SAP domain forms a flexible part of DNA aperture in Ku70/80
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
BBSRC
200814/Z/16/Z
Wellcome Trust Investigator Award
PubMed
33511782
PubMed Central
PMC8653891
DOI
10.1111/febs.15732
Knihovny.cz E-zdroje
- Klíčová slova
- DNA double-strand break, Ku70/80, SAP domain, integrative structural biology, nonhomologous end joining,
- MeSH
- antigen Ku chemie MeSH
- DNA chemie MeSH
- dvouřetězcové zlomy DNA * MeSH
- konformace proteinů MeSH
- lidé MeSH
- oprava DNA spojením konců * MeSH
- proteinové domény MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigen Ku MeSH
- DNA MeSH
Nonhomologous end joining (NHEJ) is a DNA repair mechanism that religates double-strand DNA breaks to maintain genomic integrity during the entire cell cycle. The Ku70/80 complex recognizes DNA breaks and serves as an essential hub for recruitment of NHEJ components. Here, we describe intramolecular interactions of the Ku70 C-terminal domain, known as the SAP domain. Using single-particle cryo-electron microscopy, mass spectrometric analysis of intermolecular cross-linking and molecular modelling simulations, we captured variable positions of the SAP domain depending on DNA binding. The first position was localized at the DNA aperture in the Ku70/80 apo form but was not observed in the DNA-bound state. The second position, which was observed in both apo and DNA-bound states, was found below the DNA aperture, close to the helical arm of Ku70. The localization of the SAP domain in the DNA aperture suggests a function as a flexible entry gate for broken DNA. DATABASES: EM maps have been deposited in EMDB (EMD-11933). Coordinates have been deposited in Protein Data Bank (PDB 7AXZ). Other data are available from corresponding authors upon a request.
Computational and Systems Biology Bio21 Institute University of Melbourne Parkville VIC Australia
Department of Biochemistry and Molecular Biology University of Melbourne Parkville VIC Australia
Department of Biochemistry University of Cambridge Cambridge UK
Gene Center and Department of Biochemistry University of Munich Germany
Institute of Microbiology Academy of Sciences of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
Frit P, Ropars V, Modesti M, Charbonnier JB & Calsou P (2019) Plugged into the Ku‐DNA hub: the NHEJ network. Prog Biophys Mol Biol 147, 62–76. PubMed
Williams JM, Ouenzar F, Lemon LD, Chartrand P & Bertuch AA (2014) The principal role of Ku in telomere length maintenance is promotion of Est1 association with telomeres. Genetics 197, 1123–1136. PubMed PMC
Knyazhanskaya E, Anisenko A, Shadrina O, Kalinina A, Zatsepin T, Zalevsky A, Mazurov D & Gottikh M (2019) NHEJ pathway is involved in post‐integrational DNA repair due to Ku70 binding to HIV‐1 integrase. Retrovirology 16, 30. PubMed PMC
Wang B, Xie M, Li R, Owonikoko TK, Ramalingam SS, Khuri FR, Curran WJ, Wang Y & Deng X (2014) Role of Ku70 in deubiquitination of Mcl‐1 and suppression of apoptosis. Cell Death Differ 21, 1160–1169. PubMed PMC
Walker JR, Corpina RA & Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double‐strand break repair. Nature 412, 607–614. PubMed
Zhang Z, Zhu L, Lin D, Chen F, Chen DJ & Chen Y (2001) The three‐dimensional structure of the C‐terminal DNA‐binding domain of human Ku70. J Biol Chem 276, 38231–38236. PubMed
Zhang Z, Hu W, Cano L, Lee TD, Chen DJ & Chen Y (2004) Solution structure of the C‐terminal domain of Ku80 suggests important sites for protein‐protein interactions. Structure 12, 495–502. PubMed
