Parallel G-triplexes and G-hairpins as potential transitory ensembles in the folding of parallel-stranded DNA G-Quadruplexes

. 2019 Aug 22 ; 47 (14) : 7276-7293.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31318975

Guanine quadruplexes (G4s) are non-canonical nucleic acids structures common in important genomic regions. Parallel-stranded G4 folds are the most abundant, but their folding mechanism is not fully understood. Recent research highlighted that G4 DNA molecules fold via kinetic partitioning mechanism dominated by competition amongst diverse long-living G4 folds. The role of other intermediate species such as parallel G-triplexes and G-hairpins in the folding process has been a matter of debate. Here, we use standard and enhanced-sampling molecular dynamics simulations (total length of ∼0.9 ms) to study these potential folding intermediates. We suggest that parallel G-triplex per se is rather an unstable species that is in local equilibrium with a broad ensemble of triplex-like structures. The equilibrium is shifted to well-structured G-triplex by stacked aromatic ligand and to a lesser extent by flanking duplexes or nucleotides. Next, we study propeller loop formation in GGGAGGGAGGG, GGGAGGG and GGGTTAGGG sequences. We identify multiple folding pathways from different unfolded and misfolded structures leading towards an ensemble of intermediates called cross-like structures (cross-hairpins), thus providing atomistic level of description of the single-molecule folding events. In summary, the parallel G-triplex is a possible, but not mandatory short-living (transitory) intermediate in the folding of parallel-stranded G4.

Zobrazit více v PubMed

Chambers V.S., Marsico G., Boutell J.M., Di Antonio M., Smith G.P., Balasubramanian S.. High-throughput sequencing of DNA G-Quadruplex structures in the human genome. Nat. Biotech. 2015; 33:877–881. PubMed

Huppert J.L., Balasubramanian S.. G-Quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007; 35:406–413. PubMed PMC

Huppert J.L. Structure, location and interactions of G-Quadruplexes. FEBS J. 2010; 277:3452–3458. PubMed

Lipps H.J., Rhodes D.. G-Quadruplex Structures: In vivo evidence and function. Trends Cell Biol. 2009; 19:414–422. PubMed

Mendez-Bermudez A., Hills M., Pickett H.A., Phan A.T., Mergny J.-L., Riou J.-F., Royle N.J.. Human telomeres that contain (CTAGGG)(n) repeats show replication dependent instability in somatic cells and the male germline. Nucleic Acids Res. 2009; 37:6225–6238. PubMed PMC

Juranek S.A., Paeschke K.. Cell cycle regulation of G-Quadruplex DNA structures at telomeres. Curr. Pharm. Des. 2012; 18:1867–1872. PubMed

Rizzo A., Salvati E., Porru M., D’Angelo C., Stevens M.F., D’Incalci M., Leonetti C., Gilson E., Zupi G., Biroccio A.. Stabilization of quadruplex DNA perturbs telomere replication leading to the activation of an ATR-dependent ATM signaling pathway. Nucleic Acids Res. 2009; 37:5353–5364. PubMed PMC

Postberg J., Tsytlonok M., Sparvoli D., Rhodes D., Lipps H.J.. A Telomerase-associated RecQ Protein-like helicase resolves telomeric G-quadruplex structures during replication. Gene. 2012; 497:147–154. PubMed PMC

Rice C., Skordalakes E.. Structure and function of the telomeric CST complex. Comput. Struct. Biotechnol. J. 2016; 14:161–167. PubMed PMC

Hoffmann R.F., Moshkin Y.M., Mouton S., Grzeschik N.A., Kalicharan R.D., Kuipers J., Wolters A.H.G., Nishida K., Romashchenko A.V., Postberg J. et al. .. Guanine quadruplex structures localize to heterochromatin. Nucleic Acids Res. 2016; 44:152–163. PubMed PMC

Dai J., Chen D., Jones R.A., Hurley L.H., Yang D.. NMR solution structure of the Major G-quadruplex structure formed in the human BCL2 promoter region. Nucleic Acids Res. 2006; 34:5133–5144. PubMed PMC

