Beta3 adrenoceptors substitute the role of M(2) muscarinic receptor in coping with cold stress in the heart: evidence from M(2)KO mice
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22222438
PubMed Central
PMC11498497
DOI
10.1007/s10571-011-9781-3
Knihovny.cz E-zdroje
- MeSH
- adenylátcyklasy metabolismus MeSH
- beta-3-adrenergní receptory metabolismus MeSH
- fyziologická adaptace * genetika MeSH
- fyziologický stres * genetika MeSH
- katecholaminy biosyntéza MeSH
- myši MeSH
- nízká teplota * MeSH
- receptor muskarinový M2 nedostatek genetika metabolismus MeSH
- regulace genové exprese MeSH
- srdce patofyziologie MeSH
- srdeční komory enzymologie patologie patofyziologie MeSH
- synthasa oxidu dusnatého metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenylátcyklasy MeSH
- beta-3-adrenergní receptory MeSH
- katecholaminy MeSH
- receptor muskarinový M2 MeSH
- synthasa oxidu dusnatého MeSH
We investigated the role of beta3-adrenoceptors (AR) in cold stress (1 or 7 days in cold) in animals lacking main cardioinhibitive receptors-M2 muscarinic receptors (M(2)KO). There was no change in receptor number in the right ventricles. In the left ventricles, there was decrease in binding to all cardiostimulative receptors (beta1-, and beta2-AR) and increase in cardiodepressive receptors (beta3-AR) in unstressed KO in comparison to WT. The cold stress in WT animals resulted in decrease in binding to beta1- and beta2-AR (to 37%/35% after 1 day in cold and to 27%/28% after 7 days in cold) while beta3-AR were increased (to 216% of control) when 7 days cold was applied. MR were reduced to 46% and 58%, respectively. Gene expression of M2 MR in WT was not changed due to stress, while M3 was changed. The reaction of beta1- and beta2-AR (binding) to cold was similar in KO and WT animals, and beta3-AR in stressed KO animals did not change. Adenylyl cyclase activity was affected by beta3-agonist CL316243 in cold stressed WT animals but CL316243 had almost no effects on adenylyl cyclase activity in stressed KO. Nitric oxide activity (NOS) was not affected by BRL37344 (beta3-agonist) both in WT and KO animals. Similarly, the stress had no effects on NOS activity in WT animals and in KO animals. We conclude that the function of M2 MR is substituted by beta3-AR and that these effects are mediated via adenylyl cyclase rather than NOS.
Zobrazit více v PubMed
Baker JG (2005) Evidence for a secondary state of the human {beta}3-adrenoceptor. Mol Pharmacol 68:1645–1655 PubMed
Brodde OE, Bruck H, Leineweber K (2006) Cardiac adrenoceptors: physiological and pathophysiological relevance. J Pharmacol Sci 100:323–337 PubMed
Chamberlain PD, Jennings KH, Paul F, Cordell J, Berry A, Holmes SD, Park J, Chambers J, Sennitt MV, Stock MJ, Cawthorne MA, Young PW, Murphy GJ (1999) The tissue distribution of the human beta3-adrenoceptor studied using a monoclonal antibody: direct evidence of the beta3-adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int J Obes Relat Metab Disord 23:1057–1065 PubMed
Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, Crow MT (2000) The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3′-kinase. Circ Res 87:1172–1179 PubMed
Communal C, Singh K, Sawyer DB, Colucci WS (1999) Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis : role of a pertussis toxin-sensitive G protein. Circulation 100:2210–2212 PubMed
