Water Breakup at Fe2O3-Hematite/Water Interfaces: Influence of External Electric Fields from Nonequilibrium Ab Initio Molecular Dynamics
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34270253
PubMed Central
PMC8397349
DOI
10.1021/acs.jpclett.1c01479
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The dynamical properties of physically and chemically adsorbed water molecules at pristine hematite-(001) surfaces have been studied by means of nonequilibrium ab initio molecular dynamics (NE-AIMD) in the NVT ensemble at room temperature, in the presence of externally applied, uniform static electric fields of increasing intensity. The dissociation of water molecules to form chemically adsorbed species was scrutinized, in addition to charge redistribution and Grotthus proton hopping between water molecules. Dynamical properties of the adsorbed water molecules and OH- and H3O+ ions were gauged, such as the hydrogen bonds between protons in water molecules and the bridging oxygen atoms at the hematite surface, as well as the interactions between oxygen atoms in adsorbed water molecules and iron atoms at the hematite surface. The development of Helmholtz charge layers via water breakup at Fe2O3-hematite/water interfaces is also an interesting feature, with the development of protonic conduction on the surface and more bulk-like water.
Zobrazit více v PubMed
Haller G. L.; Resasco D. E. Metal-Support Interaction: Group VIII Metals and Reducible Oxides. Adv. Catal. 1989, 36, 173–235. 10.1016/S0360-0564(08)60018-8. DOI
English N. J.; Rahman M.; Wadnerkar N.; MacElroy J. M. D. Photo-active and Dynamical Properties of Hematite (Fe2O3)-Water Interfaces: An Experimental and Theoretical Study. Phys. Chem. Chem. Phys. 2014, 16, 14445–14454. 10.1039/c3cp54700k. PubMed DOI
Rosso K. M.; Smith D. M. A.; Dupuis M. An Ab Initio Model of Electron Transport in Hematite (α-Fe2O3) Basal Planes. J. Chem. Phys. 2003, 118, 6455.10.1063/1.1558534. DOI
Glasscock J. A.; Barnes P. R. F.; Plumb I. C.; Savvides N. Enhancement of Photoelectrochemical Hydrogen Production from Hematite Thin Films by the Introduction of Ti and Si. J. Phys. Chem. C 2007, 111, 16477–16488. 10.1021/jp074556l. DOI
Hu Y. S.; Kleiman-Shwarsctein A.; Stucky G. D.; McFarland E. W. Improved Photoelectrochemical Performance of Ti-doped α-Fe2O3 Thin Films by Surface Modification with Fluorite. Chem. Commun. 2009, 19, 2652–2654. 10.1039/b901135h. PubMed DOI
Hu Y. S.; Kleiman-Shwarsctein A.; Forman A. J.; Hazen D.; Park J. N.; McFarland E. W. Pt-doped α-Fe2O3 Thin Films Active for Photoelectrochemical Water Splitting. Chem. Mater. 2008, 20, 3803–3805. 10.1021/cm800144q. DOI
Kleiman-Shwarsctein A.; Hu Y. S.; Forman A. J.; Stucky G. D.; McFarland E. W. Electrodeposition of α-Fe2O3 Doped with Mo or Cr as Photoanodes for Photocatalytic Water Splitting. J. Phys. Chem. C 2008, 112, 15900–15907. 10.1021/jp803775j. DOI
Kleiman-Shwarsctein A.; Hu Y. S.; Stucky G. D.; McFarland E. W. NiFe-oxide Electrocatalyst for the Oxygen Evolution Reaction on Ti Doped Hematite Photoelectrodes. Electrochem. Commun. 2009, 11, 1150–1153. 10.1016/j.elecom.2009.03.034. DOI
Ingler W. G.; Baltrus J. P.; Khan S. U. M. Photoresponse of p-Type Zinc-Doped Iron(III) Oxide Thin Films. J. Am. Chem. Soc. 2004, 126, 10238–10239. 10.1021/ja048461y. PubMed DOI
Kumari S.; Tripathi C.; Singh A. P.; Chauhan D.; Shrivastav R.; Dass S.; Satsangi V. R. Characterisation of Zn-Doped Hematite Thin Films for Photoelectrochemical Splitting of Water. Curr. Sci. 2006, 91, 1062.
