RNA G-quadruplexes emerge from a compacted coil-like ensemble via multiple pathways
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
23-05639S
Czech Science Foundation
PubMed
40923766
PubMed Central
PMC12418384
DOI
10.1093/nar/gkaf872
PII: 8249853
Knihovny.cz E-zdroje
- MeSH
- G-kvadruplexy * MeSH
- guanin chemie MeSH
- konformace nukleové kyseliny MeSH
- RNA * chemie MeSH
- sbalování RNA MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- guanin MeSH
- RNA * MeSH
RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging. Despite their significance, the atomic-level folding mechanisms of rG4s remain poorly understood due to their complexity. We studied the folding of the r(GGGA)3GGG and r(GGGUUA)3GGG (TERRA) sequences into parallel-stranded rG4 using all-atom enhanced-sampling molecular dynamics simulations, applying well-tempered metadynamics coupled with solute tempering. The obtained folding pathways suggest that RNA initially adopts a compacted coil-like ensemble characterized by dynamic guanine stacking and pairing. The three-quartet rG4 gradually forms from this compacted coil ensemble via diverse routes involving strand rearrangements and guanine incorporations. While the folding mechanism is multipathway, various two-quartet rG4 structures appear to be a common transitory ensemble along most routes. Thus, the process seems more complex than previously predicted, as G-hairpins or G-triplexes do not act as distinct intermediates, even though some are occasionally sampled. We also discuss the challenges of applying enhanced sampling methodologies to such a multidimensional free-energy surface and address the force-field limitations.
Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 Brno 61200 Czech Republic
National Research Council of Italy via Bonomea 265 34136 Trieste Italy
Zobrazit více v PubMed
Varshney D, Spiegel J, Zyner K et al. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol. 2020; 21:459–74. 10.1038/s41580-020-0236-x. PubMed DOI PMC
Rhodes D, Lipps HJ G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015; 43:8627–37. 10.1093/nar/gkv862. PubMed DOI PMC
Chen X-C, Chen S-B, Dai J et al. Tracking the dynamic folding and unfolding of RNA G-quadruplexes in live cells. Angew Chem Int Ed. 2018; 57:4702–6. 10.1002/anie.201801999. PubMed DOI
Biffi G, Di Antonio M, Tannahill D et al. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nature Chem. 2014; 6:75–80. 10.1038/nchem.1805. PubMed DOI PMC
Wanrooij PH, Uhler JP, Simonsson T et al. G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation. Proc Natl Acad Sci USA. 2010; 107:16072–7. 10.1073/pnas.1006026107. PubMed DOI PMC
Zhang J, Harvey SE, Cheng C A high-throughput screen identifies small molecule modulators of alternative splicing by targeting RNA G-quadruplexes. Nucleic Acids Res. 2019; 47:3667–79. 10.1093/nar/gkz036. PubMed DOI PMC
Kharel P, Becker G, Tsvetkov V et al. Properties and biological impact of RNA G-quadruplexes: from order to turmoil and back. Nucleic Acids Res. 2020; 48:12534–55. 10.1093/nar/gkaa1126. PubMed DOI PMC
Dumas L, Herviou P, Dassi E et al. G-quadruplexes in RNA biology: recent advances and future directions. Trends Biochem Sci. 2021; 46:270–83. 10.1016/j.tibs.2020.11.001. PubMed DOI
Kwok CK, Marsico G, Sahakyan AB et al. rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat Methods. 2016; 13:841–4. 10.1038/nmeth.3965. PubMed DOI
Azzalin CM, Reichenbach P, Khoriauli L et al. Telomeric repeat–containing RNA and RNA surveillance factors at mammalian chromosome ends. Science. 2007; 318:798–801. 10.1126/science.1147182. PubMed DOI
Azzalin CM, Lingner J Telomere functions grounding on TERRA firma. Trends Cell Biol. 2015; 25:29–36. 10.1016/j.tcb.2014.08.007. PubMed DOI
Agarwala P, Pandey S, Maiti S The tale of RNA G-quadruplex. Org Biomol Chem. 2015; 13:5570–85. 10.1039/C4OB02681K. PubMed DOI
Biffi G, Tannahill D, Balasubramanian S An intramolecular G-quadruplex structure is required for binding of telomeric repeat-containing RNA to the telomeric protein TRF2. J Am Chem Soc. 2012; 134:11974–6. 10.1021/ja305734x. PubMed DOI PMC
Stefan L, Monchaud D Applications of guanine quartets in nanotechnology and chemical biology. Nat Rev Chem. 2019; 3:650–68. 10.1038/s41570-019-0132-0. DOI
Mergny J-L, Sen D DNA quadruple helices in nanotechnology. Chem Rev. 2019; 119:6290–325. 10.1021/acs.chemrev.8b00629. PubMed DOI
Winnerdy FR, Phan AT. Neidle S Annual Reports in Medicinal Chemistry. 2020; 54:Cambridge, MA: Academic Press; 45–73.