Agrawal P., Hatzakis E., Guo K., Carver M., Yang D.. Solution structure of the Major G-quadruplex formed in the human VEGF promoter in K+: Insights into loop interactions of the parallel G-quadruplexes. Nucleic Acids Res. 2013; 41:10584–10592. PubMed PMC

Fernando H., Reszka A.P., Huppert J., Ladame S., Rankin S., Venkitaraman A.R., Neidle S., Balasubramanian S.. A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene. Biochemistry. 2006; 45:7854–7860. PubMed PMC

Greco M.L., Kotar A., Rigo R., Cristofari C., Plavec J., Sissi C.. Coexistence of two main folded G-Quadruplexes within a single G-Rich domain in the EGFR promoter. Nucleic Acids Res. 2017; 45:10132–10142. PubMed PMC

Simonsson T., Pecinka P., Kubista M.. DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res. 1998; 26:1167–1172. PubMed PMC

Siddiqui-Jain A., Grand C.L., Bearss D.J., Hurley L.H.. Direct evidence for a G-Quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. U.S.A. 2002; 99:11593–11598. PubMed PMC

Grand C.L., Bearss D.J., Von Hoff D.D., Hurley L.H.. Quadruplex formation in the c-MYC promoter inhibits protein binding and correlates with in vivo promoter activity. Eur. J. Cancer. 2002; 38:S106–S107.

Wei D., Parkinson G.N., Reszka A.P., Neidle S.. Crystal structure of a c-kit promoter quadruplex reveals the structural role of metal ions and water molecules in maintaining loop conformation. Nucleic Acids Res. 2012; 40:4691–4700. PubMed PMC

Cogoi S., Xodo L.E.. G-Quadruplex formation within the promoter of the KRAS Proto-Oncogene and its effect on transcription. Nucleic Acids Res. 2006; 34:2536–2549. PubMed PMC

Dexheimer T.S., Sun D., Hurley L.H.. Deconvoluting the structural and Drug-Recognition complexity of the G-Quadruplex-Forming region upstream of the bcl-2 P1 promoter. J. Am. Chem. Soc. 2006; 128:5404–5415. PubMed PMC

Sun D., Guo K., Rusche J.J., Hurley L.H.. Facilitation of a structural transition in the Polypurine/Polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-Quadruplex-Interactive agents. Nucleic Acids Res. 2005; 33:6070–6080. PubMed PMC

Huppert J.L. Four-stranded nucleic acids: structure, function and targeting of G-Quadruplexes. Chem. Soc. Rev. 2008; 37:1375–1384. PubMed

Monchaud D., Teulade-Fichou M.-P.. A Hitchhiker’s guide to G-Quadruplex ligands. Org. Biomol. Chem. 2008; 6:627–636. PubMed

Balasubramanian S., Neidle S.. G-quadruplex nucleic acids as therapeutic targets. Curr. Opin. Chem. Biol. 2009; 13:345–353. PubMed PMC

Balasubramanian S., Hurley L.H., Neidle S.. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy. Nat. Rev. Drug Discover. 2011; 10:261–275. PubMed PMC

Zhang S., Wu Y., Zhang W.. G-Quadruplex structures and their interaction diversity with ligands. ChemMedChem. 2014; 9:899–911. PubMed

Boncina M., Lah J., Prislan I., Vesnaver G.. Energetic basis of human telomeric DNA folding into G-quadruplex structures. J. Am. Chem. Soc. 2012; 134:9657–9663. PubMed

Koirala D., Mashimo T., Sannohe Y., Yu Z.B., Mao H.B., Sugiyama H.. Intramolecular folding in three tandem guanine repeats of human telomeric DNA. Chem. Commun. 2012; 48:2006–2008. PubMed

Gray R.D., Buscaglia R., Chaires J.B.. Populated intermediates in the thermal unfolding of the human telomeric quadruplex. J. Am. Chem. Soc. 2012; 134:16834–16844. PubMed PMC

Buscaglia R., Gray R.D., Chaires J.B.. Thermodynamic characterization of human telomere quadruplex unfolding. Biopolymers. 2013; 99:1006–1018. PubMed PMC