Diebold U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep. 2003, 48, 53–229. 10.1016/S0167-5729(02)00100-0. DOI
Henderson M. A. The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited. Surf. Sci. Rep. 2002, 46, 1–308. 10.1016/S0167-5729(01)00020-6. DOI
Sun C.; Liu L.-M.; Selloni A.; Lu G. Q.; Smith S. C. Titania Water Interactions: A Review of Theoretical Studies. J. Mater. Chem. 2010, 20, 10319–10334. 10.1039/c0jm01491e. DOI
Mattioli G.; Filippone G.; Caminiti R.; Amore Bonapasta A. Short Hydrogen Bonds at the Water/TiO2 (Anatase) Interface. J. Phys. Chem. C 2008, 112, 13579–13586. 10.1021/jp8031176. DOI
Kavathekar R.; Dev P.; English N. J.; MacElroy J. M. D. Molecular Dynamics Study of Water in Contact with TiO2 Rutile-110, 100, 101, 001 and Anatase-101, 001 Surface. Mol. Phys. 2011, 109, 1649–1656. 10.1080/00268976.2011.582051. DOI
Kavathekar R.; English N. J.; MacElroy J. M. D. Study of Translational, Librational and Intro-Molecular Motion of Adsorbed Liquid Water Monolayers at Various TiO2 Interfaces. Mol. Phys. 2011, 109, 2645–2654. 10.1080/00268976.2011.627884. DOI
English N. J.; Kavathekar R.; MacElroy J. M. D. Hydrogen Bond Dynamical Properties of Adsorbed Liquid Water Monolayers with Various TiO2 Interfaces. Mol. Phys. 2012, 110, 2919–2925. 10.1080/00268976.2012.683888. DOI
Zhang Z.; Fenter P.; Cheng L.; Sturchio N. C.; Bedzyk M. J.; Predota M.; Bandura A.; Kubicki J. D.; Lvov S. N.; Cummings P. T.; Chialvo A. A.; Ridley M. K.; Benezeth P.; Anovitz L.; Palmer D. A.; Machesky M. L.; Wesolowski D. J. Ion Adsorption at the Rutile-Water Interface: Linking Molecular and Macroscopic Properties. Langmuir 2004, 20, 4954–4969. 10.1021/la0353834. PubMed DOI
Predota M.; Bandura A. V.; Cummings P. T.; Kubicki J. D.; Wesolowski D. J.; Chialvo A. A.; Machesky M. L. Electric Double Layer at the Rutile (110) Surface. 1. Structure of Surfaces and Interfacial Water from Molecular Dynamics by Use of Ab Initio Potentials. J. Phys. Chem. B 2004, 108, 12049–12060. 10.1021/jp037197c. DOI
Predota M.; Cummings P. T.; Zhang Z.; Fenter P.; Wesolowski D. J. Electric Double Layer at the Rutile (110) Surface. 2. Adsorption of Ions from Molecular Dynamics and X-ray Experiments. J. Phys. Chem. B 2004, 108, 12061–12072. 10.1021/jp037199x. DOI
Predota M.; Cummings P. T.; Wesolowski D. J. Electric Double Layer at Rutile (110) Surface. 3. Inhomogeneous Viscosity and Diffusivity Measurement by Computer Simulations. J. Phys. Chem. C 2007, 111, 3071–3079. 10.1021/jp065165u. DOI
Machesky M. L.; Predota M.; Wesolowski D. J.; Vlcek L.; Cummings P. T.; Rosenqvist J.; Ridley M. K.; Kubicki J. D.; Bandura A. V.; Kumar N.; Sofo J. O. Surface Protonation at the Rutile (110) Interface: Explicit Incorporation of Solvation Structure within the Refined MUSIC Model Framework. Langmuir 2008, 24, 12331–12339. 10.1021/la801356m. PubMed DOI
Kavathekar R.; English N. J.; MacElroy J. M. D. Spatial Distribution of Adsorbed Water Layers at the TiO2 Rutile and Anatase Interfaces. Chem. Phys. Lett. 2012, 554, 102–106. 10.1016/j.cplett.2012.10.004. DOI
Cheng J.; Sprik M. Acidity of Aqueous Rutile TiO2(110) Surface from Density Functional Theory Based Molecular Dynamics. J. Chem. Theory Comput. 2010, 6, 880–889. 10.1021/ct100013q. PubMed DOI