Karsisiotis AI, O’Kane C, da Silva MW DNA quadruplex folding formalism – a tutorial on quadruplex topologies. Methods. 2013; 64:28–35. 10.1016/j.ymeth.2013.06.004. PubMed DOI
da Silva MW Geometric formalism for DNA quadruplex folding. Chem Eur J. 2007; 13:9738–45. 10.1002/chem.200701255. PubMed DOI
Zhang DH, Fujimoto T, Saxena S et al. Monomorphic RNA G-quadruplex and polymorphic DNA G-quadruplex structures responding to cellular environmental factors. Biochemistry. 2010; 49:4554–63. 10.1021/bi1002822. PubMed DOI
Xue Y, Liu J-Q, Zheng K-W et al. Kinetic and thermodynamic control of G-quadruplex folding. Angew Chem Int Ed. 2011; 50:8046–50. 10.1002/anie.201101759. PubMed DOI
Long X, Stone MD Kinetic partitioning modulates human telomere DNA G-quadruplex structural polymorphism. PLoS One. 2013; 8:e83420. 10.1371/journal.pone.0083420. PubMed DOI PMC
Grün JT, Schwalbe H Folding dynamics of polymorphic G-quadruplex structures. Biopolymers. 2022; 113:e23477. 10.1002/bip.23477. PubMed DOI
Zhang AYQ, Balasubramanian S The kinetics and folding pathways of intramolecular G-quadruplex nucleic acids. J Am Chem Soc. 2012; 134:19297–308. 10.1021/ja309851t. PubMed DOI
Gray RD, Trent JO, Chaires JB Folding and unfolding pathways of the human telomeric G-quadruplex. J Mol Biol. 2014; 426:1629–50. 10.1016/j.jmb.2014.01.009. PubMed DOI PMC
Gray RD, Trent JO, Arumugam S et al. Folding landscape of a parallel G-quadruplex. J Phys Chem Lett. 2019; 10:1146–51. 10.1021/acs.jpclett.9b00227. PubMed DOI PMC
Thirumalai D, Klimov DK, Woodson SA Kinetic partitioning mechanism as a unifying theme in the folding of biomolecules. Theor Chem Acc. 1997; 96:14–22. 10.1007/s002140050198. DOI
Sponer J, Bussi G, Stadlbauer P et al. Folding of guanine quadruplex molecules–funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies. Biochim Biophys Gen Sub. 2017; 1861:1246–63. 10.1016/j.bbagen.2016.12.008. PubMed DOI
Bessi I, Jonker HR, Richter C et al. Involvement of long-lived intermediate states in the complex folding pathway of the human telomeric G-quadruplex. Angew Chem Int Ed. 2015; 54:8444–8. 10.1002/anie.201502286. PubMed DOI
Marchand A, Gabelica V Folding and misfolding pathways of G-quadruplex DNA. Nucleic Acids Res. 2016; 44:10999–1012. 10.1093/nar/gkw970. PubMed DOI PMC
Noer SL, Preus S, Gudnason D et al. Folding dynamics and conformational heterogeneity of human telomeric G-quadruplex structures in Na+ solutions by single molecule FRET microscopy. Nucleic Acids Res. 2016; 44:464–71. 10.1093/nar/gkv1320. PubMed DOI PMC
Aznauryan M, Søndergaard S, Noer SL et al. A direct view of the complex multi-pathway folding of telomeric G-quadruplexes. Nucleic Acids Res. 2016; 44:11024–32. 10.1093/nar/gkw1010. PubMed DOI PMC
Havrila M, Stadlbauer P, Kuhrova P et al. Structural dynamics of propeller loop: towards folding of RNA G-quadruplex. Nucleic Acids Res. 2018; 46:8754–71. 10.1093/nar/gky712. PubMed DOI PMC
Müller D, Bessi I, Richter C et al. The folding landscapes of human telomeric RNA and DNA G-quadruplexes are markedly different. Angew Chem Int Ed. 2021; 60:10895–901. 10.1002/anie.202100280. PubMed DOI PMC
