DNA i-motif formation at neutral pH is driven by kinetic partitioning
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36912102
PubMed Central
PMC10085675
DOI
10.1093/nar/gkad119
PII: 7076469
Knihovny.cz E-zdroje
- MeSH
- DNA * genetika chemie MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- konformace nukleové kyseliny MeSH
- nukleotidové motivy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA * MeSH
Cytosine-rich DNA regions can form four-stranded structures based on hemi-protonated C.C+ pairs, called i-motifs (iMs). Using CD, UV absorption, NMR spectroscopy, and DSC calorimetry, we show that model (CnT3)3Cn (Cn) sequences adopt iM under neutral or slightly alkaline conditions for n > 3. However, the iMs are formed with long-lasting kinetics under these conditions and melt with significant hysteresis. Sequences with n > 6 melt in two or more separate steps, indicating the presence of different iM species, the proportion of which is dependent on temperature and incubation time. At ambient temperature, kinetically favored iMs of low stability are formed, most likely consisting of short C.C+ blocks. These species act as kinetic traps and prevent the assembly of thermodynamically favored, fully C.C+ paired iMs. A higher temperature is necessary to unfold the kinetic forms and enable their substitution by a slowly developing thermodynamic structure. This complicated kinetic partitioning process considerably slows down iM folding, making it much slower than the timeframes of biological reactions and, therefore, unlikely to have any biological relevance. Our data suggest kinetically driven iM species as more likely to be biologically relevant than thermodynamically most stable iM forms.
Zobrazit více v PubMed
Sen D., Gilbert W.. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature. 1988; 334:364–366. PubMed
Wells R.D. Non-B DNA conformations, mutagenesis and disease. Trends Biochem. Sci. 2007; 32:271–278. PubMed
Balasubramanian S., Neidle S.. G-quadruplex nucleic acids as therapeutic targets. Curr. Opin. Chem. Biol. 2009; 13:345–353. PubMed PMC
Brooks T.A., Kendrick S., Hurley L.. Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J. 2010; 277:3459–3469. PubMed PMC
Gehring K., Leroy J.L., Gueron M.. A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature. 1993; 363:561–565. PubMed
Lieblein A.L., Buck J., Schlepckow K., Fürtig B., Schwalbe H.. Time-resolved NMR spectroscopic studies of DNA i-motif folding reveal kinetic partitioning. Angew. Chem. Int. Ed. Engl. 2012; 51:250–253. PubMed
Lieblein A.L., Furtig B., Schwalbe H.. Optimizing the kinetics and thermodynamics of DNA i-motif folding. Chem. Biol. Chem. 2013; 14:1226–1230. PubMed
Fernandez S., Eritja R., Avino A., Jaumot J., Gargallo R.. Influence of pH, temperature and the cationic porphyrin TMPyP4 on the stability of the i-motif formed by the 5'-(C3TA2)4-3' sequence of the human telomere. Int. J. Biol. Macromol. 2011; 49:729–736. PubMed
Cheng M., Chen J., Ju H., Zhou J., Mergny J.L.. Drivers of i-DNA Formation in a Variety of Environments Revealed by Four-Dimensional UV Melting and Annealing. J. Am. Chem. Soc. 2021; 143:7792–7807. PubMed
Cheng M., Qiu D., Tamon L., Ištvánková E., Víšková P., Amrane S., Guédin A., Chen J., Lacroix L., Ju H.et al. .. Thermal and pH Stabilities of i-DNA: confronting in vitro Experiments with Models and In-Cell NMR Data. Angew. Chem. Int. Ed Engl. 2021; 60:10286–10294. PubMed
Manzini G., Yathindra N., Xodo L.E.. Evidence for intramolecularly folded i-DNA structures in biologically relevant CCC-repeat sequences. Nucleic Acids Res. 1994; 22:4634–4640. PubMed PMC
Simonsson T., Pribylova M., Vorlickova M.. A nuclease hypersensitive element in the human c-myc promoter adopts several distinct i-tetraplex structures. Biochem. Biophys. Res. Commun. 2000; 278:158–166. PubMed
Dai J., Hatzakis E., Hurley L.H., Yang D.. I-motif structures formed in the human c-MYC promoter are highly dynamic–insights into sequence redundancy and I-motif stability. PLoS One. 2010; 5:e11647. PubMed PMC
