Toward protein NMR at physiological concentrations by hyperpolarized water-Finding and mapping uncharted conformational spaces
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
35930648
PubMed Central
PMC9355353
DOI
10.1126/sciadv.abq5179
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Nuclear magnetic resonance (NMR) spectroscopy is a key method for determining the structural dynamics of proteins in their native solution state. However, the low sensitivity of NMR typically necessitates nonphysiologically high sample concentrations, which often limit the relevance of the recorded data. We show how to use hyperpolarized water by dissolution dynamic nuclear polarization (DDNP) to acquire protein spectra at concentrations of 1 μM within seconds and with a high signal-to-noise ratio. The importance of approaching physiological concentrations is demonstrated for the vital MYC-associated factor X, which we show to switch conformations when diluted. While in vitro conditions lead to a population of the well-documented dimer, concentrations lowered by more than two orders of magnitude entail dimer dissociation and formation of a globularly folded monomer. We identified this structure by integrating DDNP with computational techniques to overcome the often-encountered constraint of DDNP of limited structural information provided by the typically detected one-dimensional spectra.
See more in PubMed
Charlier C., Alderson T. R., Courtney J. M., Ying J., Anfinrud P., Bax A., Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell. Proc. Natl. Acad. Sci. U.S.A. 115, E4169–E4178 (2018). PubMed PMC
Bessa L. M., Guseva S., Camacho-Zarco A. R., Salvi N., Maurin D., Perez L. M., Botova M., Malki A., Nanao M., Jensen M. R., Ruigrok R. W. H., Blackledge M., The intrinsically disordered SARS-CoV-2 nucleoprotein in dynamic complex with its viral partner nsp3a. Sci. Adv. 8, eabm4034 (2022). PubMed PMC
Theillet F. X., Binolfi A., Bekei B., Martorana A., Rose H. M., Stuiver M., Verzini S., Lorenz D., van Rossum M., Goldfarb D., Selenko P., Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530, 45–50 (2016). PubMed
Wilmanns M., Gautel M., Mayans O., Activation of calcium/calmodulin regulated kinases. Cell. Mol. Biol. 46, 883–894 (2000). PubMed
Ecevit O., Khan M. A., Goss D. J., Kinetic analysis of the interaction of b/HLH/Z transcription factors Myc, max, and mad with cognate DNA. Biochemistry 49, 2627–2635 (2010). PubMed PMC
Soranno A., Buchli B., Nettels D., Cheng R. R., Muller-Spath S., Pfeil S. H., Hoffmann A., Lipman E. A., Makarov D. E., Schuler B., Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 109, 17800–17806 (2012). PubMed PMC
Kamar R. I., Banigan E. J., Erbas A., Giuntoli R. D., Olvera de la Cruz M., Johnson R. C., Marko J. F., Facilitated dissociation of transcription factors from single DNA binding sites. Proc. Natl. Acad. Sci. U.S.A. 114, E3251–E3257 (2017). PubMed PMC
Luchinat E., Barbieri L., Cremonini M., Banci L., Protein in-cell NMR spectroscopy at 1.2 GHz. J. Biomol. NMR 75, 97–107 (2021). PubMed PMC
Harris T., Szekely O., Frydman L., On the potential of hyperpolarized water in biomolecular NMR studies. J. Phys. Chem. B 118, 3281–3290 (2014). PubMed PMC
Chappuis Q., Milani J., Vuichoud B., Bornet A., Gossert A. D., Bodenhausen G., Jannin S., Hyperpolarized water to study protein-ligand interactions. J. Phys. Chem. Lett. 6, 1674–1678 (2015). PubMed
Kurzbach D., Canet E., Flamm A. G., Jhajharia A., Weber E. M., Konrat R., Bodenhausen G., Investigation of intrinsically disordered proteins through exchange with hyperpolarized water. Angew. Chem. Int. Ed. Engl. 56, 389–392 (2017). PubMed
Sadet A., Stavarache C., Bacalum M., Radu M., Bodenhausen G., Kurzbach D., Vasos P. R., Hyperpolarized water enhances two-dimensional proton NMR correlations: A new approach for molecular interactions. J. Am. Chem. Soc. 141, 12448–12452 (2019). PubMed
Kim J., Mandal R., Hilty C., Observation of fast two-dimensional NMR spectra during protein folding using polarization transfer from hyperpolarized water. J. Phys. Chem. Lett. 10, 5463–5467 (2019). PubMed
Olsen G. L., Szekely O., Mateos B., Kaderavek P., Ferrage F., Konrat R., Pierattelli R., Felli I. C., Bodenhausen G., Kurzbach D., Frydman L., Sensitivity-enhanced three-dimensional and carbon-detected two-dimensional NMR of proteins using hyperpolarized water. J. Biomol. NMR 74, 161–171 (2020). PubMed PMC