De Matteis R, Arch JR, Petroni ML, Ferrari D, Cinti S, Stock MJ (2002) Immunohistochemical identification of the beta(3)-adrenoceptor in intact human adipocytes and ventricular myocardium: effect of obesity and treatment with ephedrine and caffeine. Int J Obes Relat Metab Disord 26:1442–1450 PubMed
Fisher JT, Vincent SG, Gomeza J, Yamada M, Wess J (2004) Loss of vagally mediated bradycardia and bronchoconstriction in mice lacking M2 or M3 muscarinic acetylcholine receptors. FASEB J 18:711–713 PubMed
Gauthier CLV, Kobzik L, Trochu JN, Khandoudi N, Bril A, Balligand JL, Le Marec H (1998) The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest 1998:1377–1384 PubMed PMC
Gauthier C, Tavernier G, Trochu JN, Leblais V, Laurent K, Langin D, Escande D, Le Marec H (1999) Interspecies differences in the cardiac negative inotropic effects of beta(3)-adrenoceptor agonists. J Pharmacol Exp Ther 290:687–693 PubMed
Gauthier C, Langin D, Balligand J-L (2000) b3-adrenoceptors in the cardiovascular system. Trends Pharmacol Sci 21:426–431 PubMed
Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L, Brodkin J, Grinberg A, Sheng H, Wess J (1999) Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:1692–1697 PubMed PMC
Gomeza J, Zhang L, Kostenis E, Felder CC, Bymaster FP, Brodkin J, Shannon H, Xia B, Duttaroy A, Deng CX, Wess J (2001) Generation and pharmacological analysis of M2 and M4 muscarinic receptor knockout mice. Life Sci 68:2457–2466 PubMed
Hamilton BS, Doods HN (2008) Identification of potent agonists acting at an endogenous atypical [beta]3-adrenoceptor state that modulate lipolysis in rodent fat cells. Eur J Pharmacol 580:55–62 PubMed
Hoffert JD, Chou CL, Fenton RA, Knepper MA (2005) Calmodulin is required for vasopressin-stimulated increase in cyclic AMP production in inner medullary collecting duct. J Biol Chem 280:13624–13630 PubMed PMC
Krizanova O, Myslivecek J, Tillinger A, Jurkovicova D, Kubovcakova L (2007) Adrenergic and calcium modulation of the heart in stress: from molecular biology to function. Stress (Amsterdam, Netherlands) 10:173–184 PubMed
Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG Jr (1967) Differentiation of receptor systems activated by sympathomimetic amines. Nature 214:597–598 PubMed
Lee NH, Fraser CM (1993) Cross-talk between m1 muscarinic acetylcholine and beta 2-adrenergic receptors. cAMP and the third intracellular loop of m1 muscarinic receptors confer heterologous regulation. J Biol Chem 268:7949–7957 PubMed
Li H, Liu Y, Huang H, Tang Y, Yang B, Huang C (2010) Activation of beta3-adrenergic receptor inhibits ventricular arrhythmia in heart failure through calcium handling. Tohoku J Exp Med 222:167–174 PubMed
Moens AL, Yang R, Watts VL, Barouch LA (2010) Beta 3-adrenoreceptor regulation of nitric oxide in the cardiovascular system. J Mol Cell Cardiol 48:1088–1095 PubMed PMC
Moniotte S, Kobzik L, Feron O, Trochu JN, Gauthier C, Balligand JL (2001) Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 103:1649–1655 PubMed
Moscona-Amir E, Henis YI, Sokolovsky M (1988) Guanosine 5′-triphosphate binding protein (Gi) and two additional pertussis toxin substrates associated with muscarinic receptors in rat heart myocytes: characterization and age dependency. Biochemistry 27:4985–4991 PubMed
Muzzin P, Boss O, Mathis N, Revelli JP, Giacobino JP, Willcocks K, Badman GT, Cantello BC, Hindley RM, Cawthorne MA (1994) Characterization of a new, highly specific, beta 3-adrenergic receptor radioligand, [3H]SB 206606. Mol Pharmacol 46:357–363 PubMed
