, White  CI  Telomerase dependence of telomere lengthening in Ku80 mutant PubMed DOI PMC

Bai  P  Biology of poly(ADP-ribose) polymerases: the factotums of cell maintenance. Mol Cell. 2015; 58:947–58. 10.1016/j.molcel.2015.01.034. PubMed DOI

Smith  S, Giriat  I, Schmitt  A  et al.  Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science. 1998; 282:1484–7. 10.1126/science.282.5393.1484. PubMed DOI

Kaminker  PG, Kim  SH, Taylor  RD  et al.  TANK2, a new TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression. J Biol Chem. 2001; 276:35891–9. 10.1074/jbc.M105968200. PubMed DOI

Doksani  Y, de Lange  T  Telomere-internal double-strand breaks are repaired by homologous recombination and PARP1/Lig3-dependent end-joining. Cell Rep. 2016; 17:1646–56. 10.1016/j.celrep.2016.10.008. PubMed DOI PMC

Hoang  SM, Kaminski  N, Bhargava  R  et al.  Regulation of ALT-associated homology-directed repair by polyADP-ribosylation. Nat Struct Mol Biol. 2020; 27:1152–64. 10.1038/s41594-020-0512-7. PubMed DOI PMC

Maresca  C, Dello  Stritto A, D’Angelo  C  et al.  PARP1 allows proper telomere replication through TRF1 poly (ADP-ribosyl)ation and helicase recruitment. Commun Biol. 2023; 6:234. 10.1038/s42003-023-04596-6. PubMed DOI PMC

Ghosh  U, Das  N, Bhattacharyya  NP  Inhibition of telomerase activity by reduction of poly(ADP-ribosyl)ation of TERT and TEP1/TP1 expression in HeLa cells with knocked down poly(ADP-ribose) polymerase-1 (PARP-1) gene. Mutat Res. 2007; 615:66–74. 10.1016/j.mrfmmm.2006.10.002. PubMed DOI

Citarelli  M, Teotia  S, Lamb  RS  Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evol Biol. 2010; 10:308. 10.1186/1471-2148-10-308. PubMed DOI PMC

Semighini  CP, Savoldi  M, Goldman  GH  et al.  Functional characterization of the putative PubMed DOI PMC

Kothe  GO, Kitamura  M, Masutani  M  et al.  PARP is involved in replicative aging in PubMed DOI PMC

Kretzschmar  A, Otto  C, Holz  M  et al.  Increased homologous integration frequency in PubMed DOI

Laemmli  UK  Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227:680–5. 10.1038/227680a0. PubMed DOI

Nosek  J, Tomáška  Ľ  Laboratory Protocols in Molecular and Cell Biology of Yeasts. 2013; Charleston, SC, USA: Create Space Independent Publishing Platform Create Space Independent Publishing Platform.

Stejskal  K, Potěšil  D, Zdráhal  Z  Suppression of peptide sample losses in autosampler vials. J Proteome Res. 2013; 12:3057–62. 10.1021/pr400183v. PubMed DOI

Bateman  A, Martin  MJ, Orchard  S  et al.  UniProt: the Universal Protein knowledgebase in 2023. Nucleic Acids Res. 2023; 51:D523–31. PubMed PMC

Domon  B, Costello  CA  Systematic nomenclature for carbohydrate fragmentations in fab-ms/ms spectra of glycoconjugates. Glycoconjugate J. 1988; 5:397–409. 10.1007/BF01049915. DOI

Barth  G, Gaillardin  C. Wolf  K.  Yarrowia lipolytica. Nonconventional Yeasts in Biotechnology. 1996; Berlin, Heidelberg: Springer; 313–88. 10.1007/978-3-642-79856-6. DOI

Mender  I, Shay  J  Telomere restriction fragment (TRF) analysis. Bio Protoc. 2015; 5:e1658. 10.21769/BioProtoc.1658. PubMed DOI PMC

Langelier  MF, Planck  JL, Servent  KM  et al.  Purification of human PARP-1 and PARP-1 domains from PubMed

Misino  S, Bush  A, Wagner  CB  et al.  TERRA increases at short telomeres in yeast survivors and regulates survivor associated senescence (SAS). Nucleic Acids Res. 2022; 50:12829–43. 10.1093/nar/gkac1125. PubMed DOI PMC

