RNA G-quadruplexes emerge from a compacted coil-like ensemble via multiple pathways

. 2025 Sep 05 ; 53 (17) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40923766

Grantová podpora
23-05639S Czech Science Foundation

RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging. Despite their significance, the atomic-level folding mechanisms of rG4s remain poorly understood due to their complexity. We studied the folding of the r(GGGA)3GGG and r(GGGUUA)3GGG (TERRA) sequences into parallel-stranded rG4 using all-atom enhanced-sampling molecular dynamics simulations, applying well-tempered metadynamics coupled with solute tempering. The obtained folding pathways suggest that RNA initially adopts a compacted coil-like ensemble characterized by dynamic guanine stacking and pairing. The three-quartet rG4 gradually forms from this compacted coil ensemble via diverse routes involving strand rearrangements and guanine incorporations. While the folding mechanism is multipathway, various two-quartet rG4 structures appear to be a common transitory ensemble along most routes. Thus, the process seems more complex than previously predicted, as G-hairpins or G-triplexes do not act as distinct intermediates, even though some are occasionally sampled. We also discuss the challenges of applying enhanced sampling methodologies to such a multidimensional free-energy surface and address the force-field limitations.

Zobrazit více v PubMed

Varshney  D, Spiegel  J, Zyner  K  et al.  The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol. 2020; 21:459–74. 10.1038/s41580-020-0236-x. PubMed DOI PMC

Rhodes  D, Lipps  HJ  G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015; 43:8627–37. 10.1093/nar/gkv862. PubMed DOI PMC

Chen  X-C, Chen  S-B, Dai  J  et al.  Tracking the dynamic folding and unfolding of RNA G-quadruplexes in live cells. Angew Chem Int Ed. 2018; 57:4702–6. 10.1002/anie.201801999. PubMed DOI

Biffi  G, Di  Antonio M, Tannahill  D  et al.  Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nature Chem. 2014; 6:75–80. 10.1038/nchem.1805. PubMed DOI PMC

Wanrooij  PH, Uhler  JP, Simonsson  T  et al.  G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation. Proc Natl Acad Sci USA. 2010; 107:16072–7. 10.1073/pnas.1006026107. PubMed DOI PMC

Zhang  J, Harvey  SE, Cheng  C  A high-throughput screen identifies small molecule modulators of alternative splicing by targeting RNA G-quadruplexes. Nucleic Acids Res. 2019; 47:3667–79. 10.1093/nar/gkz036. PubMed DOI PMC

Kharel  P, Becker  G, Tsvetkov  V  et al.  Properties and biological impact of RNA G-quadruplexes: from order to turmoil and back. Nucleic Acids Res. 2020; 48:12534–55. 10.1093/nar/gkaa1126. PubMed DOI PMC

Dumas  L, Herviou  P, Dassi  E  et al.  G-quadruplexes in RNA biology: recent advances and future directions. Trends Biochem Sci. 2021; 46:270–83. 10.1016/j.tibs.2020.11.001. PubMed DOI

Kwok  CK, Marsico  G, Sahakyan  AB  et al.  rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat Methods. 2016; 13:841–4. 10.1038/nmeth.3965. PubMed DOI

Azzalin  CM, Reichenbach  P, Khoriauli  L  et al.  Telomeric repeat–containing RNA and RNA surveillance factors at mammalian chromosome ends. Science. 2007; 318:798–801. 10.1126/science.1147182. PubMed DOI

Azzalin  CM, Lingner  J  Telomere functions grounding on TERRA firma. Trends Cell Biol. 2015; 25:29–36. 10.1016/j.tcb.2014.08.007. PubMed DOI

Agarwala  P, Pandey  S, Maiti  S  The tale of RNA G-quadruplex. Org Biomol Chem. 2015; 13:5570–85. 10.1039/C4OB02681K. PubMed DOI

Biffi  G, Tannahill  D, Balasubramanian  S  An intramolecular G-quadruplex structure is required for binding of telomeric repeat-containing RNA to the telomeric protein TRF2. J Am Chem Soc. 2012; 134:11974–6. 10.1021/ja305734x. PubMed DOI PMC

Stefan  L, Monchaud  D  Applications of guanine quartets in nanotechnology and chemical biology. Nat Rev Chem. 2019; 3:650–68. 10.1038/s41570-019-0132-0. DOI

Mergny  J-L, Sen  D  DNA quadruple helices in nanotechnology. Chem Rev. 2019; 119:6290–325. 10.1021/acs.chemrev.8b00629. PubMed DOI

Winnerdy  FR, Phan  AT. Neidle  S  Annual Reports in Medicinal Chemistry. 2020; 54:Cambridge, MA: Academic Press; 45–73.