Aschauer U.; He Y.; Cheng H.; Li S.-C.; Diebold U.; Selloni A. Influence of Subsurface Defects on the Surface Reactivity of TiO2: Water on Anatase (101). J. Phys. Chem. C 2010, 114, 1278–1284. 10.1021/jp910492b. DOI
Cheng H.; Selloni A. Hydroxide Ions at the Water/Anatase TiO2(101) Interface: Structure and Electronic States from First Principles Molecular Dynamics. Langmuir 2010, 26, 11518–11525. 10.1021/la100672f. PubMed DOI
Tilocca A.; Selloni A. DFT-GGA and DFT+U Simulations of Thin Water Layers on Reduced TiO2 Anatase. J. Phys. Chem. C 2012, 116, 9114–9121. 10.1021/jp301624v. DOI
Aschauer U.; Selloni A. Structure of the Rutile TiO2(011) Surface in an Aqueous Environment. Phys. Rev. Lett. 2011, 106, 166102.10.1103/PhysRevLett.106.166102. PubMed DOI
Kumar N.; Neogi S.; Kent P. R. C.; Bandura A. V.; Kubicki J. D.; Wesolowski D. J.; Cole D.; Sofo J. O. Hydrogen Bond and Vibrations of Water on (110) Rutile. J. Phys. Chem. C 2009, 113, 13732–13740. 10.1021/jp901665e. DOI
English N. J. Dynamical Properties of Physically Adsorbed Water Molecules at the TiO2 Rutile-(110) Surface. Chem. Phys. Lett. 2013, 583, 125–130. 10.1016/j.cplett.2013.07.078. DOI
Rohrbach A.; Hafner J.; Kresse G. Ab Initio Study of the (0001) Surfaces of Hematite and Chromia: Influence of Strong Electronic Correlations. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 70, 125426.10.1103/PhysRevB.70.125426. DOI
Bergermayer W.; Schweiger H.; Wimmer E. Ab Initio Thermodynamics of Oxide Surfaces: O2 on Fe2O3(0001). Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 69, 195409.10.1103/PhysRevB.69.195409. DOI
Yin S.; Ma X.; Ellis D. E. Initial Stages of H2O Adsorption and Hydroxylation of Fe-terminated α-Fe2O3(0001) Surface. Surf. Sci. 2007, 601, 2426–2437. 10.1016/j.susc.2007.04.059. DOI
Trainor T. P.; Chaka A. M.; Eng P. J.; Newville M.; Waychunas G. A.; Catalano J. G.; Brown G. E. Jr. Structure and Reactivity of the Hydrated Hematite (0001) Surface. Surf. Sci. 2004, 573, 204–224. 10.1016/j.susc.2004.09.040. DOI
Kubicki J. D.; Paul K. W.; Sparks D. L. Periodic Density Functional Theory Calculations of Bulk and the (010) Surface of Goethite. Geochem. Trans. 2008, 9, 4.10.1186/1467-4866-9-4. PubMed DOI PMC
Nguyen M.-T.; Seriani N.; Gebauer R. Water Adsorption and Dissociation on α-Fe2O3(0001): PBE+U Calculations. J. Chem. Phys. 2013, 138, 194709.10.1063/1.4804999. PubMed DOI
Liu L.-M.; Zhang C.; Thornton G.; Michaelides A. Structure and Dynamics of Liquid Water on TiO2(110). Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 161415.10.1103/PhysRevB.82.161415. DOI
Wesolowski D. J.; Sofo J. O.; Bandura A. V.; Zhang Z.; Mamontov E.; Predota M.; Kumar N.; Kubicki J. D.; Kent P. R. C.; Vlcek L.; Machesky M. L.; Fenter P. A.; Cummings P. T.; Anovitz L. M.; Skelton A. A.; Rosenqvist J. Comment on “Structure and Dynamics of Liquid Water on TiO2(110).. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 167401.10.1103/PhysRevB.85.167401. DOI
Liu M. L.; Zhang C.; Thornton G.; Michaelides A. Reply to “Comment on ‘Structure and Dynamics of Liquid Water on TiO2(110).’. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 167402.10.1103/PhysRevB.85.167402. DOI
Futera Z.; English N. J. Exploring Rutile (110) and Anatase (101) TiO2 Water Interfaces by Reactive Force-Field Simulations. J. Phys. Chem. C 2017, 121, 6701–6711. 10.1021/acs.jpcc.6b12803. DOI