Altschul  SF, Madden  TL, Schäffer  AA  et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389–402. 10.1093/nar/25.17.3389. PubMed DOI PMC

Manni  M, Berkeley  MR, Seppey  M  et al.  BUSCO: assessing genomic data quality and beyond. Curr Protoc. 2021; 1:e323. 10.1002/cpz1.323. PubMed DOI

Price  MN, Dehal  PS, Arkin  AP  FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One. 2010; 5:e9490. 10.1371/journal.pone.0009490. PubMed DOI PMC

Yu  G, Smith  DK, Zhu  H  et al.  ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017; 8:28–36. 10.1111/2041-210X.12628. DOI

Letunic  I, Khedkar  S, Bork  P  SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 2021; 49:D458–60. 10.1093/nar/gkaa937. PubMed DOI PMC

Fu  H, Liu  R, Jia  Z  et al.  Poly(ADP-ribosylation) of P-TEFb by PARP1 disrupts phase separation to inhibit global transcription after DNA damage. Nat Cell Biol. 2022; 24:513–25. 10.1038/s41556-022-00872-5. PubMed DOI PMC

Kedar  PS, Stefanick  DF, Horton  JK  et al.  Increased PARP-1 association with DNA in alkylation damaged, PARP-inhibited mouse fibroblasts. Mol Cancer Res. 2012; 10:360–8. 10.1158/1541-7786.MCR-11-0477. PubMed DOI PMC

La  Ferla M, Mercatanti  A, Rocchi  G  et al.  Expression of human poly (ADP-ribose) polymerase 1 in PubMed

Boltz  KA, Jasti  M, Townley  JM  et al.  Analysis of poly(ADP-ribose) polymerases in PubMed DOI PMC

Zhu  T, Zheng  JY, Huang  LL  et al.  Human PARP1 substrates and regulators of its catalytic activity: an updated overview. Front Pharmacol. 2023; 14:1137151. 10.3389/fphar.2023.1137151. PubMed DOI PMC

Ivessa  AS, Zhou  JQ, Schulz  VP  et al. PubMed DOI PMC

Matveeva  EA, Mathbout  LF, Fondufe-Mittendorf  YN  PARP1 is a versatile factor in the regulation of mRNA stability and decay. Sci Rep. 2019; 9:3722. 10.1038/s41598-019-39969-7. PubMed DOI PMC

Matveeva  EA, Al-Tinawi  QMH, Rouchka  EC  et al.  Coupling of PARP1-mediated chromatin structural changes to transcriptional RNA polymerase II elongation and cotranscriptional splicing. Epigenetics Chromatin. 2019; 12:15. 10.1186/s13072-019-0261-1. PubMed DOI PMC

Daniels  CM, Ong  S-E, Leung  AKL  Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl)ation sites from cells. J Proteome Res. 2014; 13:3510–22. 10.1021/pr401032q. PubMed DOI PMC

Slade  D, Dunstan  MS, Barkauskaite  E  et al.  The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature. 2011; 477:616–20. 10.1038/nature10404. PubMed DOI PMC

Trassaert  M, Vandermies  M, Carly  F  et al.  New inducible promoter for gene expression and synthetic biology in PubMed DOI PMC

Campos-Góngora  E, Andaluz  E, Bellido  A  et al.  The PubMed DOI

Shaw  AE, Mihelich  MN, Whitted  JE  et al.  Revised mechanism of hydroxyurea-induced cell cycle arrest and an improved alternative. Proc Natl Acad Sci USA. 2024; 121:e2404470121. 10.1073/pnas.2404470121. PubMed DOI PMC

Alexander  JL, Orr-Weaver  TL  Replication fork instability and the consequences of fork collisions from re-replication. Genes Dev. 2016; 30:2241–52. 10.1101/gad.288142.116. PubMed DOI PMC

Teixeira-Silva  A, Ait  Saada A, Hardy  J  et al.  The end-joining factor Ku acts in the end-resection of double strand break-free arrested replication forks. Nat Commun. 2017; 8:1982. 10.1038/s41467-017-02144-5. PubMed DOI PMC

Mistry  J, Chuguransky  S, Williams  L  et al.  Pfam: the protein families database in 2021. Nucleic Acids Res. 2021; 49:D412–9. 10.1093/nar/gkaa913. PubMed DOI PMC