Iaccarino N., Di Porzio A., Amato J., Pagano B., Brancaccio D., Novellino E., Leardi R., Randazzo A.. Assessing the influence of pH and cationic strength on i-motif DNA structure. Anal Bioanal Chem. 2019; 411:7473–7479. PubMed
Abdelhamid M.A.S., Waller Z.A.E.. Tricky Topology: persistence of Folded Human Telomeric i-Motif DNA at Ambient Temperature and Neutral pH. Front. Chem. 2020; 8:40. PubMed PMC
Hurley L.H. Secondary DNA structures as molecular targets for cancer therapeutics. Biochem. Soc. Trans. 2001; 29:692–696. PubMed
Kang H.J., Kendrick S., Hecht S.M., Hurley L.H.. The transcriptional complex between the BCL2 i-motif and hnRNP LL is a molecular switch for control of gene expression that can be modulated by small molecules. J. Am. Chem. Soc. 2014; 136:4172–4185. PubMed PMC
Shu B., Cao J., Kuang G., Qiu J., Zhang M., Zhang Y., Wang M., Li X., Kang S., Ou T.M.et al. .. Syntheses and evaluation of new acridone derivatives for selective binding of oncogene c-myc promoter i-motifs in gene transcriptional regulation. Chem. Commun. (Camb.). 2018; 54:2036–2039. PubMed
Kaiser C.E., Van Ert N.A., Agrawal P., Chawla R., Yang D., Hurley L.H.. Insight into the complexity of the i-motif and G-quadruplex DNA structures formed in the KRAS promoter and subsequent drug-induced gene repression. J. Am. Chem. Soc. 2017; 139:8522–8536. PubMed PMC
Dzatko S., Krafcikova M., Hänsel-Hertsch R., Fessl T., Fiala R., Loja T., Krafcik D., Mergny J.L., Foldynova-Trantirkova S., Trantirek L.. Evaluation of the stability of DNA i-motifs in the nuclei of living mammalian cells. Angew. Chem. Int. Ed Engl. 2018; 57:2165–2169. PubMed PMC
Zeraati M., Langley D.B., Schofield P., Moye A.L., Rouet R., Hughes W.E., Bryan T.M., Dinger M.E., Christ D.. I-motif DNA structures are formed in the nuclei of human cells. Nat. Chem. 2018; 10:631–637. PubMed
Abou Assi H., Garavís M., González C., Damha M.J.. i-Motif DNA: structural features and significance to cell biology. Nucleic Acids Res. 2018; 46:8038–8056. PubMed PMC
Day H.A., Huguin C., Waller Z.A.. Silver cations fold i-motif at neutral pH. Chem. Commun. (Camb.). 2013; 49:7696–7688. PubMed
Rajendran A., Nakano S., Sugimoto N.. Molecular crowding of the cosolutes induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral pH. Chem. Commun. 2010; 46:1299–1301. PubMed
Bhavsar-Jog Y.P., Van Dornshuld E., Brooks T.A., Tschumper G.S., Wadkins R.M.. Epigenetic modification, dehydration, and molecular crowding effects on the thermodynamics of i-motif structure formation from C-rich DNA. Biochemistry. 2014; 53:1586–1594. PubMed PMC
Pramanik S., Nagatoishi S., Sugimoto N.. DNA tetraplex structure formation from human telomeric repeat motif (TTAGGG):(CCCTAA) in nanocavity water pools of reverse micelles. Chem. Commun. 2012; 48:4815–4817. PubMed
Nguyen T., Fraire C., Sheardy R.D.. Linking pH, temperature, and K(+) concentration for DNA i-motif formation. J. Phys. Chem. B. 2017; 121:7872–7877. PubMed
Saxena S., Joshi S., Shankaraswamy J., Tyagi S., Kukreti S.. Magnesium and molecular crowding of the cosolutes stabilize the i-motif structure at physiological pH. Biopolymers. 2017; 107:e23018. PubMed
Chen Y., Qu K., Zhao C., Wu L., Ren J., Wang J., Qu X.. Insights into the biomedical effects of carboxylated single-wall carbon nanotubes on telomerase and telomeres. Nat. Commun. 2012; 3:1074. PubMed
Spence P., Fielden J., Waller Z.A.E.. Beyond solvent exclusion: i-motif detecting capability and an alternative DNA light-switching mechanism in a ruthenium(II) polypyridyl complex. J. Am. Chem. Soc. 2020; 142:13856–13866. PubMed
Gurung S.P., Schwarz C., Hall J.P., Cardin C.J., Brazier J.A.. The importance of loop length on the stability of i-motif structures. Chem. Commun. (Camb.). 2015; 51:5630–5632. PubMed PMC
McKim M., Buxton A., Johnson C., Metz A., Sheardy R.D.. Loop sequence context influences the formation and stability of the i-motif for DNA oligomers of Sequence (CCCXXX)4, where X = A and/or T, under slightly acidic conditions. J. Phys. Chem. B. 2016; 120:7652–7661. PubMed
Mergny J.-L., Lacroix L., Han X., Leroy J.-L., Helene C.. Intramolecular folding of pyrimidine oligodeoxynucleotides into an i-DNA motif. J. Am. Chem. Soc. 1995; 117:8887–8898.