Long X, Parks JW, Bagshaw CR et al. Mechanical unfolding of human telomere G-quadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy. Nucleic Acids Res. 2013; 41:2746–55. 10.1093/nar/gks1341. PubMed DOI PMC
Mitra J, Makurath MA, Ngo TTM et al. Extreme mechanical diversity of human telomeric DNA revealed by fluorescence-force spectroscopy. Proc Natl Acad Sci USA. 2019; 116:8350–9. 10.1073/pnas.1815162116. PubMed DOI PMC
Mitra J, Ha T Streamlining effects of extra telomeric repeat on telomeric DNA folding revealed by fluorescence-force spectroscopy. Nucleic Acids Res. 2019; 47:11044–56. 10.1093/nar/gkz906. PubMed DOI PMC
Okamoto K, Sannohe Y, Mashimo T et al. G-quadruplex structures of human telomere DNA examined by single molecule FRET and BrG-substitution. Bioorg Med Chem. 2008; 16:6873–9. 10.1016/j.bmc.2008.05.053. PubMed DOI
Koirala D, Mashimo T, Sannohe Y et al. Intramolecular folding in three tandem guanine repeats of human telomeric DNA. Chem Commun. 2012; 48:2006–8. 10.1039/c2cc16752b. PubMed DOI
Dhakal S, Cui Y, Koirala D et al. Structural and mechanical properties of individual human telomeric G-quadruplexes in molecularly crowded solutions. Nucleic Acids Res. 2013; 41:3915–23. 10.1093/nar/gkt038. PubMed DOI PMC
Hou X-M, Fu Y-B, Wu W-Q et al. Involvement of G-triplex and G-hairpin in the multi-pathway folding of human telomeric G-quadruplex. Nucleic Acids Res. 2017; 45:11401–12. 10.1093/nar/gkx766. PubMed DOI PMC
Li W, Hou X-M, Wang P-Y et al. Direct measurement of sequential folding pathway and energy landscape of human telomeric G-quadruplex structures. J Am Chem Soc. 2013; 135:6423–6. 10.1021/ja4019176. PubMed DOI
Jiang H-X, Cui Y, Zhao T et al. Divalent cations and molecular crowding buffers stabilize G-triplex at physiologically relevant temperatures. Sci Rep. 2015; 5:9255. 10.1038/srep09255. PubMed DOI PMC
Lu X-M, Li H, You J et al. Folding dynamics of parallel and antiparallel G-triplexes under the influence of proximal DNA. J Phys Chem B. 2018; 122:9499–506. 10.1021/acs.jpcb.8b08110. PubMed DOI
Kejnovská I, Stadlbauer P, Trantírek L et al. G-quadruplex formation by DNA sequences deficient in guanines: two tetrad parallel quadruplexes do not fold intramolecularly. Chem Eur J. 2021; 27:12115–25. 10.1002/chem.202100895. PubMed DOI
Palacky J, Vorlickova M, Kejnovska I et al. Polymorphism of human telomeric quadruplex structure controlled by DNA concentration: a Raman study. Nucleic Acids Res. 2013; 41:1005–16. 10.1093/nar/gks1135. PubMed DOI PMC
Gruen JT, Hennecker C, Kloetzner D-P et al. Conformational dynamics of strand register shifts in DNA G-quadruplexes. J Am Chem Soc. 2020; 142:264–73. 10.1021/jacs.9b10367. PubMed DOI
Grün JT, Blümler A, Burkhart I et al. Unraveling the kinetics of spare-tire DNA G-quadruplex folding. J Am Chem Soc. 2021; 143:6185–93. 10.1021/jacs.1c01089. PubMed DOI
Largy E, Marchand A, Amrane S et al. Quadruplex turncoats: cation-dependent folding and stability of quadruplex-DNA double switches. J Am Chem Soc. 2016; 138:2780–92. 10.1021/jacs.5b13130. PubMed DOI
Marchand A, Ferreira R, Tateishi-Karimata H et al. Sequence and solvent effects on telomeric DNA bimolecular G-quadruplex folding kinetics. J Phys Chem B. 2013; 117:12391–401. 10.1021/jp406857s. PubMed DOI
