Beta3 adrenoceptors substitute the role of M(2) muscarinic receptor in coping with cold stress in the heart: evidence from M(2)KO mice

. 2012 Jul ; 32 (5) : 859-69. [epub] 20120106

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22222438

We investigated the role of beta3-adrenoceptors (AR) in cold stress (1 or 7 days in cold) in animals lacking main cardioinhibitive receptors-M2 muscarinic receptors (M(2)KO). There was no change in receptor number in the right ventricles. In the left ventricles, there was decrease in binding to all cardiostimulative receptors (beta1-, and beta2-AR) and increase in cardiodepressive receptors (beta3-AR) in unstressed KO in comparison to WT. The cold stress in WT animals resulted in decrease in binding to beta1- and beta2-AR (to 37%/35% after 1 day in cold and to 27%/28% after 7 days in cold) while beta3-AR were increased (to 216% of control) when 7 days cold was applied. MR were reduced to 46% and 58%, respectively. Gene expression of M2 MR in WT was not changed due to stress, while M3 was changed. The reaction of beta1- and beta2-AR (binding) to cold was similar in KO and WT animals, and beta3-AR in stressed KO animals did not change. Adenylyl cyclase activity was affected by beta3-agonist CL316243 in cold stressed WT animals but CL316243 had almost no effects on adenylyl cyclase activity in stressed KO. Nitric oxide activity (NOS) was not affected by BRL37344 (beta3-agonist) both in WT and KO animals. Similarly, the stress had no effects on NOS activity in WT animals and in KO animals. We conclude that the function of M2 MR is substituted by beta3-AR and that these effects are mediated via adenylyl cyclase rather than NOS.

Zobrazit více v PubMed

Baker JG (2005) Evidence for a secondary state of the human {beta}3-adrenoceptor. Mol Pharmacol 68:1645–1655 PubMed

Brodde OE, Bruck H, Leineweber K (2006) Cardiac adrenoceptors: physiological and pathophysiological relevance. J Pharmacol Sci 100:323–337 PubMed

Chamberlain PD, Jennings KH, Paul F, Cordell J, Berry A, Holmes SD, Park J, Chambers J, Sennitt MV, Stock MJ, Cawthorne MA, Young PW, Murphy GJ (1999) The tissue distribution of the human beta3-adrenoceptor studied using a monoclonal antibody: direct evidence of the beta3-adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int J Obes Relat Metab Disord 23:1057–1065 PubMed

Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, Crow MT (2000) The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3′-kinase. Circ Res 87:1172–1179 PubMed

Communal C, Singh K, Sawyer DB, Colucci WS (1999) Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis : role of a pertussis toxin-sensitive G protein. Circulation 100:2210–2212 PubMed

De Matteis R, Arch JR, Petroni ML, Ferrari D, Cinti S, Stock MJ (2002) Immunohistochemical identification of the beta(3)-adrenoceptor in intact human adipocytes and ventricular myocardium: effect of obesity and treatment with ephedrine and caffeine. Int J Obes Relat Metab Disord 26:1442–1450 PubMed

Fisher JT, Vincent SG, Gomeza J, Yamada M, Wess J (2004) Loss of vagally mediated bradycardia and bronchoconstriction in mice lacking M2 or M3 muscarinic acetylcholine receptors. FASEB J 18:711–713 PubMed

Gauthier CLV, Kobzik L, Trochu JN, Khandoudi N, Bril A, Balligand JL, Le Marec H (1998) The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest 1998:1377–1384 PubMed PMC

Gauthier C, Tavernier G, Trochu JN, Leblais V, Laurent K, Langin D, Escande D, Le Marec H (1999) Interspecies differences in the cardiac negative inotropic effects of beta(3)-adrenoceptor agonists. J Pharmacol Exp Ther 290:687–693 PubMed

Gauthier C, Langin D, Balligand J-L (2000) b3-adrenoceptors in the cardiovascular system. Trends Pharmacol Sci 21:426–431 PubMed

Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L, Brodkin J, Grinberg A, Sheng H, Wess J (1999) Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:1692–1697 PubMed PMC

Gomeza J, Zhang L, Kostenis E, Felder CC, Bymaster FP, Brodkin J, Shannon H, Xia B, Duttaroy A, Deng CX, Wess J (2001) Generation and pharmacological analysis of M2 and M4 muscarinic receptor knockout mice. Life Sci 68:2457–2466 PubMed

Hamilton BS, Doods HN (2008) Identification of potent agonists acting at an endogenous atypical [beta]3-adrenoceptor state that modulate lipolysis in rodent fat cells. Eur J Pharmacol 580:55–62 PubMed

Hoffert JD, Chou CL, Fenton RA, Knepper MA (2005) Calmodulin is required for vasopressin-stimulated increase in cyclic AMP production in inner medullary collecting duct. J Biol Chem 280:13624–13630 PubMed PMC

Krizanova O, Myslivecek J, Tillinger A, Jurkovicova D, Kubovcakova L (2007) Adrenergic and calcium modulation of the heart in stress: from molecular biology to function. Stress (Amsterdam, Netherlands) 10:173–184 PubMed

Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG Jr (1967) Differentiation of receptor systems activated by sympathomimetic amines. Nature 214:597–598 PubMed

Lee NH, Fraser CM (1993) Cross-talk between m1 muscarinic acetylcholine and beta 2-adrenergic receptors. cAMP and the third intracellular loop of m1 muscarinic receptors confer heterologous regulation. J Biol Chem 268:7949–7957 PubMed