Koirala D., Ghimire C., Bohrer C., Sannohe Y., Sugiyama H., Mao H.B.. Long-Loop G-Quadruplexes are misfolded population minorities with fast transition kinetics in human telomeric sequences. J. Am. Chem. Soc. 2013; 135:2235–2241. PubMed

Jiang H.-X., Cui Y., Zhao T., Fu H.-W., Koirala D., Punnoose J.A., Kong D.-M., Mao H.. Divalent cations and molecular crowding buffers stabilize G-Triplex at physiologically relevant temperatures. Sci. Rep. 2015; 5:9255. PubMed PMC

Marchand A., Ferreira R., Tateishi-Karimata H., Miyoshi D., Sugimoto N., Gabelica V.. Sequence and solvent effects on telomeric DNA bimolecular G-Quadruplex folding kinetics. J. Phys. Chem. B. 2013; 117:12391–12401. PubMed

Long X., Parks J.W., Bagshaw C.R., Stone M.D.. Mechanical unfolding of human telomere G-quadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy. Nucleic Acids Res. 2013; 41:2746–2755. PubMed PMC

Li W., Hou X.-M., Wang P.-Y., Xi X.-G., Li M.. Direct measurement of sequential folding pathway and energy landscape of human telomeric G-quadruplex structures. J. Am. Chem. Soc. 2013; 135:6423–6426. PubMed

You H.J., Zeng X.J., Xu Y., Lim C.J., Efremov A.K., Phan A.T., Yan J.. Dynamics and stability of polymorphic human telomeric G-Quadruplex under tension. Nucleic Acids Res. 2014; 42:8789–8795. PubMed PMC

Li Y., Liu C., Feng X.J., Xu Y.Z., Liu B.F.. Ultrafast microfluidic mixer for tracking the early folding kinetics of human telomere G-Quadruplex. Anal. Chem. 2014; 86:4333–4339. PubMed

Gray R.D., Trent J.O., Chaires J.B.. Folding and unfolding pathways of the human telomeric G-Quadruplex. J. Mol. Biol. 2014; 426:1629–1650. PubMed PMC

Bessi I., Jonker H.R., Richter C., Schwalbe H.. Involvement of Long-Lived intermediate states in the complex folding pathway of the human telomeric G-Quadruplex. Angew. Chem. Int. Ed. 2015; 54:8444–8448. PubMed

Noer S.L., Preus S., Gudnason D., Aznauryan M., Mergny J.-L., Birkedal V.. Folding dynamics and conformational heterogeneity of human telomeric G-quadruplex structures in Na+ solutions by single molecule FRET microscopy. Nucleic Acids Res. 2016; 44:464–471. PubMed PMC

Aznauryan M., Søndergaard S., Noer S.L., Schiøtt B., Birkedal V.. A direct view of the complex Multi-Pathway folding of telomeric G-Quadruplexes. Nucleic Acids Res. 2016; 44:11024–11032. PubMed PMC

Marchand A., Gabelica V.. Folding and misfolding pathways of G-Quadruplex DNA. Nucleic Acids Res. 2016; 44:10999–11012. PubMed PMC

Boncina M., Vesnaver G., Chaires J.B., Lah J.. Unraveling the thermodynamics of the folding and interconversion of human telomere G-Quadruplexes. Angew. Chem. Int. Ed. 2016; 55:10340–10344. PubMed PMC

Rigo R., Dean W.L., Gray R.D., Chaires J.B., Sissi C.. Conformational profiling of a G-Rich sequence within the c-KIT promoter. Nucleic Acids Res. 2017; 45:13056–13067. PubMed PMC

Hou X.-M., Fu Y.-B., Wu W.-Q., Wang L., Teng F.-Y., Xie P., Wang P.-Y., Xi X.-G.. Involvement of G-Triplex and G-Hairpin in the Multi-Pathway folding of human telomeric G-Quadruplex. Nucleic Acids Res. 2017; 45:11401–11412. PubMed PMC

You J., Li H., Lu X.-M., Li W., Wang P.-Y., Dou S.-X., Xi X.-G.. Effects of monovalent cations on folding kinetics of G-Quadruplexes. Biosci. Rep. 2017; 37:BSR20170771. PubMed PMC