Burkhart I, Wirmer-Bartoschek J, Plavec J et al. Exploring the modulation of the complex folding landscape of human telomeric DNA by a low molecular weight ligand. Chem Eur J. 2025; 31:e202501377. 10.1002/chem.202501377. PubMed DOI PMC
Monsen RC, Sabo TM, Gray R et al. Early events in G-quadruplex folding captured by time-resolved small-angle x-ray scattering. Nucleic Acids Res. 2025; 53:gkaf043. 10.1093/nar/gkaf043. PubMed DOI PMC
Stadlbauer P, Krepl M, Cheatham TE et al. Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations. Nucleic Acids Res. 2013; 41:7128–43. 10.1093/nar/gkt412. PubMed DOI PMC
Stefl R, Cheatham TE, Spackova N et al. Formation pathways of a guanine-quadruplex DNA revealed by molecular dynamics and thermodynamic analysis of the substates. Biophys J. 2003; 85:1787–804. 10.1016/S0006-3495(03)74608-6. PubMed DOI PMC
Limongelli V, De Tito S, Cerofolini L et al. The G-triplex DNA. Angew Chem Int Ed. 2013; 52:2269–73. 10.1002/anie.201206522. PubMed DOI
Bian Y, Tan C, Wang J et al. Atomistic picture for the folding pathway of a hybrid-1 type human telomeric DNA G-quadruplex. PLoS Comput Biol. 2014; 10:e1003562. 10.1371/journal.pcbi.1003562. PubMed DOI PMC
Bian Y-Q, Song F, Cao Z-X et al. Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex. Chinese Phys B. 2021; 30:078702. 10.1088/1674-1056/abe1a7. DOI
Bian Y, Ren W, Song F et al. Exploration of the folding dynamics of human telomeric G-quadruplex with a hybrid atomistic structure-based model. J Chem Phys. 2018; 148:204107. 10.1063/1.5028498. PubMed DOI
Bian Y, Song F, Cao Z et al. Fast-folding pathways of the thrombin-binding aptamer G-quadruplex revealed by a Markov state model. Biophys J. 2018; 114:1529–38. 10.1016/j.bpj.2018.02.021. PubMed DOI PMC
Yang C, Kulkarni M, Lim M et al. Insilico direct folding of thrombin-binding aptamer G-quadruplex at all-atom level. Nucleic Acids Res. 2017; 45:12648–56. 10.1093/nar/gkx1079. PubMed DOI PMC
Kim H, Kim E, Pak Y Computational probing of the folding mechanism of human telomeric G-quadruplex DNA. J Chem Inf Model. 2023; 63:6366–75. 10.1021/acs.jcim.3c01257. PubMed DOI
Janeček M, Kührová P, Mlýnský V et al. Computer folding of parallel DNA G-quadruplex: Hitchhiker’s guide to the conformational space. J Comput Chem. 2025; 46:e27535. 10.1002/jcc.27535. PubMed DOI PMC
Stadlbauer P, Trantirek L, Cheatham TE et al. Triplex intermediates in folding of human telomeric quadruplexes probed by microsecond-scale molecular dynamics simulations. Biochimie. 2014; 105:22–35. 10.1016/j.biochi.2014.07.009. PubMed DOI
Stadlbauer P, Kuhrova P, Banas P et al. Hairpins participating in folding of human telomeric sequence quadruplexes studied by standard and T-REMD simulations. Nucleic Acids Res. 2015; 43:9626–44. 10.1093/nar/gkv994. PubMed DOI PMC
Stadlbauer P, Mazzanti L, Cragnolini T et al. Coarse-grained simulations complemented by atomistic molecular dynamics provide new insights into folding of human telomeric G-quadruplexes. J Chem Theory Comput. 2016; 12:6077–97. 10.1021/acs.jctc.6b00667. PubMed DOI
Stadlbauer P, Kuhrova P, Vicherek L et al. Parallel G-triplexes and G-hairpins as potential transitory ensembles in the folding of parallel-stranded DNA G-quadruplexes. Nucleic Acids Res. 2019; 47:7276–93. 10.1093/nar/gkz610. PubMed DOI PMC
