Protein structure and interactions elucidated with in-cell NMR for different cell cycle phases and in 3D human tissue models
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GX19-26041X
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
GF21-26400K
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
LUAUS23295
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
39920376
PubMed Central
PMC11806009
DOI
10.1038/s42003-025-07607-w
PII: 10.1038/s42003-025-07607-w
Knihovny.cz E-zdroje
- MeSH
- buněčný cyklus * MeSH
- konformace proteinů MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie metody MeSH
- proteiny * chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny * MeSH
Most of our knowledge of protein structure and function originates from experiments performed with purified proteins resuspended in dilute, buffered solutions. However, most proteins function in crowded intracellular environments with complex compositions. Significant efforts have been made to develop tools to study proteins in their native cellular settings. Among these tools, in-cell NMR spectroscopy has been the sole technique for characterizing proteins in the intracellular space of living cells at atomic resolution and physiological temperature. Nevertheless, due to technological constraints, in-cell NMR studies have been limited to asynchronous single-cell suspensions, precluding obtaining information on protein behavior in different cellular states. In this study, we present a methodology that allows for obtaining an atomically resolved NMR readout of protein structure and interactions in living human cells synchronized in specific cell cycle phases and within 3D models of human tissue. The described approach opens avenues for investigating how protein structure or drug recognition responds to cell-cell communication or changes in intracellular space composition during transitions among cell cycle phases.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Animal Physiology and Genetics Czech Academy of Sciences Brno Czech Republic
Institute of Molecular Genetics Czech Academy of Sciences Prague Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Interuniversity Consortium for Magnetic Resonance of Metallo Proteins Sesto Fiorentino Italy
Magnetic Resonance Center and Department of Chemistry University of Florence Sesto Fiorentino Italy
Zobrazit více v PubMed
Theillet, F.-X. et al. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem. Rev.114, 6661–6714 (2014). PubMed PMC
Cheng, K. et al. Crowding and confinement can oppositely affect protein stability. ChemPhysChem19, 3350–3355 (2018). PubMed
Stewart, C. J., Olgenblum, G. I., Propst, A., Harries, D. & Pielak, G. J. Resolving the enthalpy of protein stabilization by macromolecular crowding. Prot. Sci.32, e4573 (2023). PubMed PMC
Inomata, K. et al. High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature458, 106–109 (2009). PubMed
Takaoka, Y. et al. Quantitative comparison of protein dynamics in live cells and in vitro by in-cell 19F-NMR. Chem. Commun.49, 2801 (2013). PubMed
Theillet, F.-X. et al. Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature530, 45–50 (2016). PubMed
Tanaka, T. et al. High-resolution protein 3D structure determination in living Eukaryotic cells. Angew. Chem. Int. Ed. Engl. 58, 7284–7288 (2019). PubMed
Luchinat, E. et al. Intracellular binding/unbinding kinetics of approved drugs to carbonic anhydrase II observed by in-cell NMR. ACS Chem. Biol.15, 2792–2800 (2020). PubMed PMC
Plitzko, J. M., Schuler, B. & Selenko, P. Structural biology outside the box — inside the cell. Curr. Opin. Struct. Biol.46, 110–121 (2017). PubMed
Theillet, F.-X. In-cell structural biology by NMR: the benefits of the atomic scale. Chem. Rev.122, 9497–9570 (2022). PubMed
Theillet, F.-X. & Luchinat, E. In-cell NMR: why and how? Prog. Nucl. Magn. Reson. Spectrosc.132–133, 1–112 (2022). PubMed
Ogino, S. et al. Observation of NMR signals from proteins introduced into living mammalian cells by reversible membrane permeabilization using a pore-forming toxin, streptolysin O. J. Am. Chem. Soc.131, 10834–10835 (2009). PubMed
Sciolino, N. et al. Microfluidics delivery of DARPP-32 into HeLa cells maintains viability for in-cell NMR spectroscopy. Commun. Biol.5, 451 (2022). PubMed PMC
Luchinat, E. & Banci, L. In-cell NMR in human cells: direct protein expression allows structural studies of protein folding and maturation. Acc. Chem. Res.51, 1550–1557 (2018). PubMed
Odermatt, P. D. et al. Variations of intracellular density during the cell cycle arise from tip-growth regulation in fission yeast. eLife10, e64901 (2021). PubMed PMC
Spear, J. S. & White, K. A. Single-cell intracellular pH dynamics regulate the cell cycle by timing the G1 exit and G2 transition. J. Cell Sci.136, jcs260458 (2023). PubMed PMC
Wu, W. et al. Measuring single-cell density with high throughput enables dynamic profiling of immune cell and drug response from patient samples. bioRxiv10.1101/2024.04.25.591092 (2024).