Gray R.D., Trent J.O., Arumugam S., Chaires J.B.. Folding landscape of a parallel G-Quadruplex. J. Phys. Chem. Lett. 2019; 10:1146–1151. PubMed PMC

Mashimo T., Yagi H., Sannohe Y., Rajendran A., Sugiyama H.. Folding pathways of human telomeric Type-1 and Type-2 G-quadruplex structures. J. Am. Chem. Soc. 2010; 132:14910–14918. PubMed

Stadlbauer P., Krepl M., Cheatham T.E. 3rd, Koca J., Sponer J.. Structural dynamics of possible Late-Stage intermediates in folding of quadruplex DNA studied by molecular simulations. Nucleic Acids Res. 2013; 41:7128–7143. PubMed PMC

Bian Y., Tan C., Wang J., Sheng Y., Zhang J., Wang W.. Atomistic picture for the folding pathway of a Hybrid-1 type human telomeric DNA G-quadruplex. PLoS Comput. Biol. 2014; 10:e1003562. PubMed PMC

Stadlbauer P., Kuhrova P., Banas P., Koca J., Bussi G., Trantirek L., Otyepka M., Sponer J.. Hairpins participating in folding of human telomeric sequence quadruplexes studied by standard and T-REMD simulations. Nucleic Acids Res. 2015; 43:9626–9644. PubMed PMC

Islam B., Stadlbauer P., Krepl M., Koca J., Neidle S., Haider S., Sponer J.. Extended molecular dynamics of a c-kit promoter quadruplex. Nucleic Acids Res. 2015; 43:8673–8693. PubMed PMC

Luo D., Mu Y.. Computational insights into the stability and folding pathways of human telomeric DNA G-Quadruplexes. J. Phys. Chem. B. 2016; 120:4912–4926. PubMed

Stadlbauer P., Mazzanti L., Cragnolini T., Wales D.J., Derreumaux P., Pasquali S., Sponer J.. Coarse-Grained simulations complemented by atomistic molecular dynamics provide new insights into folding and unfolding of human telomeric G-Quadruplexes. J. Chem. Theory Comput. 2016; 12:6077–6097. PubMed

Bian Y., Ren W., Song F., Yu J., Wang J.. Exploration of the folding dynamics of human telomeric G-Quadruplex with a hybrid atomistic structure-based model. J. Chem. Phys. 2018; 148:204107. PubMed

Havrila M., Stadlbauer P., Kuhrova P., Banas P., Mergny J.-L., Otyepka M., Sponer J.. Structural dynamics of propeller Loop: Towards folding of RNA G-Quadruplex. Nucleic Acids Res. 2018; 46:8754–8771. PubMed PMC

Li H., Cao E.H., Gisler T.. Force-Induced unfolding of human telomeric G-quadruplex: A steered molecular dynamics simulation study. Biochem. Biophys. Res. Commun. 2009; 379:70–75. PubMed

Sponer J., Bussi G., Stadlbauer P., Kuhrova P., Banas P., Islam B., Haider S., Neidle S., Otyepka M.. Folding of guanine quadruplex Molecules–Funnel-Like mechanism or kinetic partitioning? An overview from MD simulation studies. Biochim. Biophys. Acta Gen. Subj. 2017; 1861:1246–1263. PubMed

Thirumalai D., Klimov D.K., Woodson S.A.. Kinetic partitioning mechanism as a unifying theme in the folding of biomolecules. Theor. Chem. Acc. 1997; 96:14–22.

Thirumalai D., O’Brien E.P., Morrison G., Hyeon C.. Theoretical perspectives on protein folding. Annu. Rev. Biophys. 2010; 39:159–183. PubMed

Long X., Stone M.D.. Kinetic partitioning modulates human telomere DNA G-Quadruplex structural polymorphism. PLoS One. 2013; 8:e83420. PubMed PMC

Wang Y., Patel D.J.. Solution structure of the human telomeric repeat d[AG(3)(T(2)AG(3))3] G-tetraplex. Structure. 1993; 1:263–282. PubMed

Parkinson G.N., Lee M.P.H., Neidle S.. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature. 2002; 417:876–880. PubMed