Li H, Liu Y, Huang H, Tang Y, Yang B, Huang C (2010) Activation of beta3-adrenergic receptor inhibits ventricular arrhythmia in heart failure through calcium handling. Tohoku J Exp Med 222:167–174 PubMed

Moens AL, Yang R, Watts VL, Barouch LA (2010) Beta 3-adrenoreceptor regulation of nitric oxide in the cardiovascular system. J Mol Cell Cardiol 48:1088–1095 PubMed PMC

Moniotte S, Kobzik L, Feron O, Trochu JN, Gauthier C, Balligand JL (2001) Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 103:1649–1655 PubMed

Moscona-Amir E, Henis YI, Sokolovsky M (1988) Guanosine 5′-triphosphate binding protein (Gi) and two additional pertussis toxin substrates associated with muscarinic receptors in rat heart myocytes: characterization and age dependency. Biochemistry 27:4985–4991 PubMed

Muzzin P, Boss O, Mathis N, Revelli JP, Giacobino JP, Willcocks K, Badman GT, Cantello BC, Hindley RM, Cawthorne MA (1994) Characterization of a new, highly specific, beta 3-adrenergic receptor radioligand, [3H]SB 206606. Mol Pharmacol 46:357–363 PubMed

Myslivecek J, Trojan S, Tucek S (1996) Biphasic changes in the density of muscarinic and beta-adrenergic receptors in cardiac atria of rats treated with diisopropylfluorophosphate. Life Sci 58:2423–2430 PubMed

Myslivecek J, Lisa V, Trojan S, Tucek S (1998) Heterologous regulation of muscarinic and beta-adrenergic receptors in rat cardiomyocytes in culture. Life Sci 63:1169–1182 PubMed

Myslivecek J, Ricny J, Palkovits M, Kvetnansky R (2004) The effects of short-term immobilization stress on muscarinic receptors, beta-adrenoceptors, and adenylyl cyclase in different heart regions. Ann N Y Acad Sci 1018:315–322 PubMed

Myslivecek J, Novakova M, Palkovits M, Krizanova O, Kvetnansky R (2006) Distribution of mRNA and binding sites of adrenoceptors and muscarinic receptors in the rat heart. Life Sci 79:112–120 PubMed

Myslivecek J, Duysen EG, Lockridge O (2007) Adaptation to excess acetylcholine by downregulation of adrenoceptors and muscarinic receptors in lungs of acetylcholinesterase knockout mice. Naunyn-Schmiedeberg’s Arch Pharmacol 376:83–92 PubMed

Myslivecek J, Tillinger A, Novakova M, Kvetňanský R (2008) Regulation of adrenoceptor and muscarinic receptor gene expression after single and repeated stress. Ann N Y Acad Sci 1148:367–376 PubMed

Nantel F, Bonin H, Emorine LJ, Zilberfarb V, Strosberg AD, Bouvier M, Marullo S (1993) The human beta 3-adrenergic receptor is resistant to short term agonist-promoted desensitization. Mol Pharmacol 43:548–555 PubMed

Paraschos A, Karliner JS (1994) Receptor crosstalk: effects of prolonged carbachol exposure on beta 1-adrenoceptors and adenylyl cyclase activity in neonatal rat ventricular myocytes. Naunyn-Schmiedeberg’s Arch Pharmacol 350:267–276 PubMed

Schulz R, Rassaf T, Massion PB, Kelm M, Balligand JL (2005) Recent advances in the understanding of the role of nitric oxide in cardiovascular homeostasis. Pharmacol Ther 108:225–256 PubMed

Tavernier G, Toumaniantz G, Erfanian M, Heymann MF, Laurent K, Langin D, Gauthier C (2003) beta3-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human beta3-adrenergic receptor. Cardiovasc Res 59:288–296 PubMed

Tillinger A, Mysliveček J, Nováková M, Krizanova O, Kvetňanský R (2008) Gene Expression of Adrenoceptors in the Hearts of Cold-Acclimated Rats Exposed to a Novel Stressor. Ann N Y Acad Sci 1148:393–399 PubMed

Wang H, Lu Y, Wang Z (2007) Function of cardiac M3 receptors. Auton Autacoid Pharmacol 27:1–11 PubMed

Wess J, Duttaroy A, Zhang W, Gomeza J, Cui Y, Miyakawa T, Bymaster FP, McKinzie L, Felder CC, Lamping KG, Faraci FM, Deng C, Yamada M (2003) M1–M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Recept Channels 9:279–290 PubMed

Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev 6:721–733 PubMed

Xiao RP, Cheng H, Zhou YY, Kuschel M, Lakatta EG (1999) Recent advances in cardiac beta(2)-adrenergic signal transduction. Circ Res 85:1092–1100 PubMed

Xiao RP, Zhu W, Zheng M, Cao C, Zhang Y, Lakatta EG, Han Q (2006) Subtype-specific alpha1- and beta- adrenoceptor signaling in the heart. Trends Pharmacol Sci 27:330–337 PubMed

Zhao J, Su Y, Zhang Y, Pan Z, Yang L, Chen X, Liu Y, Lu Y, Du Z, Yang B (2010) Activation of cardiac muscarinic M3 receptors induces delayed cardioprotection by preserving phosphorylated connexin43 and up-regulating cyclooxygenase-2 expression. Br J Pharmacol 159:1217–1225 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...