Daniels  CM, Ong  SE, Leung  AKL  The promise of proteomics for the study of ADP-ribosylation. Mol Cell. 2015; 58:911–24. 10.1016/j.molcel.2015.06.012. PubMed DOI PMC

Jungmichel  S, Rosenthal  F, Altmeyer  M  et al.  Proteome-wide identification of poly(ADP-ribosyl)ation targets in different genotoxic stress responses. Mol Cell. 2013; 52:272–85. 10.1016/j.molcel.2013.08.026. PubMed DOI

Muoio  D, Laspata  N, Fouquerel  E  Functions of ADP-ribose transferases in the maintenance of telomere integrity. Cell Mol Life Sci. 2022; 79:215. 10.1007/s00018-022-04235-z. PubMed DOI PMC

Hsieh  MH, Chen  YT, Chen  YT  et al.  PARP1 controls KLF4-mediated telomerase expression in stem cells and cancer cells. Nucleic Acids Res. 2017; 45:10492–503. 10.1093/nar/gkx683. PubMed DOI PMC

Ye  JZS, De  Lange T  TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex. Nat Genet. 2004; 36:618–23. 10.1038/ng1360. PubMed DOI

Fernández-Marcelo  T, Frías  C, Pascua  I  et al.  Poly (ADP-ribose) polymerase 3 (PARP3), a potential repressor of telomerase activity. J Exp Clin Cancer Res. 2014; 33:19. PubMed PMC

Dantzer  F, Giraud-Panis  M-J, Jaco  I  et al.  Functional interaction between poly(ADP-ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Mol Cell Biol. 2004; 24:1595–607. 10.1128/MCB.24.4.1595-1607.2004. PubMed DOI PMC

Nabetani  A, Ishikawa  F  Unusual telomeric DNAs in human telomerase-negative immortalized cells. Mol Cell Biol. 2009; 29:703–13. 10.1128/MCB.00603-08. PubMed DOI PMC

Rose  AM, Goncalves  T, Cunniffe  S  et al.  Induction of the alternative lengthening of telomeres pathway by trapping of proteins on DNA. Nucleic Acids Res. 2023; 51:6509–27. 10.1093/nar/gkad150. PubMed DOI PMC

Hsu  HL, Gilley  D, Blackburn  EH  et al.  Ku is associated with the telomere in mammals. Proc Natl Acad Sci USA. 1999; 96:12454–8. 10.1073/pnas.96.22.12454. PubMed DOI PMC

Hsu  HL, Gilley  D, Galande  SA  et al.  Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev. 2000; 14:2807–12. 10.1101/gad.844000. PubMed DOI PMC

Song  K, Jung  D, Jung  Y  et al.  Interaction of human Ku70 with TRF2. FEBS Lett. 2000; 481:81–5. 10.1016/S0014-5793(00)01958-X. PubMed DOI

Chai  W, Ford  LP, Lenertz  L  et al.  Human Ku70/80 associates physically with telomerase through interaction with hTERT. J Biol Chem. 2002; 277:47242–7. 10.1074/jbc.M208542200. PubMed DOI

Marvin  ME, Griffin  CD, Eyre  DE  et al.  In PubMed DOI PMC

Wang  M, Wu  W, Wu  W  et al.  PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 2006; 34:6170–82. 10.1093/nar/gkl840. PubMed DOI PMC

Hamma  T, Ferré-D’Amaré  AR  The box H/ACA ribonucleoprotein complex: interplay of RNA and protein structures in post-transcriptional RNA modification. J Biol Chem. 2010; 285:805–9. 10.1074/jbc.R109.076893. PubMed DOI PMC

Savelyev  NV, Shepelev  NM, Lavrik  OI  et al.  PARP1 regulates the biogenesis and activity of telomerase complex through modification of H/ACA-proteins. Front Cell Dev Biol. 2021; 9:621134. 10.3389/fcell.2021.621134. PubMed DOI PMC

Altmeyer  M, Neelsen  KJ, Teloni  F  et al.  Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat Commun. 2015; 6:8088. 10.1038/ncomms9088. PubMed DOI PMC

Dukić  N, Strømland  Ø, Elsborg  JD  et al.  PARP14 is a PARP with both ADP-ribosyl transferase and hydrolase activities. Sci Adv. 2023; 9:eadi2687. PubMed PMC

Perez-Riverol  Y, Bai  J, Bandla  C  et al.  The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022; 50:D543–52. 10.1093/nar/gkab1038. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...