Ambrus A., Chen D., Dai J.X., Bialis T., Jones R.A., Yang D.Z.. Human telomeric sequence forms a Hybrid-Type intramolecular G-Quadruplex structure with mixed Parallel/Antiparallel strands in potassium solution. Nucleic Acids Res. 2006; 34:2723–2735. PubMed PMC

Dai J., Punchihewa C., Ambrus A., Chen D., Jones R.A., Yang D.. Structure of the intramolecular human telomeric G-quadruplex in potassium Solution: A novel adenine triple formation. Nucleic Acids Res. 2007; 35:2440–2450. PubMed PMC

Dai J., Carver M., Punchihewa C., Jones R.A., Yang D.. Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ Solution: Insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res. 2007; 35:4927–4940. PubMed PMC

Zhang Z.J., Dai J.X., Veliath E., Jones R.A., Yang D.Z.. Structure of a Two-G-Tetrad intramolecular G-Quadruplex formed by a variant human telomeric sequence in K+ Solution: Insights into the interconversion of human telomeric G-Quadruplex structures. Nucleic Acids Res. 2010; 38:1009–1021. PubMed PMC

Lim K.W., Ng V.C.M., Martin-Pintado N., Heddi B., Phan A.T.. Structure of the human telomere in Na+ Solution: An antiparallel (2+2) G-quadruplex scaffold reveals additional diversity. Nucleic Acids Res. 2013; 41:10556–10562. PubMed PMC

Dailey M.M., Miller M.C., Bates P.J., Lane A.N., Trent J.O.. Resolution and characterization of the structural polymorphism of a single Quadruplex-Forming sequence. Nucleic Acids Res. 2010; 38:4877–4888. PubMed PMC

Brcic J., Plavec J.. ALS and FTD linked GGGGCC-Repeat containing DNA oligonucleotide folds into two distinct G-Quadruplexes. Biochim. Biophys. Acta Gen. Subj. 2017; 1861:1237–1245. PubMed

Palacky J., Vorlickova M., Kejnovska I., Mojzes P.. Polymorphism of human telomeric quadruplex structure controlled by DNA Concentration: A raman study. Nucleic Acids Res. 2013; 41:1005–1016. PubMed PMC

Renciuk D., Kejnovska I., Skolakova P., Bednarova K., Motlova J., Vorlickova M.. Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions. Nucleic Acids Res. 2009; 37:6625–6634. PubMed PMC

Karsisiotis A.I., O’Kane C., da Silva M.W.. DNA quadruplex folding Formalism - A tutorial on quadruplex topologies. Methods. 2013; 64:28–35. PubMed

Gabelica V. A Pilgrim’s guide to G-quadruplex nucleic acid folding. Biochimie. 2014; 105C:1–3. PubMed

Xue Y., Liu J.-Q., Zheng K.-W., Kan Z.-Y., Hao Y.-H., Tan Z.. Kinetic and thermodynamic control of G-Quadruplex folding. Angew. Chem. Int. Ed. 2011; 50:8046–8050. PubMed

Rajendran A., Endo M., Hidaka K., Teulade-Fichou M.-P., Mergny J.-L., Sugiyama H.. Small molecule binding to a G-hairpin and a G-triplex: A new insight into anticancer drug design targeting G-rich regions. Chem. Commun. 2015; 51:9181–9184. PubMed

Bryngelson J.D., Onuchic J.N., Socci N.D., Wolynes P.G.. Funnels, pathways, and the energy landscape of Protein-folding - A synthesis. Proteins: Struct. Funct. Genet. 1995; 21:167–195. PubMed

Dill K.A., Chan H.S.. From levinthal to pathways to funnels. Nat. Struct. Mol. Biol. 1997; 4:10–19. PubMed

Neidle S. The structures of quadruplex nucleic acids and their drug complexes. Curr. Opin. Struct. Biol. 2009; 19:239–250. PubMed

Neidle S. Human telomeric G-quadruplex: The current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J. 2010; 277:1118–1125. PubMed

Zhang A.Y.Q., Balasubramanian S.. The kinetics and folding pathways of intramolecular G-Quadruplex nucleic acids. J. Am. Chem. Soc. 2012; 134:19297–19308. PubMed

