• This record comes from PubMed

Toward protein NMR at physiological concentrations by hyperpolarized water-Finding and mapping uncharted conformational spaces

. 2022 Aug 05 ; 8 (31) : eabq5179. [epub] 20220805

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Nuclear magnetic resonance (NMR) spectroscopy is a key method for determining the structural dynamics of proteins in their native solution state. However, the low sensitivity of NMR typically necessitates nonphysiologically high sample concentrations, which often limit the relevance of the recorded data. We show how to use hyperpolarized water by dissolution dynamic nuclear polarization (DDNP) to acquire protein spectra at concentrations of 1 μM within seconds and with a high signal-to-noise ratio. The importance of approaching physiological concentrations is demonstrated for the vital MYC-associated factor X, which we show to switch conformations when diluted. While in vitro conditions lead to a population of the well-documented dimer, concentrations lowered by more than two orders of magnitude entail dimer dissociation and formation of a globularly folded monomer. We identified this structure by integrating DDNP with computational techniques to overcome the often-encountered constraint of DDNP of limited structural information provided by the typically detected one-dimensional spectra.

See more in PubMed

Charlier C., Alderson T. R., Courtney J. M., Ying J., Anfinrud P., Bax A., Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell. Proc. Natl. Acad. Sci. U.S.A. 115, E4169–E4178 (2018). PubMed PMC

Bessa L. M., Guseva S., Camacho-Zarco A. R., Salvi N., Maurin D., Perez L. M., Botova M., Malki A., Nanao M., Jensen M. R., Ruigrok R. W. H., Blackledge M., The intrinsically disordered SARS-CoV-2 nucleoprotein in dynamic complex with its viral partner nsp3a. Sci. Adv. 8, eabm4034 (2022). PubMed PMC

Theillet F. X., Binolfi A., Bekei B., Martorana A., Rose H. M., Stuiver M., Verzini S., Lorenz D., van Rossum M., Goldfarb D., Selenko P., Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530, 45–50 (2016). PubMed

Wilmanns M., Gautel M., Mayans O., Activation of calcium/calmodulin regulated kinases. Cell. Mol. Biol. 46, 883–894 (2000). PubMed

Ecevit O., Khan M. A., Goss D. J., Kinetic analysis of the interaction of b/HLH/Z transcription factors Myc, max, and mad with cognate DNA. Biochemistry 49, 2627–2635 (2010). PubMed PMC

Soranno A., Buchli B., Nettels D., Cheng R. R., Muller-Spath S., Pfeil S. H., Hoffmann A., Lipman E. A., Makarov D. E., Schuler B., Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 109, 17800–17806 (2012). PubMed PMC

Kamar R. I., Banigan E. J., Erbas A., Giuntoli R. D., Olvera de la Cruz M., Johnson R. C., Marko J. F., Facilitated dissociation of transcription factors from single DNA binding sites. Proc. Natl. Acad. Sci. U.S.A. 114, E3251–E3257 (2017). PubMed PMC

Luchinat E., Barbieri L., Cremonini M., Banci L., Protein in-cell NMR spectroscopy at 1.2 GHz. J. Biomol. NMR 75, 97–107 (2021). PubMed PMC

Harris T., Szekely O., Frydman L., On the potential of hyperpolarized water in biomolecular NMR studies. J. Phys. Chem. B 118, 3281–3290 (2014). PubMed PMC

Chappuis Q., Milani J., Vuichoud B., Bornet A., Gossert A. D., Bodenhausen G., Jannin S., Hyperpolarized water to study protein-ligand interactions. J. Phys. Chem. Lett. 6, 1674–1678 (2015). PubMed

Kurzbach D., Canet E., Flamm A. G., Jhajharia A., Weber E. M., Konrat R., Bodenhausen G., Investigation of intrinsically disordered proteins through exchange with hyperpolarized water. Angew. Chem. Int. Ed. Engl. 56, 389–392 (2017). PubMed

Sadet A., Stavarache C., Bacalum M., Radu M., Bodenhausen G., Kurzbach D., Vasos P. R., Hyperpolarized water enhances two-dimensional proton NMR correlations: A new approach for molecular interactions. J. Am. Chem. Soc. 141, 12448–12452 (2019). PubMed

Kim J., Mandal R., Hilty C., Observation of fast two-dimensional NMR spectra during protein folding using polarization transfer from hyperpolarized water. J. Phys. Chem. Lett. 10, 5463–5467 (2019). PubMed

Olsen G. L., Szekely O., Mateos B., Kaderavek P., Ferrage F., Konrat R., Pierattelli R., Felli I. C., Bodenhausen G., Kurzbach D., Frydman L., Sensitivity-enhanced three-dimensional and carbon-detected two-dimensional NMR of proteins using hyperpolarized water. J. Biomol. NMR 74, 161–171 (2020). PubMed PMC