Stadlbauer P, Islam B, Otyepka M et al. Insights into G-quadruplex–hemin dynamics using atomistic simulations: implications for reactivity and folding. J Chem Theory Comput. 2021; 17:1883–99. 10.1021/acs.jctc.0c01176. PubMed DOI
Zhang Z, Mlýnský V, Krepl M et al. Mechanical stability and unfolding pathways of parallel tetrameric G-quadruplexes probed by pulling simulations. J Chem Inf Model. 2024; 64:3896–911. 10.1021/acs.jcim.4c00227. PubMed DOI PMC
Pokorná P, Mlýnský V, Bussi G et al. Molecular dynamics simulations reveal the parallel stranded d(GGGA)3GGG DNA quadruplex folds via multiple paths from a coil-like ensemble. Int J Biol Macromol. 2024; 261:e129712. 10.1016/j.ijbiomac.2024.129712. PubMed DOI
Rocca R, Palazzesi F, Amato J et al. Folding intermediate states of the parallel human telomeric G-quadruplex DNA explored using well-tempered metadynamics. Sci Rep. 2020; 10:3176. 10.1038/s41598-020-59774-x. PubMed DOI PMC
Kim E, Yang C, Pak Y Free-energy landscape of a thrombin-binding DNA aptamer in aqueous environment. J Chem Theory Comput. 2012; 8:4845–51. 10.1021/ct300714u. PubMed DOI
Islam B, Stadlbauer P, Krepl M et al. Extended molecular dynamics of a c-kit promoter quadruplex. Nucleic Acids Res. 2015; 43:8673–93. 10.1093/nar/gkv785. PubMed DOI PMC
Bergues-Pupo AE, Arias-Gonzalez JR, Moron MC et al. Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes. Nucleic Acids Res. 2015; 43:7638–47. 10.1093/nar/gkv690. PubMed DOI PMC
Zeng X, Zhang L, Xiao X et al. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov state model. Sci Rep. 2016; 6:e24065. 10.1038/srep24065. PubMed DOI PMC
Luo D, Mu Y Computational insights into the stability and folding pathways of human telomeric DNA G-quadruplexes. J Phys Chem B. 2016; 120:4912–26. 10.1021/acs.jpcb.6b01919. PubMed DOI
Kogut M, Kleist C, Czub J Molecular dynamics simulations reveal the balance of forces governing the formation of a guanine tetrad—a common structural unit of G-quadruplex DNA. Nucleic Acids Res. 2016; 44:3020–30. 10.1093/nar/gkw160. PubMed DOI PMC
Sponer J, Islam B, Stadlbauer P et al.. Neidle S Annual Reports in Medicinal Chemistry. 2020; 54:Cambridge, MA: Academic Press; 197–241.
Stadlbauer P, Mlýnský V, Krepl M et al. Complexity of guanine quadruplex unfolding pathways revealed by atomistic pulling simulations. J Chem Inf Model. 2023; 63:4716–31. 10.1021/acs.jcim.3c00171. PubMed DOI PMC
Yang C, Jang S, Pak Y Multiple stepwise pattern for potential of mean force in unfolding the thrombin binding aptamer in complex with Sr2+. J Chem Phys. 2011; 135:225104. 10.1063/1.3669424. PubMed DOI
Ugrina M, Burkhart I, Müller D et al. RNA G-quadruplex folding is a multi-pathway process driven by conformational entropy. Nucleic Acids Res. 2024; 52:87–100. 10.1093/nar/gkad1065. PubMed DOI PMC
Rebic M, Mocci F, Laaksonen A et al. Multiscale simulations of human telomeric G-quadruplex DNA. J Phys Chem B. 2015; 119:105–13. 10.1021/jp5103274. PubMed DOI
Wu X, Xu PJ, Wang JG et al.. Wei D, Xu Q, Zhao T, Dai H Advance in Structural Bioinformatics. 2015; 827:Berlin: Springer; 123–41.
