Decrease in heart adrenoceptor gene expression and receptor number as compensatory tool for preserved heart function and biological rhythm in M(2) KO animals
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- atropin farmakologie MeSH
- beta-1-adrenergní receptory metabolismus MeSH
- beta-2-adrenergní receptory metabolismus MeSH
- bradykardie patofyziologie MeSH
- funkce levé komory srdeční fyziologie MeSH
- isoprenalin farmakologie MeSH
- karbachol farmakologie MeSH
- myši knockoutované MeSH
- myši MeSH
- propranolol farmakologie MeSH
- receptor muskarinový M2 genetika MeSH
- regulace genové exprese * MeSH
- srdeční frekvence fyziologie MeSH
- srdeční komory metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- atropin MeSH
- beta-1-adrenergní receptory MeSH
- beta-2-adrenergní receptory MeSH
- isoprenalin MeSH
- karbachol MeSH
- propranolol MeSH
- receptor muskarinový M2 MeSH
Muscarinic receptors (MR) are main cardioinhibitory receptors. We investigated the changes in gene expression, receptor number, echocardiography, muscarinic/adrenergic agonist/antagonist changes in heart rate (HR) and HR biorhythm in M(2) KO mice (mice lacking the main cardioinhibitory receptors) in the left ventricle (LV) and right ventricle (RV). We hypothesize that the disruption of M(2) MR, key players in parasympathetic bradycardia, would change the number of receptors with antagonistic effects on the heart (β(1)- and β(2)-adrenoceptors, BAR), while the function of the heart would be changed only marginally. We have found changes in LV, but not in RV: decrease in M(3) MR, β(1)- and β(2)-adrenoceptor gene expressions that were accompanied by a decrease in MR and BAR receptor binding. No changes were found both in LV systolic and diastolic function as assessed by echocardiography (e.g., similar LV end-systolic and end-diastolic diameter, fractional shortening, mitral flow characteristics, and maximal velocity in LV outflow tract). We have found only marginal changes in specific HR biorhythm parameters. The effects of isoprenaline and propranolol on HR were similar in WT and KO (but with lesser extent). Atropine was not able to increase HR in KO animals. Carbachol decreased the HR in WT but increased HR in KO, suggesting the presence of cardiostimulatory MR. Therefore, we can conclude that although the main cardioinhibitory receptors are not present in the heart, the function is not much affected. As possible mechanisms of almost normal cardiac function, the decreases of both β(1)- and β(2)-adrenoceptor gene expression and receptor binding should be considered.
Zobrazit více v PubMed
Naunyn Schmiedebergs Arch Pharmacol. 1994 Sep;350(3):267-76 PubMed
Br J Pharmacol. 2009 Apr;156(7):1147-53 PubMed
Circulation. 1996 Sep 1;94(5):1109-17 PubMed
Br J Pharmacol. 2009 Nov;158(6):1557-64 PubMed
Br J Pharmacol. 2008 Feb;153(4):684-92 PubMed
Br J Pharmacol. 2005 Aug;145(8):1153-9 PubMed
Endocr Regul. 2010 Apr;44(2):69-75 PubMed
Life Sci. 2001 Apr 27;68(22-23):2473-9 PubMed
J Pharmacol Exp Ther. 2000 Mar;292(3):877-85 PubMed
Auton Autacoid Pharmacol. 2007 Jan;27(1):1-11 PubMed
Physiol Res. 2010;59(5):679-689 PubMed
Am J Physiol Heart Circ Physiol. 2008 Feb;294(2):H810-20 PubMed
Cell Mol Neurobiol. 2012 Jul;32(5):859-69 PubMed
Naunyn Schmiedebergs Arch Pharmacol. 2003 Oct;368(4):316-9 PubMed
Life Sci. 1996 May 24;58(26):2423-30 PubMed
J Mol Cell Cardiol. 2005 May;38(5):703-14 PubMed
Neuroreport. 1996 Jan 31;7(2):417-20 PubMed
J Biol Chem. 1993 Apr 15;268(11):7949-57 PubMed
Br J Pharmacol. 2004 Jun;142(3):395-408 PubMed
Auton Neurosci. 2009 Oct 5;150(1-2):8-20 PubMed
FASEB J. 2004 Apr;18(6):711-3 PubMed
Circ Res. 1984 Jun;54(6):703-10 PubMed
Int J Cardiol. 2011 May 5;148(3):331-6 PubMed
Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1692-7 PubMed
Chronobiol Int. 2006;23(4):795-812 PubMed
Biochem J. 2003 Sep 1;374(Pt 2):281-96 PubMed
Naunyn Schmiedebergs Arch Pharmacol. 2007 Oct;376(1-2):83-92 PubMed
Am J Physiol Regul Integr Comp Physiol. 2002 May;282(5):R1356-63 PubMed
Life Sci. 2001 Apr 27;68(22-23):2457-66 PubMed
Am J Physiol Heart Circ Physiol. 2008 Apr;294(4):H1581-8 PubMed
Life Sci. 1998;63(13):1169-82 PubMed
Pflugers Arch. 2003 Nov;447(2):254-8 PubMed
Annu Rev Pharmacol Toxicol. 2009;49:1-30 PubMed
Eur J Pharmacol. 2006 Mar 8;533(1-3):57-68 PubMed
Recept Channels. 2003;9(4):279-90 PubMed
J Pharmacol Exp Ther. 2009 Aug;330(2):487-93 PubMed
J Biol Chem. 1999 Jun 11;274(24):16694-700 PubMed
Am J Physiol Heart Circ Physiol. 2006 Jan;290(1):H192-9 PubMed
J Neuroendocrinol. 2005 Dec;17(12):817-26 PubMed
J Pharmacol Exp Ther. 2009 Jun;329(3):1156-65 PubMed
Eur J Pharmacol. 2004 Oct 1;500(1-3):167-76 PubMed
J Biol Chem. 2005 Apr 8;280(14):13624-30 PubMed
Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7375-80 PubMed
Naunyn Schmiedebergs Arch Pharmacol. 2008 Jul;378(1):103-16 PubMed
Naunyn Schmiedebergs Arch Pharmacol. 2002 Feb;365(2):112-22 PubMed
Pharmacol Ther. 2008 Jan;117(1):1-29 PubMed