Chia C.-L.; Avendano C.; Siperstein F. R.; Filip S. Liquid Adsorption of Organic Compounds on Hematite α-Fe2O3 Using ReaxFF. Langmuir 2017, 33, 11257–11263. 10.1021/acs.langmuir.7b02374. PubMed DOI
Futera Z.; English N. J. Electric-Field Effects on Adsorbed-Water Structural and Dynamical Properties at Rutile- and Anatase- TiO2 Surfaces. J. Phys. Chem. C 2016, 120, 19603–19612. 10.1021/acs.jpcc.6b01907. PubMed DOI
Umari P.; Pasquarello A. Ab Initio Molecular Dynamics in a Finite Homogeneous Electric Field. Phys. Rev. Lett. 2002, 89, 157602.10.1103/PhysRevLett.89.157602. PubMed DOI
Kuhne T. D.; Krack M.; Mohamed F. R.; Parrinello M. Efficient and Accruate Car-Parrinello-like Approach to Born-Oppenheimer Molecular Dynamics. Phys. Rev. Lett. 2007, 98, 066401.10.1103/PhysRevLett.98.066401. PubMed DOI
Futera Z.; English N. J. Influence of External Static and Alternating Electric Fields on Water from Long-Time Non-Equilibrium Ab-Initio Molecular Dynamics. J. Chem. Phys. 2017, 147, 031102.10.1063/1.4994694. PubMed DOI
Saitta A. M.; Saija F.; Giaquinta P. V. Ab Initio Molecular Dynamics Study of Dissociation of Water Under an Electric Field. Phys. Rev. Lett. 2012, 108, 207801.10.1103/PhysRevLett.108.207801. PubMed DOI
Saitta A. M.; Saija F. Miller Experiments in Atomistic Computer Simulations. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 13768–13773. 10.1073/pnas.1402894111. PubMed DOI PMC
Cassone G.; Giaquinta P. V.; Saija F.; Saitta A. M. Proton Conduction in Water Ices under an Electric Field. J. Phys. Chem. B 2014, 118, 4419–4424. 10.1021/jp5021356. PubMed DOI
Cassone G.; Giaquinta P. V.; Saija F.; Saitta A. M. Liquid Methanol under a Static Electric Field. J. Chem. Phys. 2015, 142, 054502.10.1063/1.4907010. PubMed DOI
Cassone G.; Creazzo P. V.; Giaquinta P. V.; Saija F.; Marco Saitta A. Ab Initio Molecular Dynamics Study of an Aqueous NaCl Solution under an Electric Field. Phys. Chem. Chem. Phys. 2016, 18, 23164–23173. 10.1039/C6CP03926J. PubMed DOI
Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI
Allen M. P.; Tildesley D. J.: Computer Simulation of Liquids, 2nd ed.; Oxford: 2017.
Dion M.; Rydberg H.; Schroder E.; Langreth D. C.; Lundqvist B. I. Van der Waals Density Functional for General Geometries. Phys. Rev. Lett. 2004, 92, 246401.10.1103/PhysRevLett.92.246401. PubMed DOI
Roman-Perez G.; Soler J. M. Efficient Implementation of a van der Waals Density Functional: Application to Double-Wall Carbon Nanotubes. Phys. Rev. Lett. 2009, 103, 096102.10.1103/PhysRevLett.103.096102. PubMed DOI
Klimes J.; Bowler D. R.; Michaelides J. Chemical Accuracy for the van der Waals Density Functional. J. Phys.: Condens. Matter 2010, 22, 022201.10.1088/0953-8984/22/2/022201. PubMed DOI
Wang J.; Roman-Perez G.; Soler J. M.; Artacho E.; Fernandez-Serra M. V. Density, Structure, and Dynamics of Water: The Effect of van der Waals Interactions. J. Chem. Phys. 2011, 134, 024516.10.1063/1.3521268. PubMed DOI
Zhang C.; Wu J.; Galli G.; Gygi F. Structural and Vibrational Properties of Liquid Water from van der Waals Density Functionals. J. Chem. Theory Comput. 2011, 7, 3054.10.1021/ct200329e. PubMed DOI