Wright E.P., Huppert J.L., Waller Z.A.E.. Identification of multiple genomic DNA sequences which form i-motif structures at neutral pH. Nucleic Acids Res. 2017; 45:2951–2959. PubMed PMC
Iaccarino N., Cheng M., Qiu D., Pagano B., Amato J., Di Porzio A., Zhou J., Randazzo A., Mergny J.L.. Effects of Sequence and Base Composition on the CD and TDS Profiles of i-DNA. Angew. Chem. Int. Ed Engl. 2021; 60:10295–10303. PubMed PMC
Skolakova P., Renciuk D., Palacky J., Krafcik D., Dvorakova Z., Kejnovska I., Bednarova K., Vorlickova M.. Systematic investigation of sequence requirements for DNA i-motif formation. Nucleic Acids Res. 2019; 47:2177–2189. PubMed PMC
Fleming A.M., Ding Y., Rogers R.A., Zhu J., Zhu J., Burton A.D., Carlisle C.B., Burrows C.J.. 4n-1 Is a “Sweet Spot” in DNA i-Motif Folding of 2 '-Deoxycytidine Homopolymers. J. Am. Chem. Soc. 2017; 139:4682–4689. PubMed
Martella M., Pichiorri F., Chikhale R.V., Abdelhamid M.A.S., Waller Z.A.E., Smith S.S.. i-Motif formation and spontaneous deletions in human cells. Nucleic Acids Res. 2022; 50:3445–3455. PubMed PMC
Rogers R.A., Fleming A.M., Burrows C.J.. Rapid screen of potential i-motif forming sequences in DNA repair gene promoters. ACS Omega. 2018; 3:9630–9635. PubMed PMC
Rogers R.A., Fleming A.M., Burrows C.J.. Unusual isothermal hysteresis in DNA i-motif pH transitions: a study of the RAD17 promoter sequence. Biophys. J. 2018; 114:1804–1815. PubMed PMC
Kejnovska I., Renciuk D., Palacky J., Vorlickova M.. Yang D., Lin C.. G-Quadruplex Nucleic Acids: Methods and Protocols. 2019; 2035:25–44. PubMed
Mergny J.L., Lacroix L.. Analysis of thermal melting curves. Oligonucleotides. 2003; 13:515–537. PubMed
Amato J., D’Aria F., Marzano S., Iaccarino N., Randazzo A., Giancola C., Pagano B.. On the thermodynamics of folding of an i-motif DNA in solution under favorable conditions. Phys. Chem. Chem. Phys. 2021; 23:15030–15037. PubMed
Rougée M., Faucon B., Mergny J.L., Barcelo F., Giovannangeli C., Garestier T., Hélène C.. Kinetics and thermodynamics of triple-helix formation: effects of ionic strength and mismatches. Biochemistry. 1992; 31:9269–9278. PubMed
Dvorakova Z., Renciuk D., Kejnovska I., Skolakova P., Bednarova K., Sagi J., Vorlickova M.. i-Motif of cytosine-rich human telomere DNA fragments containing natural base lesions. Nucleic Acids Res. 2018; 46:1624–1634. PubMed PMC
Mergny J.L., Lacroix L.. Kinetics and thermodynamics of i-DNA formation: phosphodiester versus modified oligodeoxynucleotides. Nucleic Acids Res. 1998; 26:4797–4803. PubMed PMC
Wu S., Wang X., Ye X., Zhang G.. pH-Induced conformational change and dimerization of DNA chains investigated by analytical ultracentrifugation. J. Phys. Chem. B. 2013; 117:11541–11547. PubMed
Niu K., Zhang X., Deng H., Wu F., Ren Y., Xiang H., Zheng S., Liu L., Huang L., Zeng B.et al. .. BmILF and i-motif structure are involved in transcriptional regulation of BmPOUM2 in Bombyx mori. Nucleic Acids Res. 2018; 46:1710–1723. PubMed PMC
Takahashi S., Brazier J.A., Sugimoto N.. Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:9605–9610. PubMed PMC
Casey J.R., Grinstein S., Orlowski J.. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 2010; 11:50–61. PubMed
Karpova T.S., Kim M.J., Spriet C., Nalley K., Stasevich T.J., Kherrouche Z., Heliot L., McNally J.G.. Concurrent fast and slow cycling of a transcriptional activator at an endogenous promoter. Science. 2008; 319:466–469. PubMed
Morisaki T., Müller W.G., Golob N., Mazza D., McNally J.G.. Single-molecule analysis of transcription factor binding at transcription sites in live cells. Nat. Commun. 2014; 5:4456. PubMed PMC
Ben-Ari Y., Brody Y., Kinor N., Mor A., Tsukamoto T., Spector D.L., Singer R.H., Shav-Tal Y.. The life of an mRNA in space and time. J. Cell Sci. 2010; 123:1761–1774. PubMed PMC