Karsisiotis  AI, O’Kane  C, da Silva  MW  DNA quadruplex folding formalism – a tutorial on quadruplex topologies. Methods. 2013; 64:28–35. 10.1016/j.ymeth.2013.06.004. PubMed DOI

da Silva  MW  Geometric formalism for DNA quadruplex folding. Chem Eur J. 2007; 13:9738–45. 10.1002/chem.200701255. PubMed DOI

Zhang  DH, Fujimoto  T, Saxena  S  et al.  Monomorphic RNA G-quadruplex and polymorphic DNA G-quadruplex structures responding to cellular environmental factors. Biochemistry. 2010; 49:4554–63. 10.1021/bi1002822. PubMed DOI

Xue  Y, Liu  J-Q, Zheng  K-W  et al.  Kinetic and thermodynamic control of G-quadruplex folding. Angew Chem Int Ed. 2011; 50:8046–50. 10.1002/anie.201101759. PubMed DOI

Long  X, Stone  MD  Kinetic partitioning modulates human telomere DNA G-quadruplex structural polymorphism. PLoS One. 2013; 8:e83420. 10.1371/journal.pone.0083420. PubMed DOI PMC

Grün  JT, Schwalbe  H  Folding dynamics of polymorphic G-quadruplex structures. Biopolymers. 2022; 113:e23477. 10.1002/bip.23477. PubMed DOI

Zhang  AYQ, Balasubramanian  S  The kinetics and folding pathways of intramolecular G-quadruplex nucleic acids. J Am Chem Soc. 2012; 134:19297–308. 10.1021/ja309851t. PubMed DOI

Gray  RD, Trent  JO, Chaires  JB  Folding and unfolding pathways of the human telomeric G-quadruplex. J Mol Biol. 2014; 426:1629–50. 10.1016/j.jmb.2014.01.009. PubMed DOI PMC

Gray  RD, Trent  JO, Arumugam  S  et al.  Folding landscape of a parallel G-quadruplex. J Phys Chem Lett. 2019; 10:1146–51. 10.1021/acs.jpclett.9b00227. PubMed DOI PMC

Thirumalai  D, Klimov  DK, Woodson  SA  Kinetic partitioning mechanism as a unifying theme in the folding of biomolecules. Theor Chem Acc. 1997; 96:14–22. 10.1007/s002140050198. DOI

Sponer  J, Bussi  G, Stadlbauer  P  et al.  Folding of guanine quadruplex molecules–funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies. Biochim Biophys Gen Sub. 2017; 1861:1246–63. 10.1016/j.bbagen.2016.12.008. PubMed DOI

Bessi  I, Jonker  HR, Richter  C  et al.  Involvement of long-lived intermediate states in the complex folding pathway of the human telomeric G-quadruplex. Angew Chem Int Ed. 2015; 54:8444–8. 10.1002/anie.201502286. PubMed DOI

Marchand  A, Gabelica  V  Folding and misfolding pathways of G-quadruplex DNA. Nucleic Acids Res. 2016; 44:10999–1012. 10.1093/nar/gkw970. PubMed DOI PMC

Noer  SL, Preus  S, Gudnason  D  et al.  Folding dynamics and conformational heterogeneity of human telomeric G-quadruplex structures in Na+ solutions by single molecule FRET microscopy. Nucleic Acids Res. 2016; 44:464–71. 10.1093/nar/gkv1320. PubMed DOI PMC

Aznauryan  M, Søndergaard  S, Noer  SL  et al.  A direct view of the complex multi-pathway folding of telomeric G-quadruplexes. Nucleic Acids Res. 2016; 44:11024–32. 10.1093/nar/gkw1010. PubMed DOI PMC

Havrila  M, Stadlbauer  P, Kuhrova  P  et al.  Structural dynamics of propeller loop: towards folding of RNA G-quadruplex. Nucleic Acids Res. 2018; 46:8754–71. 10.1093/nar/gky712. PubMed DOI PMC