Novakovic M., Olsen G. L., Pinter G., Hymon D., Furtig B., Schwalbe H., Frydman L., A 300-fold enhancement of imino nucleic acid resonances by hyperpolarized water provides a new window for probing RNA refolding by 1D and 2D NMR. Proc. Natl. Acad. Sci. U.S.A. 117, 2449–2455 (2020). PubMed PMC
Kaderavek P., Ferrage F., Bodenhausen G., Kurzbach D., High-resolution NMR of folded proteins in hyperpolarized physiological solvents. Chem. A Eur. J. 24, 13418–13423 (2018). PubMed
Kim J., Liu M., Hilty C., Modeling of polarization transfer kinetics in protein hydration using hyperpolarized water. J. Phys. Chem. B 121, 6492–6498 (2017). PubMed
Lipso K. W., Bowen S., Rybalko O., Ardenkjaer-Larsen J. H., Large dose hyperpolarized water with dissolution-DNP at high magnetic field. J. Magn. Reson. 274, 65–72 (2017). PubMed
Pinon A. C., Capozzi A., Ardenkjaer-Larsen J. H., Hyperpolarized water through dissolution dynamic nuclear polarization with UV-generated radicals. Commun. Chem. 3, 57 (2020). PubMed PMC
Kircher R., Hasse H., Munnemann K., High flow-rate benchtop NMR spectroscopy enabled by continuous overhauser DNP. Anal. Chem. 93, 8897–8905 (2021). PubMed
Armstrong B. D., Han S., Overhauser dynamic nuclear polarization to study local water dynamics. J. Am. Chem. Soc. 131, 4641–4647 (2009). PubMed
Pavlova A., McCarney E. R., Peterson D. W., Dahlquist F. W., Lew J., Han S., Site-specific dynamic nuclear polarization of hydration water as a generally applicable approach to monitor protein aggregation. Phys. Chem. Chem. Phys. 11, 6833–6839 (2009). PubMed PMC
Armstrong B. D., Choi J., Lopez C., Wesener D. A., Hubbell W., Cavagnero S., Han S., Site-specific hydration dynamics in the nonpolar core of a molten globule by dynamic nuclear polarization of water. J. Am. Chem. Soc. 133, 5987–5995 (2011). PubMed PMC
Neugebauer P., Krummenacker J. G., Denysenkov V. P., Parigi G., Luchinat C., Prisner T. F., Liquid state DNP of water at 9.2 T: An experimental access to saturation. Phys. Chem. Chem. Phys. 15, 6049–6056 (2013). PubMed
Franck J. M., Ding Y., Stone K., Qin P. Z., Han S., Anomalously rapid hydration water diffusion dynamics near DNA surfaces. J. Am. Chem. Soc. 137, 12013–12023 (2015). PubMed PMC
Kouno H., Orihashi K., Nishimura K., Kawashima Y., Tateishi K., Uesaka T., Kimizuka N., Yanai N., Triplet dynamic nuclear polarization of crystalline ice using water-soluble polarizing agents. Chem. Commun. 56, 3717–3720 (2020). PubMed
Sicoli G., Vezin H., Ledolter K., Kress T., Kurzbach D., Conformational tuning of a DNA-bound transcription factor. Nucleic Acids Res. 47, 5429–5435 (2019). PubMed PMC
Sicoli G., Kress T., Vezin H., Ledolter K., Kurzbach D., A switch between two intrinsically disordered conformational ensembles modulates the active site of a basic-helix-loop-helix transcription factor. J. Phys. Chem. Lett. 11, 8944–8951 (2020). PubMed PMC
Kizilsavas G., Ledolter K., Kurzbach D., Hydrophobic collapse of the intrinsically disordered transcription factor Myc associated factor X. Biochemistry 56, 5365–5372 (2017). PubMed
Blackwood E. M., Eisenman R. N., Max—A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217 (1991). PubMed
Amati B., Land H., Myc-Max-Mad: A transcription factor network controlling cell cycle progression, differentiation and death. Curr. Opin. Genet. Dev. 4, 102–108 (1994). PubMed
Sauve S., Tremblay L., Lavigne P., The NMR solution structure of a mutant of the max b/HLH/LZ free of DNA: Insights into the specific and reversible DNA binding mechanism of dimeric transcription factors. J. Mol. Biol. 342, 813–832 (2004). PubMed
Fieber W., Schneider M. L., Matt T., Krautler B., Konrat R., Bister K., Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc. J. Mol. Biol. 307, 1395–1410 (2001). PubMed
Sauve S., Naud J. F., Lavigne P., The mechanism of discrimination between cognate and non-specific DNA by dimeric b/HLH/LZ transcription factors. J. Mol. Biol. 365, 1163–1175 (2007). PubMed
Wang Q., Zhang H. T., Kajino K., Greene M. I., BRCA1 binds c-Myc and inhibits its transcriptional and transforming activity in cells. Oncogene 17, 1939–1948 (1998). PubMed