Li, C. et al. Protein 19 F NMR in Escherichia Coli. J. Am. Chem. Soc132, 321–327 (2010). PubMed PMC
DeMott, C. M., Majumder, S., Burz, D. S., Reverdatto, S. & Shekhtman, A. Ribosome mediated quinary interactions modulate in-cell protein activities. Biochemistry56, 4117–4126 (2017). PubMed PMC
Banci, L. et al. Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat. Chem. Biol.9, 297–299 (2013). PubMed PMC
Krude, T. Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner. Exp. Cell Res.247, 148–159 (1999). PubMed
Watson, P. A., Hanauske-Abel, H. H., Flint, A. & Lalande, M. Mimosine reversibly arrests cell cycle progression at the G1–S phase border. Cytometry12, 242–246 (1991). PubMed
Vassilev, L. T. et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc. Natl. Acad. Sci. USA.103, 10660–10665 (2006). PubMed PMC
Kubo, S. et al. A gel-encapsulated bioreactor system for NMR studies of protein–protein interactions in living mammalian cells. Angew. Chem. Int. Ed. Engl. 52, 1208–1211 (2013). PubMed
Luchinat, E. et al. Drug screening in human cells by NMR spectroscopy allows the early assessment of drug potency. Angew. Chem. Int. Ed. Engl. 59, 6535–6539 (2020). PubMed PMC
Fennema, E., Rivron, N., Rouwkema, J., Van Blitterswijk, C. & De Boer, J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol.31, 108–115 (2013). PubMed
Levinger, I., Ventura, Y. & Vago, R. Life is three dimensional—as in vitro cancer cultures should be. Adv. Cancer Res.121, 383–414 (2014). PubMed
Huguet, E. L., McMahon, J. A., McMahon, A. P., Bicknell, R. & Harris, A. L. Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res.54, 2615–2621 (1994). PubMed
Pham, L. B. T. et al. Direct Expression of Fluorinated Proteins in Human Cells for 19F In-Cell NMR Spectroscopy. J. Am. Chem. Soc.145, 1389–1399 (2023). PubMed PMC
Víšková, P. et al. In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells. Nat. Commun.15, 1992 (2024). PubMed PMC
Narasimhan, S. et al. DNP-supported solid-state NMR spectroscopy of proteins inside mammalian cells. Angew. Chem. Int. Ed. Engl.58, 12969–12973 (2019). PubMed PMC
Kadavath, H., Cecilia Prymaczok, N., Eichmann, C., Riek, R. & Gerez, J. A. Multi-dimensional structure and dynamics landscape of proteins in mammalian cells revealed by in-cell NMR. Angew. Chem. Int. Ed. Engl.62, e202213976 (2023). PubMed PMC
Gerez, J. A. et al. Protein structure tetermination in human cells by in-cell NMR and a reporter system to optimize protein delivery or transexpression. Commun. Biol.5, 1322 (2022). PubMed PMC
Mao, G. et al. DNA context and promoter activity affect gene expression in lentiviral vectors. Acta Biomed.79, 192–196 (2008). PubMed
Krafcikova, M. et al. Monitoring DNA-Ligand Interactions in Living Human Cells Using NMR Spectroscopy. J. Am. Chem. Soc.141, 13281–13285 (2019). PubMed
Schwalbe, H. et al. The future of integrated structural biology. Structure32, 1563–1580 (2024). PubMed
Gudernova, I. et al. One reporter for in-cell activity profiling of majority of protein kinase oncogenes. eLife6, e21536 (2017). PubMed PMC
Weissová, K. et al. LuminoCell: A versatile and affordable platform for real-time monitoring of luciferase-based reporters. Life Sci. Alliance5, e202201421 (2022). PubMed PMC
Sklenář, V. & Bax, A. Spin-echo water suppression for the generation of pure-phase two-dimensional NMR spectra. J. Magn. Reson74, 469–479 (1987).
Rynes, J., Istvankova, E., Foldynova-Trantirkova, S. & Trantirek, L. Protein structure and interactions elucidated with in-cell NMR for different cell cycle phases and in 3D human tissue models. figshare. 10.6084/m9.figshare.28266740.v1 (2025). PubMed PMC