Novakovic M., Olsen G. L., Pinter G., Hymon D., Furtig B., Schwalbe H., Frydman L., A 300-fold enhancement of imino nucleic acid resonances by hyperpolarized water provides a new window for probing RNA refolding by 1D and 2D NMR. Proc. Natl. Acad. Sci. U.S.A. 117, 2449–2455 (2020). PubMed PMC

Kaderavek P., Ferrage F., Bodenhausen G., Kurzbach D., High-resolution NMR of folded proteins in hyperpolarized physiological solvents. Chem. A Eur. J. 24, 13418–13423 (2018). PubMed

Kim J., Liu M., Hilty C., Modeling of polarization transfer kinetics in protein hydration using hyperpolarized water. J. Phys. Chem. B 121, 6492–6498 (2017). PubMed

Lipso K. W., Bowen S., Rybalko O., Ardenkjaer-Larsen J. H., Large dose hyperpolarized water with dissolution-DNP at high magnetic field. J. Magn. Reson. 274, 65–72 (2017). PubMed

Pinon A. C., Capozzi A., Ardenkjaer-Larsen J. H., Hyperpolarized water through dissolution dynamic nuclear polarization with UV-generated radicals. Commun. Chem. 3, 57 (2020). PubMed PMC

Kircher R., Hasse H., Munnemann K., High flow-rate benchtop NMR spectroscopy enabled by continuous overhauser DNP. Anal. Chem. 93, 8897–8905 (2021). PubMed

Armstrong B. D., Han S., Overhauser dynamic nuclear polarization to study local water dynamics. J. Am. Chem. Soc. 131, 4641–4647 (2009). PubMed

Pavlova A., McCarney E. R., Peterson D. W., Dahlquist F. W., Lew J., Han S., Site-specific dynamic nuclear polarization of hydration water as a generally applicable approach to monitor protein aggregation. Phys. Chem. Chem. Phys. 11, 6833–6839 (2009). PubMed PMC

Armstrong B. D., Choi J., Lopez C., Wesener D. A., Hubbell W., Cavagnero S., Han S., Site-specific hydration dynamics in the nonpolar core of a molten globule by dynamic nuclear polarization of water. J. Am. Chem. Soc. 133, 5987–5995 (2011). PubMed PMC

Neugebauer P., Krummenacker J. G., Denysenkov V. P., Parigi G., Luchinat C., Prisner T. F., Liquid state DNP of water at 9.2 T: An experimental access to saturation. Phys. Chem. Chem. Phys. 15, 6049–6056 (2013). PubMed

Franck J. M., Ding Y., Stone K., Qin P. Z., Han S., Anomalously rapid hydration water diffusion dynamics near DNA surfaces. J. Am. Chem. Soc. 137, 12013–12023 (2015). PubMed PMC

Kouno H., Orihashi K., Nishimura K., Kawashima Y., Tateishi K., Uesaka T., Kimizuka N., Yanai N., Triplet dynamic nuclear polarization of crystalline ice using water-soluble polarizing agents. Chem. Commun. 56, 3717–3720 (2020). PubMed

Sicoli G., Vezin H., Ledolter K., Kress T., Kurzbach D., Conformational tuning of a DNA-bound transcription factor. Nucleic Acids Res. 47, 5429–5435 (2019). PubMed PMC

Sicoli G., Kress T., Vezin H., Ledolter K., Kurzbach D., A switch between two intrinsically disordered conformational ensembles modulates the active site of a basic-helix-loop-helix transcription factor. J. Phys. Chem. Lett. 11, 8944–8951 (2020). PubMed PMC

Kizilsavas G., Ledolter K., Kurzbach D., Hydrophobic collapse of the intrinsically disordered transcription factor Myc associated factor X. Biochemistry 56, 5365–5372 (2017). PubMed

Blackwood E. M., Eisenman R. N., Max—A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217 (1991). PubMed

Amati B., Land H., Myc-Max-Mad: A transcription factor network controlling cell cycle progression, differentiation and death. Curr. Opin. Genet. Dev. 4, 102–108 (1994). PubMed

Sauve S., Tremblay L., Lavigne P., The NMR solution structure of a mutant of the max b/HLH/LZ free of DNA: Insights into the specific and reversible DNA binding mechanism of dimeric transcription factors. J. Mol. Biol. 342, 813–832 (2004). PubMed

Fieber W., Schneider M. L., Matt T., Krautler B., Konrat R., Bister K., Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc. J. Mol. Biol. 307, 1395–1410 (2001). PubMed

Sauve S., Naud J. F., Lavigne P., The mechanism of discrimination between cognate and non-specific DNA by dimeric b/HLH/LZ transcription factors. J. Mol. Biol. 365, 1163–1175 (2007). PubMed

Wang Q., Zhang H. T., Kajino K., Greene M. I., BRCA1 binds c-Myc and inhibits its transcriptional and transforming activity in cells. Oncogene 17, 1939–1948 (1998). PubMed