Mitra J., Makurath M.A., Ngo T.T.M., Troitskaia A., Chemla Y.R., Ha T.. Extreme mechanical diversity of human telomeric DNA lby Fluorescence-Force spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2019; 116:8350–8359. PubMed PMC

You H., Zeng X., Xu Y., Lim C.J., Efremov A.K., Phan A.T., Yan J.. Dynamics and stability of polymorphic human telomeric G-Quadruplex under tension. Nucleic Acids Res. 2014; 42:8789–8795. PubMed PMC

Rajendran A., Endo M., Hidaka K., Sugiyama H.. Direct and Single-Molecule visualization of the Solution-State structures of G-Hairpin and G-Triplex intermediates. Angew. Chem. 2014; 126:4191–4196. PubMed

Okamoto K., Sannohe Y., Mashimo T., Sugiyama H., Terazima M.. G-Quadruplex structures of human telomere DNA examined by single molecule FRET and BrG-Substitution. Bioorg. Med. Chem. 2008; 16:6873–6879. PubMed

Stadlbauer P., Trantirek L., Cheatham T.E. 3rd, Koca J., Sponer J.. Triplex intermediates in folding of human telomeric quadruplexes probed by Microsecond-scale molecular dynamics simulations. Biochimie. 2014; 105:22–35. PubMed

Trajkovski M., da Silva M.W., Plavec J.. Unique structural features of interconverting monomeric and dimeric G-quadruplexes adopted by a sequence from the intron of the N-myc gene. J. Am. Chem. Soc. 2012; 134:4132–4141. PubMed

Padrta P., Stefl R., Kralik L., Zidek L., Sklenar V.. Refinement of d(GCGAAGC) hairpin structure using One- and Two-Bond residual dipolar couplings. J. Biomol. NMR. 2002; 24:1–14. PubMed

Luu K.N., Phan A.T., Kuryavyi V., Lacroix L., Patel D.J.. Structure of the human telomere in K+ Solution: An intramolecular (3+1) G-Quadruplex scaffold. J. Am. Chem. Soc. 2006; 128:9963–9970. PubMed PMC

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L.. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983; 79:926–935.

Berendsen H.J.C., Grigera J.R., Straatsma T.P.. The missing term in effective pair potentials. J. Phys. Chem. 1987; 91:6269–6271.

Joung I.S., Cheatham T.E.. Determination of Alkali and Halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008; 112:9020–9041. PubMed PMC

Case D.A., Betz R.M., Botello-Smith W., Cerutti D.S., Cheatham T.E. III, Darden T.A., Duke R.E., Giese T.J., Gohlke H., Goetz A.W. et al. .. Amber 16. 2016; San Francisco: University of California.

Perez A., Marchan I., Svozil D., Sponer J., Cheatham T.E., Laughton C.A., Orozco M.. Refinenement of the AMBER force field for Nucleic Acids: Improving the description of Alpha/Gamma conformers. Biophys. J. 2007; 92:3817–3829. PubMed PMC

Krepl M., Zgarbova M., Stadlbauer P., Otyepka M., Banas P., Koca J., Cheatham T.E., Jurecka P., Sponer J.. Reference simulations of noncanonical Nucleic Acids with different chi variants of the AMBER force Field: Quadruplex DNA, quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012; 8:2506–2520. PubMed PMC

Zgarbova M., Luque F.J., Sponer J., Cheatham T.E., Otyepka M., Jurecka P.. Toward improved description of DNA Backbone: Revisiting epsilon and zeta torsion force field parameters. J. Chem. Theory Comput. 2013; 9:2339–2354. PubMed PMC

Zgarbova M., Sponer J., Otyepka M., Cheatham T.E., Galindo-Murillo R., Jurecka P.. Refinement of the Sugar–Phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA. J. Chem. Theory Comput. 2015; 11:5723–5736. PubMed

Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A.. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995; 117:5179–5197.