Müller  D, Bessi  I, Richter  C  et al.  The folding landscapes of human telomeric RNA and DNA G-quadruplexes are markedly different. Angew Chem Int Ed. 2021; 60:10895–901. 10.1002/anie.202100280. PubMed DOI PMC

Long  X, Parks  JW, Bagshaw  CR  et al.  Mechanical unfolding of human telomere G-quadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy. Nucleic Acids Res. 2013; 41:2746–55. 10.1093/nar/gks1341. PubMed DOI PMC

Mitra  J, Makurath  MA, Ngo  TTM  et al.  Extreme mechanical diversity of human telomeric DNA revealed by fluorescence-force spectroscopy. Proc Natl Acad Sci USA. 2019; 116:8350–9. 10.1073/pnas.1815162116. PubMed DOI PMC

Mitra  J, Ha  T  Streamlining effects of extra telomeric repeat on telomeric DNA folding revealed by fluorescence-force spectroscopy. Nucleic Acids Res. 2019; 47:11044–56. 10.1093/nar/gkz906. PubMed DOI PMC

Okamoto  K, Sannohe  Y, Mashimo  T  et al.  G-quadruplex structures of human telomere DNA examined by single molecule FRET and BrG-substitution. Bioorg Med Chem. 2008; 16:6873–9. 10.1016/j.bmc.2008.05.053. PubMed DOI

Koirala  D, Mashimo  T, Sannohe  Y  et al.  Intramolecular folding in three tandem guanine repeats of human telomeric DNA. Chem Commun. 2012; 48:2006–8. 10.1039/c2cc16752b. PubMed DOI

Dhakal  S, Cui  Y, Koirala  D  et al.  Structural and mechanical properties of individual human telomeric G-quadruplexes in molecularly crowded solutions. Nucleic Acids Res. 2013; 41:3915–23. 10.1093/nar/gkt038. PubMed DOI PMC

Hou  X-M, Fu  Y-B, Wu  W-Q  et al.  Involvement of G-triplex and G-hairpin in the multi-pathway folding of human telomeric G-quadruplex. Nucleic Acids Res. 2017; 45:11401–12. 10.1093/nar/gkx766. PubMed DOI PMC

Li  W, Hou  X-M, Wang  P-Y  et al.  Direct measurement of sequential folding pathway and energy landscape of human telomeric G-quadruplex structures. J Am Chem Soc. 2013; 135:6423–6. 10.1021/ja4019176. PubMed DOI

Jiang  H-X, Cui  Y, Zhao  T  et al.  Divalent cations and molecular crowding buffers stabilize G-triplex at physiologically relevant temperatures. Sci Rep. 2015; 5:9255. 10.1038/srep09255. PubMed DOI PMC

Lu  X-M, Li  H, You  J  et al.  Folding dynamics of parallel and antiparallel G-triplexes under the influence of proximal DNA. J Phys Chem B. 2018; 122:9499–506. 10.1021/acs.jpcb.8b08110. PubMed DOI

Kejnovská  I, Stadlbauer  P, Trantírek  L  et al.  G-quadruplex formation by DNA sequences deficient in guanines: two tetrad parallel quadruplexes do not fold intramolecularly. Chem Eur J. 2021; 27:12115–25. 10.1002/chem.202100895. PubMed DOI

Palacky  J, Vorlickova  M, Kejnovska  I  et al.  Polymorphism of human telomeric quadruplex structure controlled by DNA concentration: a Raman study. Nucleic Acids Res. 2013; 41:1005–16. 10.1093/nar/gks1135. PubMed DOI PMC

Gruen  JT, Hennecker  C, Kloetzner  D-P  et al.  Conformational dynamics of strand register shifts in DNA G-quadruplexes. J Am Chem Soc. 2020; 142:264–73. 10.1021/jacs.9b10367. PubMed DOI

Grün  JT, Blümler  A, Burkhart  I  et al.  Unraveling the kinetics of spare-tire DNA G-quadruplex folding. J Am Chem Soc. 2021; 143:6185–93. 10.1021/jacs.1c01089. PubMed DOI

Largy  E, Marchand  A, Amrane  S  et al.  Quadruplex turncoats: cation-dependent folding and stability of quadruplex-DNA double switches. J Am Chem Soc. 2016; 138:2780–92. 10.1021/jacs.5b13130. PubMed DOI