Harris R, Esposito D, Sankar A, Maman JD, Hinks JA, Pearl LH & Driscoll PC (2004) The 3D solution structure of the C‐terminal region of Ku86 (Ku86CTR). J Mol Biol 335, 573–582. PubMed
Gell D & Jackson SP (1999) Mapping of protein‐protein interactions within the DNA‐dependent protein kinase complex. Nucleic Acids Res 27, 3494–3502. PubMed PMC
Singleton BK, Torres‐Arzayus MI, Rottinghaus ST, Taccioli GE & Jeggo PA (1999) The C terminus of Ku80 activates the DNA‐dependent protein kinase catalytic subunit. Mol Cell Biol 19, 3267–3277. PubMed PMC
Rivera‐Calzada A, Spagnolo L, Pearl LH & Llorca O (2007) Structural model of full‐length human Ku70‐Ku80 heterodimer and its recognition of DNA and DNA‐PKcs. EMBO Rep 8, 56–62. PubMed PMC
Lehman JA, Hoelz DJ & Turchi JJ (2008) DNA‐dependent conformational changes in the Ku heterodimer. Biochemistry 47, 4359–4368. PubMed PMC
Schild‐Poulter C, Pope L, Giffin W, Kochan JC, Ngsee JK, Traykova‐Andonova M & Hache RJ (2001) The binding of Ku antigen to homeodomain proteins promotes their phosphorylation by DNA‐dependent protein kinase. J Biol Chem 276, 16848–16856. PubMed
Rubin E, Wu X, Zhu T, Cheung JC, Chen H, Lorincz A, Pandita RK, Sharma GG, Ha HC, Gasson J et al. (2007) A role for the HOXB7 homeodomain protein in DNA repair. Cancer Res 67, 1527–1535. PubMed
Renouf B, Soret C, Saandi T, Delalande F, Martin E, Vanier M, Duluc I, Gross I, Freund JN & Domon‐Dell C (2012) Cdx2 homeoprotein inhibits non‐homologous end joining in colon cancer but not in leukemia cells. Nucleic Acids Res 40, 3456–3469. PubMed PMC
Lobbardi R, Pinder J, Martinez‐Pastor B, Theodorou M, Blackburn JS, Abraham BJ, Namiki Y, Mansour M, Abdelfattah NS, Molodtsov A et al. (2017) TOX regulates growth, DNA repair, and genomic instability in T‐cell acute lymphoblastic leukemia. Cancer Discov 7, 1336–1353. PubMed PMC
Xiao K, Zhao Y, Choi M, Liu H, Blanc A, Qian J, Cahill TJ 3rd, Li X, Xiao Y, Clark LJ et al. (2018) Revealing the architecture of protein complexes by an orthogonal approach combining HDXMS, CXMS, and disulfide trapping. Nat Protoc 13, 1403–1428. PubMed
Kukacka Z, Rosulek M, Strohalm M, Kavan D & Novak P (2015) Mapping protein structural changes by quantitative cross‐linking. Methods 89, 112–120. PubMed
Aravind L & Koonin EV (2000) SAP ‐ a putative DNA‐binding motif involved in chromosomal organization. Trends Biochem Sci 25, 112–114. PubMed
Sahara S, Aoto M, Eguchi Y, Imamoto N, Yoneda Y & Tsujimoto Y (1999) Acinus is a caspase‐3‐activated protein required for apoptotic chromatin condensation. Nature 401, 168–173. PubMed
Zhao Y, He J, Li Y, Lv S & Cui H (2020) NUSAP1 potentiates chemoresistance in glioblastoma through its SAP domain to stabilize ATR. Signal Transduct Target Ther 5, 44. PubMed PMC
Rodor J, Pan Q, Blencowe BJ, Eyras E & Caceres JF (2016) The RNA‐binding profile of Acinus, a peripheral component of the exon junction complex, reveals its role in splicing regulation. RNA 22, 1411–1426. PubMed PMC
Mo Y, Vaessen B, Johnston K & Marmorstein R (1998) Structures of SAP‐1 bound to DNA targets from the E74 and c‐fos promoters: insights into DNA sequence discrimination by Ets proteins. Mol Cell 2, 201–212. PubMed
Nayler O, Stratling W, Bourquin JP, Stagljar I, Lindemann L, Jasper H, Hartmann AM, Fackelmayer FO, Ullrich A & Stamm S (1998) SAF‐B protein couples transcription and pre‐mRNA splicing to SAR/MAR elements. Nucleic Acids Res 26, 3542–3549. PubMed PMC
Ahrends R, Kosinski J, Kirsch D, Manelyte L, Giron‐Monzon L, Hummerich L, Schulz O, Spengler B & Friedhoff P (2006) Identifying an interaction site between MutH and the C‐terminal domain of MutL by crosslinking, affinity purification, chemical coding and mass spectrometry. Nucleic Acids Res 34, 3169–3180. PubMed PMC