Myslivecek J, Trojan S, Tucek S (1996) Biphasic changes in the density of muscarinic and beta-adrenergic receptors in cardiac atria of rats treated with diisopropylfluorophosphate. Life Sci 58:2423–2430 PubMed
Myslivecek J, Lisa V, Trojan S, Tucek S (1998) Heterologous regulation of muscarinic and beta-adrenergic receptors in rat cardiomyocytes in culture. Life Sci 63:1169–1182 PubMed
Myslivecek J, Ricny J, Palkovits M, Kvetnansky R (2004) The effects of short-term immobilization stress on muscarinic receptors, beta-adrenoceptors, and adenylyl cyclase in different heart regions. Ann N Y Acad Sci 1018:315–322 PubMed
Myslivecek J, Novakova M, Palkovits M, Krizanova O, Kvetnansky R (2006) Distribution of mRNA and binding sites of adrenoceptors and muscarinic receptors in the rat heart. Life Sci 79:112–120 PubMed
Myslivecek J, Duysen EG, Lockridge O (2007) Adaptation to excess acetylcholine by downregulation of adrenoceptors and muscarinic receptors in lungs of acetylcholinesterase knockout mice. Naunyn-Schmiedeberg’s Arch Pharmacol 376:83–92 PubMed
Myslivecek J, Tillinger A, Novakova M, Kvetňanský R (2008) Regulation of adrenoceptor and muscarinic receptor gene expression after single and repeated stress. Ann N Y Acad Sci 1148:367–376 PubMed
Nantel F, Bonin H, Emorine LJ, Zilberfarb V, Strosberg AD, Bouvier M, Marullo S (1993) The human beta 3-adrenergic receptor is resistant to short term agonist-promoted desensitization. Mol Pharmacol 43:548–555 PubMed
Paraschos A, Karliner JS (1994) Receptor crosstalk: effects of prolonged carbachol exposure on beta 1-adrenoceptors and adenylyl cyclase activity in neonatal rat ventricular myocytes. Naunyn-Schmiedeberg’s Arch Pharmacol 350:267–276 PubMed
Schulz R, Rassaf T, Massion PB, Kelm M, Balligand JL (2005) Recent advances in the understanding of the role of nitric oxide in cardiovascular homeostasis. Pharmacol Ther 108:225–256 PubMed
Tavernier G, Toumaniantz G, Erfanian M, Heymann MF, Laurent K, Langin D, Gauthier C (2003) beta3-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human beta3-adrenergic receptor. Cardiovasc Res 59:288–296 PubMed
Tillinger A, Mysliveček J, Nováková M, Krizanova O, Kvetňanský R (2008) Gene Expression of Adrenoceptors in the Hearts of Cold-Acclimated Rats Exposed to a Novel Stressor. Ann N Y Acad Sci 1148:393–399 PubMed
Wang H, Lu Y, Wang Z (2007) Function of cardiac M3 receptors. Auton Autacoid Pharmacol 27:1–11 PubMed
Wess J, Duttaroy A, Zhang W, Gomeza J, Cui Y, Miyakawa T, Bymaster FP, McKinzie L, Felder CC, Lamping KG, Faraci FM, Deng C, Yamada M (2003) M1–M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Recept Channels 9:279–290 PubMed
Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev 6:721–733 PubMed
Xiao RP, Cheng H, Zhou YY, Kuschel M, Lakatta EG (1999) Recent advances in cardiac beta(2)-adrenergic signal transduction. Circ Res 85:1092–1100 PubMed
Xiao RP, Zhu W, Zheng M, Cao C, Zhang Y, Lakatta EG, Han Q (2006) Subtype-specific alpha1- and beta- adrenoceptor signaling in the heart. Trends Pharmacol Sci 27:330–337 PubMed
Zhao J, Su Y, Zhang Y, Pan Z, Yang L, Chen X, Liu Y, Lu Y, Du Z, Yang B (2010) Activation of cardiac muscarinic M3 receptors induces delayed cardioprotection by preserving phosphorylated connexin43 and up-regulating cyclooxygenase-2 expression. Br J Pharmacol 159:1217–1225 PubMed PMC
Multitargeting nature of muscarinic orthosteric agonists and antagonists
Acute restraint stress modifies the heart rate biorhythm in the poststress period