Ardenkjaer-Larsen J. H., Fridlund B., Gram A., Hansson G., Hansson L., Lerche M. H., Servin R., Thaning M., Golman K., Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. U.S.A. 100, 10158–10163 (2003). PubMed PMC
Bornet A., Milani J., Wang S. T., Mammoli D., Buratto R., Salvi N., Segawa T. F., Vitzthum V., Mieville P., Chinthalapalli S., Perez-Linde A. J., Carnevale D., Jannin S., Caporini M., Ulzega S., Rey M., Bodenhausen G., Dynamic nuclear polarization and other magnetic ideas at EPFL. Chimia 66, 734–740 (2012). PubMed
Jannin S., Dumez J. N., Giraudeau P., Kurzbach D., Application and methodology of dissolution dynamic nuclear polarization in physical, chemical and biological contexts. J. Magn. Reson. 305, 41–50 (2019). PubMed PMC
Hilty C., Kurzbach D., Frydman L., Hyperpolarized water as universal sensitivity booster in biomolecular NMR. Nat. Protoc. 10.1038/s41596-022-00693-8 , (2022). PubMed
Negroni M., Kurzbach D., Residue-resolved monitoring of protein hyperpolarization at sub-second time resolution. Commun. Chem. 4, 147 (2021). PubMed PMC
Kress T., Che K., Epasto L. M., Kozak F., Negroni M., Olsen G. L., Selimovic A., Kurzbach D., A novel sample handling system for dissolution dynamic nuclear polarization experiments. J. Magn. Reson. 2, 387–394 (2021). PubMed PMC
Schanda P., Kupce E., Brutscher B., SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J. Biomol. NMR 33, 199–211 (2005). PubMed
Brownlie P., Ceska T. A., Lamers M., Romier C., Stier G., Teo H., Suck D., The crystal structure of an intact human Max-DNA complex: New insights into mechanisms of transcriptional control. Structure 5, 509–520 (1997). PubMed
Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J., The phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015). PubMed PMC
Hol W. G., van Duijnen P. T., Berendsen H. J., The α-helix dipole and the properties of proteins. Nature 273, 443–446 (1978). PubMed
Shen Y., Bax A., SPARTA+: A modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J. Biomol. NMR 48, 13–22 (2010). PubMed PMC
Nielsen J. T., Mulder F. A. A., POTENCI: Prediction of temperature, neighbor and pH-corrected chemical shifts for intrinsically disordered proteins. J. Biomol. NMR 70, 141–165 (2018). PubMed
Vancraenenbroeck R., Hofmann H., Occupancies in the DNA-binding pathways of intrinsically disordered helix-loop-helix leucine-zipper proteins. J. Phys. Chem. B 122, 11460–11467 (2018). PubMed
Weber E. M. M., Sicoli G., Vezin H., Frébourg G., Abergel D., Bodenhausen G., Kurzbach D., Sample ripening through nanophase separation influences the performance of dynamic nuclear polarization. Angew. Chem. Int. Ed. 57, 5171–5175 (2018). PubMed
Baudin M., Vuichoud B., Bornet A., Milani J., Bodenhausen G., Jannin S., A cryogen-consumption-free system for dynamic nuclear polarization at 9.4 T. J. Magn. Reson. 294, 115–121 (2018). PubMed
Ying L., Benjamin W. J., Chad R. M., Selective refocusing pulses in magic-angle spinning NMR: Characterization and applications to multi-dimensional protein spectroscopy. J. Magn. Reson. 179, 206–216 (2006). PubMed
Shaka A. J., Barker P. B., Freeman R., Computer-optimized decoupling scheme for wideband applications and low-level operation. J. Magn. Reson. 64, 547–552 (1985).
Kouril K., Gramberg M., Jurkutat M., Kourilová H., Meier B., A cryogen-free, semi-automated apparatus for bullet-dynamic nuclear polarization with improved resolution. J. Magn. Reson. 2, 815–825 (2021). PubMed PMC
T. D. Goddard, D. G. Kneller, SPARKY 3 (University of California, San Francisco, USA) (2000).
Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A., Nmrpipe—A multidimensional spectral processing system based on unix pipes. J. Biomol. NMR 6, 277–293 (1995). PubMed
Krieger E., Vriend G., YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics 30, 2981–2982 (2014). PubMed PMC
Krieger E., Koraimann G., Vriend G., Increasing the precision of comparative models with YASARA NOVA-a self-parameterizing force field. Proteins 47, 393–402 (2002). PubMed
Doshi U., Hamelberg D., Reoptimization of the AMBER force field parameters for peptide bond (Omega) torsions using accelerated molecular dynamics. J. Phys. Chem. B 113, 16590–16595 (2009). PubMed
Essmann U., Perera L., Berkowitz M. L., Darden T., Lee H., Pedersen L. G., A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).