Bergues-Pupo AE, Gutiérrez I, Arias-Gonzalez JR et al. Mesoscopic model for DNA G-quadruplex unfolding. Sci Rep. 2017; 7:11756. 10.1038/s41598-017-10849-2. PubMed DOI PMC
Sponer J, Bussi G, Krepl M et al. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem Rev. 2018; 118:4177–338. 10.1021/acs.chemrev.7b00427. PubMed DOI PMC
Moafinejad SN, de Aquino BRH, Boniecki MJ et al. SimRNAweb v2.0: a web server for RNA folding simulations and 3D structure modeling, with optional restraints and enhanced analysis of folding trajectories. Nucleic Acids Res. 2024; 52:W368–73. 10.1093/nar/gkae356. PubMed DOI PMC
Case DA, Belfon K, Ben-Shalom IY et al. Amber20. 2020; San Francisco: University of California.
Zgarbova M, Otyepka M, Sponer J et al. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J Chem Theory Comput. 2011; 7:2886–902. 10.1021/ct200162x. PubMed DOI PMC
Perez A, Marchan I, Svozil D et al. Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys J. 2007; 92:3817–29. 10.1529/biophysj.106.097782. PubMed DOI PMC
Cornell WD, Cieplak P, Bayly CI et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995; 117:5179–97. 10.1021/ja00124a002. DOI
Berendsen HJC, Grigera JR, Straatsma TP The missing term in effective pair potentials. J Phys Chem. 1987; 91:6269–71. 10.1021/j100308a038. DOI
Joung IS, Cheatham TE Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B. 2008; 112:9020–41. 10.1021/jp8001614. PubMed DOI PMC
Trajkovski M, da Silva MW, Plavec J Unique structural features of interconverting monomeric and dimeric G-quadruplexes adopted by a sequence from the intron of the N-myc gene. J Am Chem Soc. 2012; 134:4132–41. 10.1021/ja208483v. PubMed DOI
Bottaro S, Di Palma F, Bussi G The role of nucleobase interactions in RNA structure and dynamics. Nucleic Acids Res. 2014; 42:13306–14. 10.1093/nar/gku972. PubMed DOI PMC
Martadinata H, Phan AT Structure of propeller-type parallel-stranded RNA G-quadruplexes, formed by human telomeric RNA sequences in K+ solution. J Am Chem Soc. 2009; 131:2570–8. 10.1021/ja806592z. PubMed DOI
Wang L, Friesner RA, Berne BJ Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J Phys Chem B. 2011; 115:9431–8. 10.1021/jp204407d. PubMed DOI PMC
Barducci A, Bussi G, Parrinello M Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett. 2008; 100:020603. 10.1103/PhysRevLett.100.020603. PubMed DOI
Bussi G, Donadio D, Parrinello M Canonical sampling through velocity rescaling. J Chem Phys. 2007; 126:14101. 10.1063/1.2408420. PubMed DOI
Ryckaert JP, Ciccotti G, Berendsen HJC Numerical integration of cartesian equations of motion of a system with constraints - molecular dynamics of N-alkans. J Comput Phys. 1977; 23:327–41. 10.1016/0021-9991(77)90098-5. DOI
Hopkins CW, Le Grand S, Walker RC et al. Long-time-step molecular dynamics through hydrogen mass repartitioning. J Chem Theory Comput. 2015; 11:1864–74. 10.1021/ct5010406. PubMed DOI
Abraham MJ, Murtola T, Schultz R et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1-2:19–25. 10.1016/j.softx.2015.06.001. DOI
Tribello GA, Bonomi M, Branduardi D et al. Plumed 2: new feathers for an old bird. Comput Phys Commun. 2014; 185:604–13. 10.1016/j.cpc.2013.09.018. DOI
Sponer J, Spackova N Molecular dynamics simulations and their application to four-stranded DNA. Methods. 2007; 43:278–90. 10.1016/j.ymeth.2007.02.004. PubMed DOI PMC