Marchand  A, Ferreira  R, Tateishi-Karimata  H  et al.  Sequence and solvent effects on telomeric DNA bimolecular G-quadruplex folding kinetics. J Phys Chem B. 2013; 117:12391–401. 10.1021/jp406857s. PubMed DOI

Burkhart  I, Wirmer-Bartoschek  J, Plavec  J  et al.  Exploring the modulation of the complex folding landscape of human telomeric DNA by a low molecular weight ligand. Chem Eur J. 2025; 31:e202501377. 10.1002/chem.202501377. PubMed DOI PMC

Monsen  RC, Sabo  TM, Gray  R  et al.  Early events in G-quadruplex folding captured by time-resolved small-angle x-ray scattering. Nucleic Acids Res. 2025; 53:gkaf043. 10.1093/nar/gkaf043. PubMed DOI PMC

Stadlbauer  P, Krepl  M, Cheatham  TE  et al.  Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations. Nucleic Acids Res. 2013; 41:7128–43. 10.1093/nar/gkt412. PubMed DOI PMC

Stefl  R, Cheatham  TE, Spackova  N  et al.  Formation pathways of a guanine-quadruplex DNA revealed by molecular dynamics and thermodynamic analysis of the substates. Biophys J. 2003; 85:1787–804. 10.1016/S0006-3495(03)74608-6. PubMed DOI PMC

Limongelli  V, De  Tito S, Cerofolini  L  et al.  The G-triplex DNA. Angew Chem Int Ed. 2013; 52:2269–73. 10.1002/anie.201206522. PubMed DOI

Bian  Y, Tan  C, Wang  J  et al.  Atomistic picture for the folding pathway of a hybrid-1 type human telomeric DNA G-quadruplex. PLoS Comput Biol. 2014; 10:e1003562. 10.1371/journal.pcbi.1003562. PubMed DOI PMC

Bian  Y-Q, Song  F, Cao  Z-X  et al.  Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex. Chinese Phys B. 2021; 30:078702. 10.1088/1674-1056/abe1a7. DOI

Bian  Y, Ren  W, Song  F  et al.  Exploration of the folding dynamics of human telomeric G-quadruplex with a hybrid atomistic structure-based model. J Chem Phys. 2018; 148:204107. 10.1063/1.5028498. PubMed DOI

Bian  Y, Song  F, Cao  Z  et al.  Fast-folding pathways of the thrombin-binding aptamer G-quadruplex revealed by a Markov state model. Biophys J. 2018; 114:1529–38. 10.1016/j.bpj.2018.02.021. PubMed DOI PMC

Yang  C, Kulkarni  M, Lim  M  et al.  Insilico direct folding of thrombin-binding aptamer G-quadruplex at all-atom level. Nucleic Acids Res. 2017; 45:12648–56. 10.1093/nar/gkx1079. PubMed DOI PMC

Kim  H, Kim  E, Pak  Y  Computational probing of the folding mechanism of human telomeric G-quadruplex DNA. J Chem Inf Model. 2023; 63:6366–75. 10.1021/acs.jcim.3c01257. PubMed DOI

Janeček  M, Kührová  P, Mlýnský  V  et al.  Computer folding of parallel DNA G-quadruplex: Hitchhiker’s guide to the conformational space. J Comput Chem. 2025; 46:e27535. 10.1002/jcc.27535. PubMed DOI PMC

Stadlbauer  P, Trantirek  L, Cheatham  TE  et al.  Triplex intermediates in folding of human telomeric quadruplexes probed by microsecond-scale molecular dynamics simulations. Biochimie. 2014; 105:22–35. 10.1016/j.biochi.2014.07.009. PubMed DOI

Stadlbauer  P, Kuhrova  P, Banas  P  et al.  Hairpins participating in folding of human telomeric sequence quadruplexes studied by standard and T-REMD simulations. Nucleic Acids Res. 2015; 43:9626–44. 10.1093/nar/gkv994. PubMed DOI PMC

Stadlbauer  P, Mazzanti  L, Cragnolini  T  et al.  Coarse-grained simulations complemented by atomistic molecular dynamics provide new insights into folding of human telomeric G-quadruplexes. J Chem Theory Comput. 2016; 12:6077–97. 10.1021/acs.jctc.6b00667. PubMed DOI