Corsetti F.; Artacho E.; Soler J. M.; Alexandre S. S.; Fernandez-Serra M. V. Room Temperature Compressibility and Diffusivity of Liuid Water from First Principles. J. Chem. Phys. 2013, 139, 194502.10.1063/1.4832141. PubMed DOI
Bankura A.; Karmakar A.; Carnevale V.; Chandra A.; Klein M. L. Structure, Dynamics, and Spectral Diffusion of Water from First Principles Molecular Dynamics. J. Phys. Chem. C 2014, 118, 29401–29411. 10.1021/jp506120t. DOI
English N. J. Structural Properties of Liquid Water and Ice Ih from Ab-Initio Molecular Dynamics with a Non-Local Correlation Functional. Energies 2015, 8, 9383–9391. 10.3390/en8099383. DOI
Gillan M. J.; Alfe D.; Michaelides A. Perspective: How Good is DFT for Water?. J. Chem. Phys. 2016, 144, 130901.10.1063/1.4944633. PubMed DOI
English N. J.; MacElroy J. M. D. Hydrogen Bonding and Molecular Mobility in Liquid Water in External Electromagnetic Fields. J. Chem. Phys. 2003, 119, 11806.10.1063/1.1624363. DOI
English N. J.; Waldron C. J. Perspectives on External Electric Fields in Molecular Simulations: Progress, Prospects and Challenges. Phys. Chem. Chem. Phys. 2015, 17, 12407–12440. 10.1039/C5CP00629E. PubMed DOI
Kuhne T. D.; Krack M.; Parrinello M. Static and Dynamical Properties of Liquid Water from First Principles by a Novel Car-Parrinello-like Approach. J. Chem. Theory Comput. 2009, 5, 235–241. 10.1021/ct800417q. PubMed DOI
Hutter J.; Iannuzzi M.; Schiffmann F.; VandeVondele J. CP2K: Atomistic Simulations of Condensed Matter Systems. WIREs Comput. Mol. Sci. 2014, 4, 15–25. 10.1002/wcms.1159. DOI
Ruiz Pestana L.; Marsalek O.; Markland T. E.; Head-Gordon T. The Quest for Accurate Liquid Water Properties from First Principles. J. Phys. Chem. Lett. 2018, 9, 5009–5016. 10.1021/acs.jpclett.8b02400. PubMed DOI
Kolafa J. Time-Reversible Always Stable Predictor-Corrector Method for Molecular Dynamics of Polarizable Molecules. J. Comput. Chem. 2004, 25, 335–342. 10.1002/jcc.10385. PubMed DOI
von Rudorff G. F.; Jakobsen R.; Rosso K. M.; Blumberger J. Fast Interconversion of Hydrogen Bonding at the Hematite (001)-Liquid Water Interface. J. Phys. Chem. Lett. 2016, 7, 1155–1160. 10.1021/acs.jpclett.6b00165. PubMed DOI
von Rudorff G. F.; Jakobsen R.; Rosso K. M.; Blumberger J. Hematite(001)-Liquid Water Interface from Hybrid Density Functional-Based Molecular Dynamics. J. Phys.: Condens. Matter 2016, 28, 394001.10.1088/0953-8984/28/39/394001. PubMed DOI
Yesibolati M. N.; Lagana S.; Sun H.; Beleggia M.; Kathmann S. M.; Kasama T.; Molhave K. Mean Inner Potential of Liquid Water. Phys. Rev. Lett. 2020, 124, 065502.10.1103/PhysRevLett.124.065502. PubMed DOI
Rez D.; Rez P.; Grant I. Dirac-Fock Calculations of X-ray Scattering Factors and Contributions to the Mean Inner Potential for Electron Scattering. Acta Crystallogr., Sect. A: Found. Crystallogr. 1994, A50, 481–497. 10.1107/S0108767393013200. DOI
Hirshfeld F. L. Bonded-Atom Fragments for Describing Molecular Charge Densities. Theor. Chim. Acta 1977, 44, 129–138. 10.1007/BF00549096. DOI
Kathmann S. M.; Kuo I-F. W.; Mundy Ch. J.; Schenter G. K. Understanding the Surface Potential of Water. J. Phys. Chem. B 2011, 115, 4369–4377. 10.1021/jp1116036. PubMed DOI
English N. J.; El-Hendawy M. M.; Mooney D. A.; MacElroy J. M. D. Perspectives on atmospheric CO2 fixation in inorganic and biomimetic structures. Coord. Chem. Rev. 2014, 269, 85–95. 10.1016/j.ccr.2014.02.015. DOI