Gkionis K, Kruse H, Platts JA et al. Ion binding to quadruplex DNA stems. Comparison of MM and QM descriptions reveals sizable polarization effects not included in contemporary simulations. J Chem Theory Comput. 2014; 10:1326–40. 10.1021/ct4009969. PubMed DOI
Lemkul JA Same fold, different properties: polarizable molecular dynamics simulations of telomeric and TERRA G-quadruplexes. Nucleic Acids Res. 2020; 48:561–75. 10.1093/nar/gkz1154. PubMed DOI PMC
Salsbury AM, Lemkul JA Molecular dynamics simulations of the c-kit1 promoter G-quadruplex: importance of electronic polarization on stability and cooperative ion binding. J Phys Chem B. 2019; 123:148–59. 10.1021/acs.jpcb.8b11026. PubMed DOI
Salsbury AM, Dean TJ, Lemkul JA Polarizable molecular dynamics simulations of two c-kit oncogene promoter G-quadruplexes: effect of primary and secondary structure on loop and ion sampling. J Chem Theory Comput. 2020; 16:3430–44. 10.1021/acs.jctc.0c00191. PubMed DOI PMC
Islam B, Stadlbauer P, Gil-Ley A et al. Exploring the dynamics of propeller loops in human telomeric DNA quadruplexes using atomistic simulations. J Chem Theory Comput. 2017; 13:2458–80. 10.1021/acs.jctc.7b00226. PubMed DOI PMC
Trachman RJ 3rd, Demeshkina NA, Lau MWL et al. Structural basis for high-affinity fluorophore binding and activation by RNA Mango. Nat Chem Biol. 2017; 13:807–13. 10.1038/nchembio.2392. PubMed DOI PMC
Roschdi S, Yan J, Nomura Y et al. An atypical RNA quadruplex marks RNAs as vectors for gene silencing. Nat Struct Mol Biol. 2022; 29:1113–21. 10.1038/s41594-022-00854-z. PubMed DOI PMC
Ceru S, Sket P, Prislan I et al. A new pathway of DNA G-quadruplex formation. Angew Chem Int Ed. 2014; 53:4881–4. 10.1002/anie.201400531. PubMed DOI
Frelih T, Wang B, Plavec J et al. Pre-folded structures govern folding pathways of human telomeric G-quadruplexes. Nucleic Acids Res. 2020; 48:2189–97. 10.1093/nar/gkz1235. PubMed DOI PMC
Zuckerman DM Equilibrium sampling in biomolecular simulations. Annu Rev Biophys. 2011; 40:41–62. 10.1146/annurev-biophys-042910-155255. PubMed DOI PMC
Mlýnský V, Janeček M, Kührová P et al. Toward convergence in folding simulations of RNA Tetraloops: comparison of enhanced sampling techniques and effects of force field modifications. J Chem Theory Comput. 2022; 18:2642–56. 10.1021/acs.jctc.1c01222. PubMed DOI
Invernizzi M, Parrinello M Rethinking metadynamics: from bias potentials to probability distributions. J Phys Chem Lett. 2020; 11:2731–6. 10.1021/acs.jpclett.0c00497. PubMed DOI
Rizzi V, Aureli S, Ansari N et al. OneOPES, a combined enhanced sampling method to rule them all. J Chem Theory Comput. 2023; 19:5731–42. 10.1021/acs.jctc.3c00254. PubMed DOI PMC
Invernizzi M, Parrinello M Exploration vs convergence speed in adaptive-bias enhanced sampling. J Chem Theory Comput. 2022; 18:3988–96. 10.1021/acs.jctc.2c00152. PubMed DOI PMC
Zerze GH, Piaggi PM, Debenedetti PG A computational study of RNA tetraloop thermodynamics, including misfolded states. J Phys Chem B. 2021; 125:13685–95. 10.1021/acs.jpcb.1c08038. PubMed DOI
Mlýnský V, Kührová P, Pykal M et al. Can we ever develop an ideal RNA force field? Lessons learned from simulations of UUCG RNA tetraloop and other systems. J Chem Theory Comput. 2024; 21:4183–202. 10.1021/acs.jctc.4c01357. PubMed DOI PMC