Stadlbauer  P, Kuhrova  P, Vicherek  L  et al.  Parallel G-triplexes and G-hairpins as potential transitory ensembles in the folding of parallel-stranded DNA G-quadruplexes. Nucleic Acids Res. 2019; 47:7276–93. 10.1093/nar/gkz610. PubMed DOI PMC

Stadlbauer  P, Islam  B, Otyepka  M  et al.  Insights into G-quadruplex–hemin dynamics using atomistic simulations: implications for reactivity and folding. J Chem Theory Comput. 2021; 17:1883–99. 10.1021/acs.jctc.0c01176. PubMed DOI

Zhang  Z, Mlýnský  V, Krepl  M  et al.  Mechanical stability and unfolding pathways of parallel tetrameric G-quadruplexes probed by pulling simulations. J Chem Inf Model. 2024; 64:3896–911. 10.1021/acs.jcim.4c00227. PubMed DOI PMC

Pokorná  P, Mlýnský  V, Bussi  G  et al.  Molecular dynamics simulations reveal the parallel stranded d(GGGA)3GGG DNA quadruplex folds via multiple paths from a coil-like ensemble. Int J Biol Macromol. 2024; 261:e129712. 10.1016/j.ijbiomac.2024.129712. PubMed DOI

Rocca  R, Palazzesi  F, Amato  J  et al.  Folding intermediate states of the parallel human telomeric G-quadruplex DNA explored using well-tempered metadynamics. Sci Rep. 2020; 10:3176. 10.1038/s41598-020-59774-x. PubMed DOI PMC

Kim  E, Yang  C, Pak  Y  Free-energy landscape of a thrombin-binding DNA aptamer in aqueous environment. J Chem Theory Comput. 2012; 8:4845–51. 10.1021/ct300714u. PubMed DOI

Islam  B, Stadlbauer  P, Krepl  M  et al.  Extended molecular dynamics of a c-kit promoter quadruplex. Nucleic Acids Res. 2015; 43:8673–93. 10.1093/nar/gkv785. PubMed DOI PMC

Bergues-Pupo  AE, Arias-Gonzalez  JR, Moron  MC  et al.  Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes. Nucleic Acids Res. 2015; 43:7638–47. 10.1093/nar/gkv690. PubMed DOI PMC

Zeng  X, Zhang  L, Xiao  X  et al.  Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov state model. Sci Rep. 2016; 6:e24065. 10.1038/srep24065. PubMed DOI PMC

Luo  D, Mu  Y  Computational insights into the stability and folding pathways of human telomeric DNA G-quadruplexes. J Phys Chem B. 2016; 120:4912–26. 10.1021/acs.jpcb.6b01919. PubMed DOI

Kogut  M, Kleist  C, Czub  J  Molecular dynamics simulations reveal the balance of forces governing the formation of a guanine tetrad—a common structural unit of G-quadruplex DNA. Nucleic Acids Res. 2016; 44:3020–30. 10.1093/nar/gkw160. PubMed DOI PMC

Sponer  J, Islam  B, Stadlbauer  P  et al.. Neidle  S  Annual Reports in Medicinal Chemistry. 2020; 54:Cambridge, MA: Academic Press; 197–241.

Stadlbauer  P, Mlýnský  V, Krepl  M  et al.  Complexity of guanine quadruplex unfolding pathways revealed by atomistic pulling simulations. J Chem Inf Model. 2023; 63:4716–31. 10.1021/acs.jcim.3c00171. PubMed DOI PMC

Yang  C, Jang  S, Pak  Y  Multiple stepwise pattern for potential of mean force in unfolding the thrombin binding aptamer in complex with Sr2+. J Chem Phys. 2011; 135:225104. 10.1063/1.3669424. PubMed DOI

Ugrina  M, Burkhart  I, Müller  D  et al.  RNA G-quadruplex folding is a multi-pathway process driven by conformational entropy. Nucleic Acids Res. 2024; 52:87–100. 10.1093/nar/gkad1065. PubMed DOI PMC

Rebic  M, Mocci  F, Laaksonen  A  et al.  Multiscale simulations of human telomeric G-quadruplex DNA. J Phys Chem B. 2015; 119:105–13. 10.1021/jp5103274. PubMed DOI

Wu  X, Xu  PJ, Wang  JG  et al.. Wei  D, Xu  Q, Zhao  T, Dai  H  Advance in Structural Bioinformatics. 2015; 827:Berlin: Springer; 123–41.