Ardenkjaer-Larsen J. H., Fridlund B., Gram A., Hansson G., Hansson L., Lerche M. H., Servin R., Thaning M., Golman K., Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. U.S.A. 100, 10158–10163 (2003). PubMed PMC

Bornet A., Milani J., Wang S. T., Mammoli D., Buratto R., Salvi N., Segawa T. F., Vitzthum V., Mieville P., Chinthalapalli S., Perez-Linde A. J., Carnevale D., Jannin S., Caporini M., Ulzega S., Rey M., Bodenhausen G., Dynamic nuclear polarization and other magnetic ideas at EPFL. Chimia 66, 734–740 (2012). PubMed

Jannin S., Dumez J. N., Giraudeau P., Kurzbach D., Application and methodology of dissolution dynamic nuclear polarization in physical, chemical and biological contexts. J. Magn. Reson. 305, 41–50 (2019). PubMed PMC

Hilty C., Kurzbach D., Frydman L., Hyperpolarized water as universal sensitivity booster in biomolecular NMR. Nat. Protoc. 10.1038/s41596-022-00693-8 , (2022). PubMed

Negroni M., Kurzbach D., Residue-resolved monitoring of protein hyperpolarization at sub-second time resolution. Commun. Chem. 4, 147 (2021). PubMed PMC

Kress T., Che K., Epasto L. M., Kozak F., Negroni M., Olsen G. L., Selimovic A., Kurzbach D., A novel sample handling system for dissolution dynamic nuclear polarization experiments. J. Magn. Reson. 2, 387–394 (2021). PubMed PMC

Schanda P., Kupce E., Brutscher B., SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J. Biomol. NMR 33, 199–211 (2005). PubMed

Brownlie P., Ceska T. A., Lamers M., Romier C., Stier G., Teo H., Suck D., The crystal structure of an intact human Max-DNA complex: New insights into mechanisms of transcriptional control. Structure 5, 509–520 (1997). PubMed

Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J., The phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015). PubMed PMC

Hol W. G., van Duijnen P. T., Berendsen H. J., The α-helix dipole and the properties of proteins. Nature 273, 443–446 (1978). PubMed

Shen Y., Bax A., SPARTA+: A modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J. Biomol. NMR 48, 13–22 (2010). PubMed PMC

Nielsen J. T., Mulder F. A. A., POTENCI: Prediction of temperature, neighbor and pH-corrected chemical shifts for intrinsically disordered proteins. J. Biomol. NMR 70, 141–165 (2018). PubMed

Vancraenenbroeck R., Hofmann H., Occupancies in the DNA-binding pathways of intrinsically disordered helix-loop-helix leucine-zipper proteins. J. Phys. Chem. B 122, 11460–11467 (2018). PubMed

Weber E. M. M., Sicoli G., Vezin H., Frébourg G., Abergel D., Bodenhausen G., Kurzbach D., Sample ripening through nanophase separation influences the performance of dynamic nuclear polarization. Angew. Chem. Int. Ed. 57, 5171–5175 (2018). PubMed

Baudin M., Vuichoud B., Bornet A., Milani J., Bodenhausen G., Jannin S., A cryogen-consumption-free system for dynamic nuclear polarization at 9.4 T. J. Magn. Reson. 294, 115–121 (2018). PubMed

Ying L., Benjamin W. J., Chad R. M., Selective refocusing pulses in magic-angle spinning NMR: Characterization and applications to multi-dimensional protein spectroscopy. J. Magn. Reson. 179, 206–216 (2006). PubMed

Shaka A. J., Barker P. B., Freeman R., Computer-optimized decoupling scheme for wideband applications and low-level operation. J. Magn. Reson. 64, 547–552 (1985).

Kouril K., Gramberg M., Jurkutat M., Kourilová H., Meier B., A cryogen-free, semi-automated apparatus for bullet-dynamic nuclear polarization with improved resolution. J. Magn. Reson. 2, 815–825 (2021). PubMed PMC

T. D. Goddard, D. G. Kneller, SPARKY 3 (University of California, San Francisco, USA) (2000).

Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A., Nmrpipe—A multidimensional spectral processing system based on unix pipes. J. Biomol. NMR 6, 277–293 (1995). PubMed

Krieger E., Vriend G., YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics 30, 2981–2982 (2014). PubMed PMC

Krieger E., Koraimann G., Vriend G., Increasing the precision of comparative models with YASARA NOVA-a self-parameterizing force field. Proteins 47, 393–402 (2002). PubMed

Doshi U., Hamelberg D., Reoptimization of the AMBER force field parameters for peptide bond (Omega) torsions using accelerated molecular dynamics. J. Phys. Chem. B 113, 16590–16595 (2009). PubMed

Essmann U., Perera L., Berkowitz M. L., Darden T., Lee H., Pedersen L. G., A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

Find record

Citation metrics

Loading data ...

    Archiving options