Galindo-Murillo R., Robertson J.C., Zgarbova M., Sponer J., Otyepka M., Jurecka P., Cheatham T.E.. Assessing the current state of AMBER force field modifications for DNA. J. Chem. Theory Comput. 2016; 12:4114–4127. PubMed PMC

Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A.. Development and testing of a general amber force field. J. Comput. Chem. 2004; 25:1157–1174. PubMed

Shahrokh K., Orendt A., Yost G.S., Cheatham T.E.. Quantum mechanically derived AMBER-Compatible heme parameters for various states of the cytochrome P450 catalytic cycle. J. Comput. Chem. 2012; 33:119–133. PubMed PMC

Darden T., York D., Pedersen L.. Particle mesh Ewald - An N.log(N) method for ewald sums in large systems. J. Chem. Phys. 1993; 98:10089–10092.

Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G.. A smooth particle mesh ewald method. J. Chem. Phys. 1995; 103:8577–8593.

Berendsen H.J.C., Postma J.P.M., Vangunsteren W.F., Dinola A., Haak J.R.. Molecular-Dynamics with coupling to an external bath. J. Chem. Phys. 1984; 81:3684–3690.

Hopkins C.W., Le Grand S., Walker R.C., Roitberg A.E.. Long-Time-Step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 2015; 11:1864–1874. PubMed

Ryckaert J.P., Ciccotti G., Berendsen H.J.C.. Numerical integration of cartesian equations of motion of a system with Constraints - Molecular dynamics of N-alkans. J. Comput. Phys. 1977; 23:327–341.

Miyamoto S., Kollman P.A.. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992; 13:952–962.

Kuhrova P., Best R.B., Bottaro S., Bussi G., Sponer J., Otyepka M., Banas P.. Computer folding of RNA Tetraloops: Identification of key force field deficiencies. J. Chem. Theory Comput. 2016; 12:4534–4548. PubMed PMC

Sponer J., Bussi G., Krepl M., Banas P., Bottaro S., Cunha R.A., Gil-Ley A., Pinamonti G., Poblete S., Jurecka P. et al. .. RNA structural dynamics as captured by molecular Simulations: A comprehensive overview. Chem. Rev. 2018; 118:4177–4338. PubMed PMC

Liu P., Kim B., Friesner R.A., Berne B.J.. Replica exchange with solute Tempering: A method for sampling biological systems in explicit water. Proc. Natl. Acad. Sci. U.S.A. 2005; 102:13749–13754. PubMed PMC

Wang L., Friesner R.A., Berne B.J.. Replica exchange with solute Scaling: A more efficient version of replica exchange with solute tempering (REST2). J. Phys. Chem. B. 2011; 115:9431–9438. PubMed PMC

Sugita Y., Okamoto Y.. Replica-Exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 1999; 314:141–151.

Case D.A., Babin V., Berryman J.T., Betz R.M., Cai Q., Cerutti D.S., Cheatham T.E. III, Darden T.A., Duke R.E., Gohlke H. et al. .. Amber 14. 2014; San Francisco: University of California.

Smith D.E., Dang L.X.. Computer simulations of NaCl association in polarizable water. J. Chem. Phys. 1994; 100:3757–3766.

Dang L.X., Kollman P.A.. Free energy of association of the K+18-crown-6 complex in Water - A new molecular dynamics study. J. Phys. Chem. 1995; 99:55–58.

Bottaro S., Di Palma F., Bussi G.. The role of nucleobase interactions in RNA structure and dynamics. Nucleic Acids Res. 2014; 42:13306–13314. PubMed PMC

Rodriguez A., Laio A.. Clustering by fast search and find of density peaks. Science. 2014; 344:1492–1496. PubMed

Kuhrova P., Mlynsky V., Zgarbova M., Krepl M., Bussi G., Best R.B., Otyepka M., Sponer J., Banáš P.. Improving the performance of the amber RNA force field by tuning the Hydrogen-Bonding interactions. J. Chem. Theory Comput. 2019; 15:3288–3305. PubMed PMC

Yang C., Kulkarni M., Lim M., Pak Y.. Insilico direct folding of Thrombin-Binding aptamer G-Quadruplex at All-Atom level. Nucleic Acids Res. 2017; 45:12648–12656. PubMed PMC