Bergues-Pupo  AE, Gutiérrez  I, Arias-Gonzalez  JR  et al.  Mesoscopic model for DNA G-quadruplex unfolding. Sci Rep. 2017; 7:11756. 10.1038/s41598-017-10849-2. PubMed DOI PMC

Sponer  J, Bussi  G, Krepl  M  et al.  RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem Rev. 2018; 118:4177–338. 10.1021/acs.chemrev.7b00427. PubMed DOI PMC

Moafinejad  SN, de Aquino  BRH, Boniecki  MJ  et al.  SimRNAweb v2.0: a web server for RNA folding simulations and 3D structure modeling, with optional restraints and enhanced analysis of folding trajectories. Nucleic Acids Res. 2024; 52:W368–73. 10.1093/nar/gkae356. PubMed DOI PMC

Case  DA, Belfon  K, Ben-Shalom  IY  et al.  Amber20. 2020; San Francisco: University of California.

Zgarbova  M, Otyepka  M, Sponer  J  et al.  Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J Chem Theory Comput. 2011; 7:2886–902. 10.1021/ct200162x. PubMed DOI PMC

Perez  A, Marchan  I, Svozil  D  et al.  Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys J. 2007; 92:3817–29. 10.1529/biophysj.106.097782. PubMed DOI PMC

Cornell  WD, Cieplak  P, Bayly  CI  et al.  A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995; 117:5179–97. 10.1021/ja00124a002. DOI

Berendsen  HJC, Grigera  JR, Straatsma  TP  The missing term in effective pair potentials. J Phys Chem. 1987; 91:6269–71. 10.1021/j100308a038. DOI

Joung  IS, Cheatham  TE  Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B. 2008; 112:9020–41. 10.1021/jp8001614. PubMed DOI PMC

Trajkovski  M, da Silva  MW, Plavec  J  Unique structural features of interconverting monomeric and dimeric G-quadruplexes adopted by a sequence from the intron of the N-myc gene. J Am Chem Soc. 2012; 134:4132–41. 10.1021/ja208483v. PubMed DOI

Bottaro  S, Di  Palma F, Bussi  G  The role of nucleobase interactions in RNA structure and dynamics. Nucleic Acids Res. 2014; 42:13306–14. 10.1093/nar/gku972. PubMed DOI PMC

Martadinata  H, Phan  AT  Structure of propeller-type parallel-stranded RNA G-quadruplexes, formed by human telomeric RNA sequences in K+ solution. J Am Chem Soc. 2009; 131:2570–8. 10.1021/ja806592z. PubMed DOI

Wang  L, Friesner  RA, Berne  BJ  Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J Phys Chem B. 2011; 115:9431–8. 10.1021/jp204407d. PubMed DOI PMC

Barducci  A, Bussi  G, Parrinello  M  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett. 2008; 100:020603. 10.1103/PhysRevLett.100.020603. PubMed DOI

Bussi  G, Donadio  D, Parrinello  M  Canonical sampling through velocity rescaling. J Chem Phys. 2007; 126:14101. 10.1063/1.2408420. PubMed DOI

Ryckaert  JP, Ciccotti  G, Berendsen  HJC  Numerical integration of cartesian equations of motion of a system with constraints - molecular dynamics of N-alkans. J Comput Phys. 1977; 23:327–41. 10.1016/0021-9991(77)90098-5. DOI

Hopkins  CW, Le  Grand S, Walker  RC  et al.  Long-time-step molecular dynamics through hydrogen mass repartitioning. J Chem Theory Comput. 2015; 11:1864–74. 10.1021/ct5010406. PubMed DOI

Abraham  MJ, Murtola  T, Schultz  R  et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1-2:19–25. 10.1016/j.softx.2015.06.001. DOI

Tribello  GA, Bonomi  M, Branduardi  D  et al.  Plumed 2: new feathers for an old bird. Comput Phys Commun. 2014; 185:604–13. 10.1016/j.cpc.2013.09.018. DOI

Sponer  J, Spackova  N  Molecular dynamics simulations and their application to four-stranded DNA. Methods. 2007; 43:278–90. 10.1016/j.ymeth.2007.02.004. PubMed DOI PMC

Gkionis  K, Kruse  H, Platts  JA  et al.  Ion binding to quadruplex DNA stems. Comparison of MM and QM descriptions reveals sizable polarization effects not included in contemporary simulations. J Chem Theory Comput. 2014; 10:1326–40. 10.1021/ct4009969. PubMed DOI

Lemkul  JA  Same fold, different properties: polarizable molecular dynamics simulations of telomeric and TERRA G-quadruplexes. Nucleic Acids Res. 2020; 48:561–75. 10.1093/nar/gkz1154. PubMed DOI PMC

Salsbury  AM, Lemkul  JA  Molecular dynamics simulations of the c-kit1 promoter G-quadruplex: importance of electronic polarization on stability and cooperative ion binding. J Phys Chem B. 2019; 123:148–59. 10.1021/acs.jpcb.8b11026. PubMed DOI

Salsbury  AM, Dean  TJ, Lemkul  JA  Polarizable molecular dynamics simulations of two c-kit oncogene promoter G-quadruplexes: effect of primary and secondary structure on loop and ion sampling. J Chem Theory Comput. 2020; 16:3430–44. 10.1021/acs.jctc.0c00191. PubMed DOI PMC

Islam  B, Stadlbauer  P, Gil-Ley  A  et al.  Exploring the dynamics of propeller loops in human telomeric DNA quadruplexes using atomistic simulations. J Chem Theory Comput. 2017; 13:2458–80. 10.1021/acs.jctc.7b00226. PubMed DOI PMC

Trachman  RJ  3rd, Demeshkina  NA, Lau  MWL  et al.  Structural basis for high-affinity fluorophore binding and activation by RNA Mango. Nat Chem Biol. 2017; 13:807–13. 10.1038/nchembio.2392. PubMed DOI PMC

Roschdi  S, Yan  J, Nomura  Y  et al.  An atypical RNA quadruplex marks RNAs as vectors for gene silencing. Nat Struct Mol Biol. 2022; 29:1113–21. 10.1038/s41594-022-00854-z. PubMed DOI PMC

Ceru  S, Sket  P, Prislan  I  et al.  A new pathway of DNA G-quadruplex formation. Angew Chem Int Ed. 2014; 53:4881–4. 10.1002/anie.201400531. PubMed DOI

Frelih  T, Wang  B, Plavec  J  et al.  Pre-folded structures govern folding pathways of human telomeric G-quadruplexes. Nucleic Acids Res. 2020; 48:2189–97. 10.1093/nar/gkz1235. PubMed DOI PMC

Zuckerman  DM  Equilibrium sampling in biomolecular simulations. Annu Rev Biophys. 2011; 40:41–62. 10.1146/annurev-biophys-042910-155255. PubMed DOI PMC

Mlýnský  V, Janeček  M, Kührová  P  et al.  Toward convergence in folding simulations of RNA Tetraloops: comparison of enhanced sampling techniques and effects of force field modifications. J Chem Theory Comput. 2022; 18:2642–56. 10.1021/acs.jctc.1c01222. PubMed DOI

Invernizzi  M, Parrinello  M  Rethinking metadynamics: from bias potentials to probability distributions. J Phys Chem Lett. 2020; 11:2731–6. 10.1021/acs.jpclett.0c00497. PubMed DOI

Rizzi  V, Aureli  S, Ansari  N  et al.  OneOPES, a combined enhanced sampling method to rule them all. J Chem Theory Comput. 2023; 19:5731–42. 10.1021/acs.jctc.3c00254. PubMed DOI PMC

Invernizzi  M, Parrinello  M  Exploration vs convergence speed in adaptive-bias enhanced sampling. J Chem Theory Comput. 2022; 18:3988–96. 10.1021/acs.jctc.2c00152. PubMed DOI PMC

Zerze  GH, Piaggi  PM, Debenedetti  PG  A computational study of RNA tetraloop thermodynamics, including misfolded states. J Phys Chem B. 2021; 125:13685–95. 10.1021/acs.jpcb.1c08038. PubMed DOI

Mlýnský  V, Kührová  P, Pykal  M  et al.  Can we ever develop an ideal RNA force field? Lessons learned from simulations of UUCG RNA tetraloop and other systems. J Chem Theory Comput. 2024; 21:4183–202. 10.1021/acs.jctc.4c01357. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...