Alcon P, Shakeel S, Chen ZA, Rappsilber J, Patel KJ & Passmore LA (2020) FANCD2‐FANCI is a clamp stabilized on DNA by monoubiquitination of FANCD2 during DNA repair. Nat Struct Mol Biol 27, 240–248. PubMed PMC
Makowski MM, Grawe C, Foster BM, Nguyen NV, Bartke T & Vermeulen M (2018) Global profiling of protein‐DNA and protein‐nucleosome binding affinities using quantitative mass spectrometry. Nat Commun 9, 1653. PubMed PMC
Nemoz C, Ropars V, Frit P, Gontier A, Drevet P, Yu J, Guerois R, Pitois A, Comte A, Delteil C et al. (2018) XLF and APLF bind Ku80 at two remote sites to ensure DNA repair by non‐homologous end joining. Nat Struct Mol Biol 25, 971–980. PubMed PMC
Yin X, Liu M, Tian Y, Wang J & Xu Y (2017) Cryo‐EM structure of human DNA‐PK holoenzyme. Cell Res 27, 1341–1350. PubMed PMC
Chaplin AK, Hardwick SW, Liang S, Kefala Stavridi A, Hnizda A, Cooper LR, De Oliveira TM, Chirgadze DY & Blundell TL (2020) Dimers of DNA‐PK create a stage for DNA double‐strand break repair. Nat Struct Mol Biol 28, 13–19. PubMed
Hu S, Pluth JM & Cucinotta FA (2012) Putative binding modes of Ku70‐SAP domain with double strand DNA: a molecular modeling study. J Mol Model 18, 2163–2174. PubMed
Chakraborty A, Tapryal N, Venkova T, Horikoshi N, Pandita RK, Sarker AH, Sarkar PS, Pandita TK & Hazra TK (2016) Classical non‐homologous end‐joining pathway utilizes nascent RNA for error‐free double‐strand break repair of transcribed genes. Nat Commun 7, 13049. PubMed PMC
Dellino GI, Palluzzi F, Chiariello AM, Piccioni R, Bianco S, Furia L, De Conti G, Bouwman BAM, Melloni G, Guido D et al. (2019) Release of paused RNA polymerase II at specific loci favors DNA double‐strand‐break formation and promotes cancer translocations. Nat Genet 51, 1011–1023. PubMed
Wang JL, Duboc C, Wu Q, Ochi T, Liang S, Tsutakawa SE, Lees‐Miller SP, Nadal M, Tainer JA, Blundell TL et al. (2018) Dissection of DNA double‐strand‐break repair using novel single‐molecule forceps. Nat Struct Mol Biol 25, 482–487. PubMed PMC
Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y & Agard DA (2017) MotionCor2: anisotropic correction of beam‐induced motion for improved cryo‐electron microscopy. Nat Methods 14, 331–332. PubMed PMC
Zhang K (2016) Gctf: Real‐time CTF determination and correction. J Struct Biol 193, 1–12. PubMed PMC
Wagner T, Merino F, Stabrin M, Moriya T, Antoni C, Apelbaum A, Hagel P, Sitsel O, Raisch T, Prumbaum D et al. (2019) SPHIRE‐crYOLO is a fast and accurate fully automated particle picker for cryo‐EM. Commun Biol 2, 218. PubMed PMC
Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E & Scheres SH (2018) New tools for automated high‐resolution cryo‐EM structure determination in RELION‐3. Elife 7, e42166. PubMed PMC
Tegunov D & Cramer P (2019) Real‐time cryo‐electron microscopy data preprocessing with Warp. Nat Methods 16, 1146–1152. PubMed PMC
Punjani A, Rubinstein JL, Fleet DJ & Brubaker MA (2017) cryoSPARC: algorithms for rapid unsupervised cryo‐EM structure determination. Nat Methods 14, 290–296. PubMed
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH & Ferrin TE (2020) UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30, 70–82. PubMed PMC
Fiala J, Kukacka Z & Novak P (2020) Influence of cross‐linker polarity on selectivity towards lysine side chains. J Proteomics 218, 103716. PubMed
Sali A & Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234, 779–815. PubMed
The SAP domain of Ku facilitates its efficient loading onto DNA ends