Limongelli V., De Tito S., Cerofolini L., Fragai M., Pagano B., Trotta R., Cosconati S., Marinelli L., Novellino E., Bertini I. et al. .. The G-Triplex DNA. Angew. Chem. Int. Ed. 2013; 52:2269–2273. PubMed

Cerofolini L., Amato J., Giachetti A., Limongelli V., Novellino E., Parrinello M., Fragai M., Randazzo A., Luchinat C.. G-Triplex structure and formation propensity. Nucleic Acids Res. 2014; 42:13393–13404. PubMed PMC

Lim K.W., Khong Z.J., Phan A.T.. Thermal stability of DNA Quadruplex–Duplex hybrids. Biochemistry. 2014; 53:247–257. PubMed

Largy E., Marchand A., Amrane S., Gabelica V., Mergny J.-L.. Quadruplex Turncoats: Cation-Dependent folding and stability of Quadruplex-DNA double switches. J. Am. Chem. Soc. 2016; 138:2780–2792. PubMed

Stefl R., Cheatham T.E., Spackova N., Fadrna E., Berger I., Koca J., Sponer J.. Formation pathways of a Guanine-Quadruplex DNA revealed by molecular dynamics and thermodynamic analysis of the substates. Biophys. J. 2003; 85:1787–1804. PubMed PMC

Bergues-Pupo A.E., Arias-Gonzalez J.R., Moron M.C., Fiasconaro A., Falo F.. Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes. Nucleic Acids Res. 2015; 43:7638–7647. PubMed PMC

Stadlbauer P., Mazzanti L., Cragnolini T., Wales D.J., Derreumaux P., Pasquali S., Sponer J.. Coarse-Grained simulations complemented by atomistic molecular dynamics provide new insights into folding of human telomeric G-Quadruplexes. J. Chem. Theory Comput. 2016; 12:6077–6097. PubMed

Yang C., Jang S., Pak Y.. Multiple stepwise pattern for potential of mean force in unfolding the thrombin binding aptamer in complex with Sr2+. J. Chem. Phys. 2011; 135:225104. PubMed

Cragnolini T., Chakraborty D., Sponer J., Derreumaux P., Pasquali S., Wales D.J.. Multifunctional energy landscape for a DNA G-Quadruplex: An evolved molecular switch. J. Chem. Phys. 2017; 147:152715. PubMed

Portella G., Orozco M.. Multiple routes to characterize the folding of a small DNA hairpin. Angew. Chem. Int. Ed. 2010; 49:7673–7676. PubMed

Islam B., Stadlbauer P., Gil-Ley A., Perez-Hernandez G., Haider S., Neidle S., Bussi G., Banas P., Otyepka M., Sponer J.. Exploring the dynamics of propeller loops in human telomeric DNA quadruplexes using atomistic simulations. J. Chem. Theory Comput. 2017; 13:2458–2480. PubMed PMC

Gkionis K., Kruse H., Platts J.A., Mladek A., Koca J., Sponer J.. Ion binding to quadruplex DNA Stems. Comparison of MM and QM descriptions reveals sizable polarization effects not included in contemporary simulations. J. Chem. Theory Comput. 2014; 10:1326–1340. PubMed

Havrila M., Stadlbauer P., Islam B., Otyepka M., Sponer J.. Effect of monovalent ion parameters on molecular dynamics simulations of G-Quadruplexes. J. Chem. Theory Comput. 2017; 13:3911–3926. PubMed

Salsbury A.M., Lemkul J.A.. Molecular dynamics simulations of the c-kit1 promoter G-Quadruplex: Importance of electronic polarization on stability and cooperative ion binding. J. Phys. Chem. B. 2019; 123:148–159. PubMed

Lu X.-M., Li H., You J., Li W., Wang P.-Y., Li M., Dou S.-X., Xi X.-G.. Folding dynamics of parallel and antiparallel G-Triplexes under the influence of proximal DNA. J. Phys. Chem. B. 2018; 122:9499–9506. PubMed

Gajarsky M., Zivkovic M.L., Stadlbauer P., Pagano B., Fiala R., Amato J., Tomaska L., Sponer J., Plavec J., Trantirek L.. Structure of a stable G-Hairpin. J. Am. Chem. Soc. 2017; 139:3591–3594. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace