Mechanical Stability and Unfolding Pathways of Parallel Tetrameric G-Quadruplexes Probed by Pulling Simulations
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38630447
PubMed Central
PMC11094737
DOI
10.1021/acs.jcim.4c00227
Knihovny.cz E-zdroje
- MeSH
- biomechanika MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- mechanické jevy MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
Guanine quadruplex (GQ) is a noncanonical nucleic acid structure formed by guanine-rich DNA and RNA sequences. Folding of GQs is a complex process, where several aspects remain elusive, despite being important for understanding structure formation and biological functions of GQs. Pulling experiments are a common tool for acquiring insights into the folding landscape of GQs. Herein, we applied a computational pulling strategy─steered molecular dynamics (SMD) simulations─in combination with standard molecular dynamics (MD) simulations to explore the unfolding landscapes of tetrameric parallel GQs. We identified anisotropic properties of elastic conformational changes, unfolding transitions, and GQ mechanical stabilities. Using a special set of structural parameters, we found that the vertical component of pulling force (perpendicular to the average G-quartet plane) plays a significant role in disrupting GQ structures and weakening their mechanical stabilities. We demonstrated that the magnitude of the vertical force component depends on the pulling anchor positions and the number of G-quartets. Typical unfolding transitions for tetrameric parallel GQs involve base unzipping, opening of the G-stem, strand slippage, and rotation to cross-like structures. The unzipping was detected as the first and dominant unfolding event, and it usually started at the 3'-end. Furthermore, results from both SMD and standard MD simulations indicate that partial spiral conformations serve as a transient ensemble during the (un)folding of GQs.
Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 Brno 61200 Czech Republic
Zobrazit více v PubMed
Karsisiotis A. I.; O’Kane C.; Webba da Silva M. DNA Quadruplex Folding Formalism - A Tutorial on Quadruplex Topologies. Methods 2013, 64, 28–35. 10.1016/j.ymeth.2013.06.004. PubMed DOI
Phan A. T. Human Telomeric G-Quadruplex: Structures of DNA and RNA Sequences. FEBS J. 2010, 277, 1107–1117. 10.1111/j.1742-4658.2009.07464.x. PubMed DOI
Capra J. A.; Paeschke K.; Singh M.; Zakian V. A. G-Quadruplex DNA Sequences Are Evolutionarily Conserved and Associated with Distinct Genomic Features in Saccharomyces Cerevisiae. PLoS Comput. Biol. 2010, 6, 100086110.1371/journal.pcbi.1000861. PubMed DOI PMC
Bhattacharyya D.; Arachchilage G. M.; Basu S. Metal Cations in G-Quadruplex Folding and Stability. Front. Chem. 2016, 4, 38.10.3389/fchem.2016.00038. PubMed DOI PMC
Burge S.; Parkinson G. N.; Hazel P.; Todd A. K.; Neidle S. Quadruplex DNA: Sequence, Topology and Structure. Nucleic Acids Res. 2006, 34, 5402–5415. 10.1093/nar/gkl655. PubMed DOI PMC
Lane A. N.; Chaires J. B.; Gray R. D.; Trent J. O. Stability and Kinetics of G-Quadruplex Structures. Nucleic Acids Res. 2008, 36, 5482–5515. 10.1093/nar/gkn517. PubMed DOI PMC
Lam E. Y. N.; Beraldi D.; Tannahill D.; Balasubramanian S. G-Quadruplex Structures Are Stable and Detectable in Human Genomic DNA. Nat. Commun. 2013, 4, 4.10.1038/ncomms2792. PubMed DOI PMC
Varshney D.; Spiegel J.; Zyner K.; Tannahill D.; Balasubramanian S. The Regulation and Functions of DNA and RNA G-Quadruplexes. Nat. Rev. Mol. Cell Biol. 2020, 21, 459–474. 10.1038/s41580-020-0236-x. PubMed DOI PMC
Rhodes D.; Lipps H. J. G-Quadruplexes and Their Regulatory Roles in Biology. Nucleic Acids Res. 2015, 43, 8627–8637. 10.1093/nar/gkv862. PubMed DOI PMC
Lee W. T. C.; Yin Y.; Morten M. J.; Tonzi P.; Gwo P. P.; Odermatt D. C.; Modesti M.; Cantor S. B.; Gari K.; Huang T. T.; Rothenberg E. Single-Molecule Imaging Reveals Replication Fork Coupled Formation of G-Quadruplex Structures Hinders Local Replication Stress Signaling. Nat. Commun. 2021, 12, 12.10.1038/s41467-021-22830-9. PubMed DOI PMC
Kusi-Appauh N.; Ralph S. F.; van Oijen A. M.; Spenkelink L. M. Understanding G-Quadruplex Biology and Stability Using Single-Molecule Techniques. J. Phys. Chem. B 2023, 127, 5521–5540. 10.1021/acs.jpcb.3c01708. PubMed DOI
Bahls Bárbara; Aljnadi Israa M.; Rita Emídio E. M.; A P. G-Quadruplexes in c-MYC Promoter as Targets for Cancer Therapy. Biomed. Rev. 2023, 11, 969.10.1001/archotol.1971.00770060940019. PubMed DOI PMC
Xu J.; Huang H.; Zhou X. G-Quadruplexes in Neurobiology and Virology: Functional Roles and Potential Therapeutic Approaches. JACS Au 2021, 1, 2146–2161. 10.1021/jacsau.1c00451. PubMed DOI PMC
Chen L.; Dickerhoff J.; Sakai S.; Yang D. DNA G-Quadruplex in Human Telomeres and Oncogene Promoters: Structures, Functions, and Small Molecule Targeting. Acc. Chem. Res. 2022, 55, 2628–2646. 10.1021/acs.accounts.2c00337. PubMed DOI PMC
Robinson J.; Raguseo F.; Nuccio S. P.; Liano D.; Di Antonio M. DNA G-Quadruplex Structures: More than Simple Roadblocks to Transcription?. Nucleic Acids Res. 2021, 49, 8419–8431. 10.1093/nar/gkab609. PubMed DOI PMC
Li Z.; Mirkin C. A. G-Quartet-Induced Nanoparticle Assembly. J. Am. Chem. Soc. 2005, 127, 11568–11569. 10.1021/ja053547s. PubMed DOI
Stefan L.; Monchaud D. Applications of Guanine Quartets in Nanotechnology and Chemical Biology. Nat. Rev. Chem. 2019, 3, 650–668. 10.1038/s41570-019-0132-0. DOI
Webba Da Silva M. Geometric Formalism for DNA Quadruplex Folding. Chem. - Eur. J. 2007, 13, 9738–9745. 10.1002/chem.200701255. PubMed DOI
Kumar N.; Maiti S. A Thermodynamic Overview of Naturally Occurring Intramolecular DNA Quadruplexes. Nucleic Acids Res. 2008, 36, 5610–5622. 10.1093/nar/gkn543. PubMed DOI PMC
Zhang A. Y. Q.; Bugaut A.; Balasubramanian S. A Sequence-Independent Analysis of the Loop Length Dependence of Intramolecular RNA G-Quadruplex Stability and Topology. Biochemistry 2011, 50, 7251–7258. 10.1021/bi200805j. PubMed DOI PMC
Tippana R.; Xiao W.; Myong S. G-Quadruplex Conformation and Dynamics Are Determined by Loop Length and Sequence. Nucleic Acids Res. 2014, 42, 8106–8114. 10.1093/nar/gku464. PubMed DOI PMC
Cang X.; Šponer J.; Cheatham T. E. Insight into G-DNA Structural Polymorphism and Folding from Sequence and Loop Connectivity through Free Energy Analysis. J. Am. Chem. Soc. 2011, 133, 14270–14279. 10.1021/ja107805r. PubMed DOI PMC
Jana J.; Vianney Y. M.; Schröder N.; Weisz K. Guiding the Folding of G-Quadruplexes through Loop Residue Interactions. Nucleic Acids Res. 2022, 50, 7161–7175. 10.1093/nar/gkac549. PubMed DOI PMC
Vesco G.; Lamperti M.; Salerno D.; Marrano C. A.; Cassina V.; Rigo R.; Buglione E.; Bondani M.; Nicoletto G.; Mantegazza F.; Sissi C.; Nardo L. Double-Stranded Flanking Ends Affect the Folding Kinetics and Conformational Equilibrium of G-Quadruplexes Forming Sequences within the Promoter of KIT Oncogene. Nucleic Acids Res. 2021, 49, 9724–9737. 10.1093/nar/gkab674. PubMed DOI PMC
Hänsel R.; Löhr F.; Trantirek L.; Dötsch V. High-Resolution Insight into G-Overhang Architecture. J. Am. Chem. Soc. 2013, 135, 2816–2824. 10.1021/ja312403b. PubMed DOI
Largy E.; Marchand A.; Amrane S.; Gabelica V.; Mergny J. L. Quadruplex Turncoats: Cation-Dependent Folding and Stability of Quadruplex-DNA Double Switches. J. Am. Chem. Soc. 2016, 138, 2780–2792. 10.1021/jacs.5b13130. PubMed DOI
Luu K. N.; Phan A. T.; Kuryavyi V.; Lacroix L.; Patel D. J. Structure of the Human Telomere in K+ Solution: An Intramolecular (3 + 1) G-Quadruplex Scaffold. J. Am. Chem. Soc. 2006, 128, 9963–9970. 10.1021/ja062791w. PubMed DOI PMC
Nishio M.; Tsukakoshi K.; Ikebukuro K. G-Quadruplex: Flexible Conformational Changes by Cations, PH, Crowding and Its Applications to Biosensing. Biosens. Bioelectron. 2021, 178, 11303010.1016/j.bios.2021.113030. PubMed DOI
Brčić J.; Plavec J. ALS and FTD Linked GGGGCC-Repeat Containing DNA Oligonucleotide Folds into Two Distinct G-Quadruplexes. Biochim. Biophys. Acta - Gen. Subj. 2017, 1861, 1237–1245. 10.1016/j.bbagen.2016.11.018. PubMed DOI
Heddi B.; Phan A. T. Structure of Human Telomeric DNA in Crowded Solution. J. Am. Chem. Soc. 2011, 133, 9824–9833. 10.1021/ja200786q. PubMed DOI
Monsen R. C.; Chakravarthy S.; Dean W. L.; Chaires J. B.; Trent J. O. The Solution Structures of Higher-Order Human Telomere G-Quadruplex Multimers. Nucleic Acids Res. 2021, 49, 1749–1768. 10.1093/nar/gkaa1285. PubMed DOI PMC
Monsen R. C.; Deleeuw L. W.; Dean W. L.; Gray R. D.; Chakravarthy S.; Hopkins J. B.; Chaires J. B.; Trent J. O. Long Promoter Sequences Form Higher-Order G-Quadruplexes: An Integrative Structural Biology Study of c-Myc, k-Ras and c-Kit Promoter Sequences. Nucleic Acids Res. 2022, 50, 4127–4147. 10.1093/nar/gkac182. PubMed DOI PMC
Kolesnikova S.; Hubálek M.; Bednárová L.; Cvačka J.; Curtis E. A. Multimerization Rules for G-Quadruplexes. Nucleic Acids Res. 2017, 45, 8684–8696. 10.1093/nar/gkx637. PubMed DOI PMC
Monsen R. C.; Trent J. O.; Chaires J. B. G-Quadruplex DNA: A Longer Story. Acc. Chem. Res. 2022, 55, 3242–3252. 10.1021/acs.accounts.2c00519. PubMed DOI
Monsen R. C. Higher-Order G-Quadruplexes in Promoters Are Untapped Drug Targets. Front. Chem. 2023, 11, 1–7. 10.3389/fchem.2023.1211512. PubMed DOI PMC
Kolesnikova S.; Curtis E. A. Structure and Function of Multimeric G-Quadruplexes. Molecules 2019, 24, 3074.10.3390/molecules24173074. PubMed DOI PMC
Basu S.; Wickstrom E. Temperature and Salt Dependence of Higher Order Structure Formation by Antisense C-Myc and c-Myb Phosphorothioate Oligodeoxyribonucleotides Containing Tetraguanylate Tracts. Nucleic Acids Res. 1997, 25, 1327.10.1093/nar/25.7.1327. PubMed DOI PMC
Zalar M.; Wang B.; Plavec J.; Šket P. Insight into Tetramolecular DNA G-Quadruplexes Associated with ALS and FTLD: Cation Interactions and Formation of Higher-Ordered Structure. Int. J. Mol. Sci. 2023, 24, 1343710.3390/ijms241713437. PubMed DOI PMC
Kim J.; Cheong C.; Moore P. B. Tetramerization of an RNA Oligonucleotide Containing a GGGG Sequence. Nature 1991, 351, 331–332. 10.1038/351331a0. PubMed DOI
Hardin C. C.; Perry A. G.; White K. Thermodynamic and Kinetic Characterization of the Dissociation and Assembly of Quadruplex Nucleic Acids. Biopolymers 2000, 56 (3), 147.10.1002/1097-0282(2000/2001)56:3<147::AID-BIP10011>3.0.CO;2-N. PubMed DOI
Tran P. L. T.; De Cian A.; Gros J.; Moriyama R.; Mergny J.-L. Tetramolecular Quadruplex Stability and Assembly. Quadruplex Nucleic Acids 2012, 330, 243–273. 10.1007/128_2012_334. PubMed DOI
Sagi J. G-Quadruplexes Incorporating Modified Constituents: A Review. J. Biomol. Struct. Dyn. 2014, 32, 477–511. 10.1080/07391102.2013.775074. PubMed DOI
Campbell N. H.; Neidle S. G-Quadruplexes and Metal Ions. Met. Ions Life Sci. 2012, 10, 119–134. 10.1007/978-94-007-2172-2_4/COVER. PubMed DOI
Šket P.; Plavec J. Tetramolecular DNA Quadruplexes in Solution: Insights into Structural Diversity and Cation Movement. J. Am. Chem. Soc. 2010, 132, 12724–12732. 10.1021/ja104889t. PubMed DOI
Sen D.; Gilbert W. Novel DNA Superstructures Formed by Telomere-Like Oligomers. Biochemistry 1992, 31, 65–70. 10.1021/bi00116a011. PubMed DOI
Lu M.; Guo Q.; Kallenbach N. R. Structure and Stability of Sodium and Potassium Complexes of DT4G4 and DT4G4T. Biochemistry 1992, 31, 2455–2459. 10.1021/bi00124a003. PubMed DOI
Krishnan-Ghosh Y.; Liu D.; Balasubramanian S. Formation of an Interlocked Quadruplex Dimer by d(GGGT). J. Am. Chem. Soc. 2004, 126, 11009–11016. 10.1021/ja049259y. PubMed DOI
Sen D.; Gilbert W. A Sodium-Potassium Switch in the Formation of Four-Stranded G4-DNA. Nature. 1990, 344, 410–414. 10.1038/344410a0. PubMed DOI
Peňázová H.; Vorlíčková M. Guanine Tetraplex Formation by Short DNA Fragments Containing Runs of Guanine and Cytosine. Biophys. J. 1997, 73, 2054–2063. 10.1016/S0006-3495(97)78235-3. PubMed DOI PMC
Šket P.; Virgilio A.; Esposito V.; Galeone A.; Plavec J. Strand Directionality Affects Cation Binding and Movement within Tetramolecular G-Quadruplexes. Nucleic Acids Res. 2012, 40, 11047–11057. 10.1093/nar/gks851. PubMed DOI PMC
Chen J.; Cheng M.; Salgado G. F.; Stadlbauer P.; Zhang X.; Amrane S.; Guédin A.; He F.; Šponer J.; Ju H.; Mergny J. L.; Zhou J. The Beginning and the End: Flanking Nucleotides Induce a Parallel G-Quadruplex Topology. Nucleic Acids Res. 2021, 49, 9548–9559. 10.1093/nar/gkab681. PubMed DOI PMC
Šponer J.; Mládek A.; Špačková N.; Cang X.; Cheatham T. E. III; Grimme S. Relative Stability of Different DNA Guanine Quadruplex Stem Topologies Derived Using Large-Scale Quantum-Chemical Computations. J. Am. Chem. Soc. 2013, 135, 9785–9796. 10.1021/ja402525c. PubMed DOI PMC
Clark G. R.; Pytel P. D.; Squire C. J. The High-Resolution Crystal Structure of a Parallel Intermolecular DNA G-4 Quadruplex/Drug Complex Employing Syn Glycosyl Linkages. Nucleic Acids Res. 2012, 40, 5731–5738. 10.1093/nar/gks193. PubMed DOI PMC
Bardin C.; Leroy J. L. The Formation Pathway of Tetramolecular G-Quadruplexes. Nucleic Acids Res. 2008, 36, 477–488. 10.1093/nar/gkm1050. PubMed DOI PMC
Mergny J.-L.; De Cian A.; Ghelab A.; Saccà B.; Lacroix L. Kinetics of Tetramolecular Quadruplexes. Nucleic Acids Res. 2005, 33, 81–94. 10.1093/nar/gki148. PubMed DOI PMC
Protozanova E.; Macgregor R. B. Frayed Wires: A Thermally Stable Form of DNA with Two Distinct Structural Domains. Biochemistry 1996, 35, 16638–16645. 10.1021/bi960412d. PubMed DOI
Guo X.; Liu S.; Yu Z. Bimolecular Quadruplexes and Their Transitions to Higher-Order Molecular Structures Detected by ESI-FTICR-MS. J. Am. Soc. Mass Spectrom. 2007, 18, 1467–1476. 10.1016/j.jasms.2007.05.003. PubMed DOI
Mergny J.-L.; De Cian A.; Amrane S.; Webba Da Silva M. Kinetics of Double-Chain Reversals Bridging Contiguous Quartets in Tetramolecular Quadruplexes. Nucleic Acids Res. 2006, 34, 2386–2397. 10.1093/nar/gkl098. PubMed DOI PMC
Dé Ric Rosu F.; Rie Gabelica V.; Poncelet H.; De Pauw E. Tetramolecular G-Quadruplex Formation Pathways Studied by Electrospray Mass Spectrometry. Nucleic Acids Res. 2010, 38, 5217–5225. 10.1093/nar/gkq208. PubMed DOI PMC
Petraccone L.; Erra E.; Randazzo A.; Giancola C. Energetic Aspects of Locked Nucleic Acids Quadruplex Association and Dissociation. Biopolymers 2006, 83, 584–594. 10.1002/bip.20591. PubMed DOI
Merkina E. E.; Fox K. R. Kinetic Stability of Intermolecular DNA Quadruplexes. Biophys. J. 2005, 89, 365–373. 10.1529/biophysj.105.061259. PubMed DOI PMC
Xu Q.; Deng H.; Braunlin W. H. Selective Localization and Rotational Immobilization of Univalent Cations on Quadruplex DNA. Biochemistry 1993, 32, 13130–13137. 10.1021/bi00211a023. PubMed DOI
Jin R.; Gaffney B. L.; Wang C.; Jones R. A.; Breslauer K. J. Thermodynamics and Structure of a DNA Tetraplex: A Spectroscopic and Calorimetric Study of the Tetramolecular Complexes of d(TG3T) and d(TG3T2G3T). Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 8832–8836. 10.1073/pnas.89.18.8832. PubMed DOI PMC
Petraccone L.; Erra E.; Esposito V.; Randazzo A.; Mayol L.; Nasti L.; Barone G.; Giancola C. Stability and Structure of Telomeric DNA Sequences Forming Quadruplexes Containing Four G-Tetrads with Different Topological Arrangements. Biochemistry 2004, 43, 4877–4884. 10.1021/bi0300985. PubMed DOI
Petraccone L.; Erra E.; Nasti L.; Galeone A.; Randazzo A.; Mayol L.; Barone G.; Giancola C. Effect of a Modified Thymine on the Structure and Stability of [d(TGGGT)]4 Quadruplex. Int. J. Biol. Macromol. 2003, 31, 131–137. 10.1016/S0141-8130(02)00073-9. PubMed DOI
Akhshi P.; Mosey N. J.; Wu G. Free-Energy Landscapes of Ion Movement through a G-Quadruplex DNA Channel. Angew. Chemie - Int. Ed. 2012, 51, 2850–2854. 10.1002/anie.201107700. PubMed DOI
Novotný J.; Kulhánek P.; Marek R. Biocompatible Xanthine-Quadruplex Scaffold for Ion-Transporting DNA Channels. J. Phys. Chem. Lett. 2012, 3, 1788–1792. 10.1021/jz300559w. PubMed DOI
Ngo V. A.; Di Felice R.; Haas S. Is the G-Quadruplex an Effective Nanoconductor for Ions?. J. Phys. Chem. B 2014, 118, 864–872. 10.1021/jp408071h. PubMed DOI
Akhshi P.; Wu G. Umbrella Sampling Molecular Dynamics Simulations Reveal Concerted Ion Movement through G-Quadruplex DNA Channels. Phys. Chem. Chem. Phys. 2017, 19, 11017–11025. 10.1039/C7CP01028A. PubMed DOI
Šponer J.; Cang X.; Cheatham T. E. Molecular Dynamics Simulations of G-DNA and Perspectives on the Simulation of Nucleic Acid Structures. Methods 2012, 57, 25–39. 10.1016/j.ymeth.2012.04.005. PubMed DOI PMC
Šponer J.; Bussi G.; Stadlbauer P.; Kührová P.; Banáš P.; Islam B.; Haider S.; Neidle S.; Otyepka M. Folding of Guanine Quadruplex Molecules–Funnel-like Mechanism or Kinetic Partitioning? An Overview from MD Simulation Studies. Biochim. Biophys. Acta - Gen. Subj. 2017, 1861, 1246–1263. 10.1016/j.bbagen.2016.12.008. PubMed DOI
Krepl M.; Zgarbová M.; Stadlbauer P.; Banáš P.; Koča J.; Cheatham T. E.; Jurečka P.; Šponer J. Reference Simulations of Noncanonical Nucleic Acids with Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012, 8, 2506–2520. 10.1021/ct300275s. PubMed DOI PMC
Šponer J.; Bussi G.; Krepl M.; Banáš P.; Bottaro S.; Cunha R. A.; Gil-Ley A.; Pinamonti G.; Poblete S.; Jurečka P.; Walter N. G.; Otyepka M. RNA Structural Dynamics as Captured by Molecular Simulations: A Comprehensive Overview. Chem. Rev. 2018, 118, 4177–4338. 10.1021/acs.chemrev.7b00427. PubMed DOI PMC
Kührová P.; Mlýnský V.; Zgarbová M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Šponer J.; Banáš P. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J. Chem. Theory Comput. 2019, 15, 3288–3305. 10.1021/acs.jctc.8b00955. PubMed DOI PMC
Mlýnský V.; Kührová P.; Stadlbauer P.; Krepl M.; Otyepka M.; Banáš P.; Šponer J. Simple Adjustment of Intranucleotide Base-Phosphate Interaction in the OL3 AMBER Force Field Improves RNA Simulations. J. Chem. Theory Comput. 2023, 19, 8423–8843. 10.1021/acs.jctc.3c00990. PubMed DOI PMC
Chowdhury S.; Bansal M. G-Quadruplex Structure Can Be Stable with Only Some Coordination Sites Being Occupied by Cations: A Six-Nanosecond Molecular Dynamics Study. J. Phys. Chem. B 2001, 105, 7572–7578. 10.1021/jp010929l. DOI
Špačková N.; Berger I.; Šponer J. Nanosecond Molecular Dynamics Simulations of Parallel and Antiparallel Guanine Quadruplex DNA Molecules. J. Am. Chem. Soc. 1999, 121, 5519–5534. 10.1021/ja984449s. DOI
Havrila M.; Stadlbauer P.; Islam B.; Otyepka M.; Šponer J. Effect of Monovalent Ion Parameters on Molecular Dynamics Simulations of G-Quadruplexes. J. Chem. Theory Comput. 2017, 13, 3911–3926. 10.1021/acs.jctc.7b00257. PubMed DOI
Cavallari M.; Calzolari A.; Garbesi A.; Di Felice R. Stability and Migration of Metal Ions in G4-Wires by Molecular Dynamics Simulations. J. Phys. Chem. B 2006, 110, 26337–26348. 10.1021/jp064522y. PubMed DOI
Cang X.; Šponer J.; Thomas E.; Cheatham I. Explaining the Varied Glycosidic Conformational, G-Tract Length and Sequence Preferences for Anti-Parallel G-Quadruplexes. Nucleic Acids Res. 2011, 39, 4499–4512. 10.1093/nar/gkr031. PubMed DOI PMC
Long X.; Stone M. D. Kinetic Partitioning Modulates Human Telomere DNA G-Quadruplex Structural Polymorphism. PLoS One 2013, 8, e8342010.1371/journal.pone.0083420. PubMed DOI PMC
Bessi I.; Jonker H. R. A.; Richter C.; Schwalbe H. Involvement of Long-Lived Intermediate States in the Complex Folding Pathway of the Human Telomeric G-Quadruplex. Angew. Chemie - Int. Ed. 2015, 54, 8444–8448. 10.1002/anie.201502286. PubMed DOI
Grün J. T.; Schwalbe H. Folding Dynamics of Polymorphic G-Quadruplex Structures. Biopolymers 2022, 113, 113.10.1002/bip.23477. PubMed DOI
Gabelica V. A Pilgrim’s Guide to G-Quadruplex Nucleic Acid Folding. Biochimie 2014, 105, 1–3. 10.1016/j.biochi.2014.08.007. PubMed DOI
Marchand A.; Gabelica V. Folding and Misfolding Pathways of G-Quadruplex DNA. Nucleic Acids Res. 2016, 44, 10999–11012. 10.1093/nar/gkw970. PubMed DOI PMC
Thirumalai D.; Klimov D. K.; Woodson S. A. Kinetic Partitioning Mechanism as a Unifying Theme in the Folding of Biomolecules. Theor. Chem. Acc. 1997, 96, 14–22. 10.1007/s002140050198. DOI
Wyatt J. R.; Davis P. W.; Freier S. M. Kinetics of G-Quartet-Mediated Tetramer Formation. Biochemistry 1996, 35, 8002–8008. 10.1021/bi960124h. PubMed DOI
Hardin C. C.; Corregan M. J.; Lieberman D. V.; Brown B. A. Allosteric Interactions between DNA Strands and Monovalent Cations in DNA Quadruplex Assembly: Thermodynamic Evidence for Three Linked Association Pathways. Biochemistry 1997, 36, 15428–15450. 10.1021/bi970488p. PubMed DOI
Mergny J.-L.; Phan A.-T.; Lacroix L. Following G-Quartet Formation by UV-Spectroscopy. FEBS Lett. 1998, 435, 74–78. 10.1016/S0014-5793(98)01043-6. PubMed DOI
Petraccone L.; Pagano B.; Esposito V.; Randazzo A.; Piccialli G.; Barone G.; Mattia C. A.; Giancola C.; Ponte V.; Melillo D.; Sa F.; Naturali S.; Montesano V. D. F. II; Chimica D. F. II Thermodynamics and Kinetics of PNA - DNA Quadruplex-Forming Chimeras. J. Am. Chem. Soc. 2005, 127, 16215–16223. 10.1021/ja0545923. PubMed DOI
Fabrini G.; Minard A.; Brady R. A.; Di Antonio M.; Di Michele L. Cation-Responsive and Photocleavable Hydrogels from Noncanonical Amphiphilic DNA Nanostructures. Nano Lett. 2022, 22, 602–611. 10.1021/acs.nanolett.1c03314. PubMed DOI PMC
Štefl R.; Cheatham T. E.; Špačková N.; Fadrná E.; Berger I.; Koča J.; Šponer J. Formation Pathways of a Guanine-Quadruplex DNA Revealed by Molecular Dynamics and Thermodynamic Analysis of the Substates. Biophys. J. 2003, 85, 1787–1804. 10.1016/S0006-3495(03)74608-6. PubMed DOI PMC
Cheng Y.; Zhang Y.; You H. Characterization of G-Quadruplexes Folding/Unfolding Dynamics and Interactions with Proteins from Single-Molecule Force Spectroscopy. Biomolecules 2021, 11, 1579.10.3390/biom11111579. PubMed DOI PMC
Koirala D.; Mashimo T.; Sannohe Y.; Yu Z.; Mao H.; Sugiyama H. Intramolecular Folding in Three Tandem Guanine Repeats of Human Telomeric DNA. Chem. Commun. 2006, 48, 2006–2008. 10.1039/c2cc16752b. PubMed DOI
Long X.; Parks J. W.; Bagshaw C. R.; Stone M. D. Mechanical Unfolding of Human Telomere G-Quadruplex DNA Probed by Integrated Fluorescence and Magnetic Tweezers Spectroscopy. Nucleic Acids Res. 2013, 41, 2746–2755. 10.1093/nar/gks1341. PubMed DOI PMC
Nicholson D. A.; Nesbitt D. J. Kinetic and Thermodynamic Control of G-Quadruplex Polymorphism by Na + and K + Cations. J. Phys. Chem. B 2023, 127, 6842–6855. 10.1021/acs.jpcb.3c01001. PubMed DOI
You H.; Wu J.; Shao F.; Yan J. Stability and Kinetics of C- MYC Promoter G-Quadruplexes Studied by Single-Molecule Manipulation. J. Am. Chem. Soc. 2015, 137, 2424–2427. 10.1021/ja511680u. PubMed DOI
Yang B.; Liu Z.; Liu H.; Nash M. A. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front. Mol. Biosci. 2020, 7, 1–19. 10.3389/fmolb.2020.00085. PubMed DOI PMC
Fang J.; Xie C.; Tao Y.; Wei D. An Overview of Single-Molecule Techniques and Applications in the Study of Nucleic Acid Structure and Function. Biochimie 2022, 206, 1–11. 10.1016/j.biochi.2022.09.014. PubMed DOI
Mitra J.; Ha T. Streamlining Effects of Extra Telomeric Repeat on Telomeric DNA Folding Revealed by Fluorescence-Force Spectroscopy. Nucleic Acids Res. 2019, 47, 11044–11056. 10.1093/nar/gkz906. PubMed DOI PMC
Cheng Y.; Zhang Y.; Gong Z.; Zhang X.; Li Y.; Shi X.; Pei Y.; You H. High Mechanical Stability and Slow Unfolding Rates Are Prevalent in Parallel-Stranded DNA G-Quadruplexes. J. Phys. Chem. Lett. 2020, 11, 7966–7971. 10.1021/acs.jpclett.0c02229. PubMed DOI
Yu Z.; Gaerig V.; Cui Y.; Kang H.; Gokhale V.; Zhao Y.; Hurley L. H.; Mao H. Tertiary DNA Structure in the Single-Stranded HTERT Promoter Fragment Unfolds and Refolds by Parallel Pathways via Cooperative or Sequential Events. J. Am. Chem. Soc. 2012, 134, 5157–5164. 10.1021/ja210399h. PubMed DOI PMC
Sotomayor M.; Schulten K. Single-Molecule Experiments in Vitro and in Silico. Science. 2007, 316, 1144–1148. 10.1126/science.1137591. PubMed DOI
Izrailev S.; Stepaniants S.; Isralewitz B.; Kosztin D.; Lu H.; Molnar F.; Wriggers W.; Schulten K.. Steered Molecular Dynamics. In Computational Molecular Dynamics: Challenges, Methods, Ideas; Springer International Publishing, 1999; pp 39–6510.1007/978-3-642-58360-5_2. DOI
Li H.; Cao E.-H.; Gisler T. Force-Induced Unfolding of Human Telomeric G-Quadruplex: A Steered Molecular Dynamics Simulation Study. Biochem. Biophys. Res. Commun. 2009, 379, 70–75. 10.1016/j.bbrc.2008.12.006. PubMed DOI
Bergues-Pupo A. E.; Arias-Gonzalez J. R.; Morón M. C.; Fiasconaro A.; Falo F. Role of the Central Cations in the Mechanical Unfolding of DNA and RNA G-Quadruplexes. Nucleic Acids Res. 2015, 43, 7638–7647. 10.1093/nar/gkv690. PubMed DOI PMC
Stadlbauer P.; Mlýnský V.; Krepl M.; Šponer J. Complexity of Guanine Quadruplex Unfolding Pathways Revealed by Atomistic Pulling Simulations. J. Chem. Inf. Model. 2023, 63, 4716–4731. 10.1021/acs.jcim.3c00171. PubMed DOI PMC
Sun L.; Jin H.; Zhao X.; Liu Z.; Guan Y.; Yang Z.; Zhang L.; Zhang L. Unfolding and Conformational Variations of Thrombin-Binding DNA Aptamers: Synthesis, Circular Dichroism and Molecular Dynamics Simulations. ChemMedChem. 2014, 9, 993–1001. 10.1002/cmdc.201300564. PubMed DOI
Rico F.; Gonzalez L.; Casuso I.; Puig-Vidal M.; Scheuring S. High-Speed Force Spectroscopy Unfolds Titin at the Velocity of Molecular Dynamics Simulations. Science. 2013, 342, 741–743. 10.1126/science.1239764. PubMed DOI
Rico F.; Russek A.; González L.; Grubmüller H.; Scheuring S. Heterogeneous and Rate-Dependent Streptavidin–Biotin Unbinding Revealed by High-Speed Force Spectroscopy and Atomistic Simulations. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 6594–6601. 10.1073/pnas.181690911. PubMed DOI PMC
Phillips K.; Dauter Z.; Murchie A. I. H.; Lilley D. M. J.; Luisi B. The Crystal Structure of a Parallel-Stranded Guanine Tetraplex at 0.95 A Resolution. J. Mol. Biol. 1997, 273, 171–182. 10.1006/jmbi.1997.1292. PubMed DOI
Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC
Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI
Joung I. S.; Cheatham T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. 10.1021/jp8001614. PubMed DOI PMC
Zgarbová M.; Šponer J.; Otyepka M.; Cheatham T. E.; Galindo-Murillo R.; Jurečka P. Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11, 5723–5736. 10.1021/acs.jctc.5b00716. PubMed DOI
Zgarbová M.; Javier Luque F.; Cheatham T. E.; Otyepka M.; Jurečka P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013, 9, 2339–2354. 10.1021/ct400154j. PubMed DOI PMC
Case D. A.; Betz R. M.; Cerutti D. S.; Cheatham T. E. III; Darden T. A.; Duke R. E.; Giese T. J.; Gohlke H.; Goetz A. W.; Homeyer N.; Izadi S.; Janowski P.; Kaus J.; Kovalenko A.; Lee T. S.; LeGrand S.; Li P.; Lin C.; Luchko T.; Luo R.; Pvvd A.. Amber 2018; University of California: San Francisco, 2018.
Abraham M.J.; van der Spoel D.; Lindahl E.; Hess B.. GROMACS User Manual Version 2018; 2018. www.gromacs.org.
Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New Feathers for an Old Bird. Comput. Phys. Commun. 2014, 185, 604–613. 10.1016/j.cpc.2013.09.018. DOI
Darden Tom; York Darrin; Pedersen Lee Particle Mesh Ewald: An N·log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI
Bussi G.; Donadio D.; Parrinello M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, 1–7. 10.1063/1.2408420. PubMed DOI
Parrinello M.; Rahman A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI
Ryckaert J.-P.; Ciccotti G.; Berendsen H. J. C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23, 321–341. 10.1016/0021-9991(77)90098-5. DOI
Hopkins C. W.; Le Grand S.; Walker R. C.; Roitberg A. E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015, 11, 1864–1874. 10.1021/ct5010406. PubMed DOI
Humphrey W.; Dalke A.; Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI
Pettersen E. F.; Goddard T. D.; Huang C. C.; Couch G. S.; Greenblatt D. M.; Meng E. C.; Ferrin T. E. UCSF Chimera - A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. 10.1002/jcc.20084. PubMed DOI
Gowers R.; Linke M.; Barnoud J.; Reddy T.; Melo M.; Seyler S.; Domański J.; Dotson D.; Buchoux S.; Kenney I.; Beckstein O.. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proc. 15th Python Sci. Conf.2016, No. Scipy, 98–10510.25080/majora-629e541a-00e. DOI
Michaud-Agrawal N.; Denning E. J.; Woolf T. B.; Beckstein O. MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. J. Comput. Chem. 2011, 32, 2319–2327. 10.1002/jcc.21787. PubMed DOI PMC
Harris C. R.; Millman K. J.; van der Walt S. J.; Gommers R.; Virtanen P.; Cournapeau D.; Wieser E.; Taylor J.; Berg S.; Smith N. J.; Kern R.; Picus M.; Hoyer S.; van Kerkwijk M. H.; Brett M.; Haldane A.; del Río J. F.; Wiebe M.; Peterson P.; Gérard-Marchant P.; Sheppard K.; Reddy T.; Weckesser W.; Abbasi H.; Gohlke C.; Oliphant T. E. Array Programming with NumPy. Nature 2020, 585, 357–362. 10.1038/s41586-020-2649-2. PubMed DOI PMC
Roe D. R.; Cheatham T. E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9 (7), 3084.10.1021/ct400341p. PubMed DOI
RStudio: Integrated Development for R. RStudio, Inc.: Boston, MA, 2018. http://www.rstudio.com/.
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI
Stadlbauer P.; Krepl M.; Cheatham T. E. III; Koča J.; Šponer J. Structural Dynamics of Possible Late-Stage Intermediates in Folding of Quadruplex DNA Studied by Molecular Simulations. Nucleic Acids Res. 2013, 41, 7128.10.1093/nar/gkt412. PubMed DOI PMC
Rocca R.; Palazzesi F.; Amato J.; Costa G.; Ortuso F.; Pagano B.; Randazzo A.; Novellino E.; Alcaro S.; Moraca F.; Artese A. Folding Intermediate States of the Parallel Human Telomeric G-Quadruplex DNA Explored Using Well-Tempered Metadynamics. Sci. Rep. 2020, 10, 1–11. 10.1038/s41598-020-59774-x. PubMed DOI PMC
Kinnaman L. J.; Roller R. M.; Miller C. S. Comparing Classical Water Models Using Molecular Dynamics to Find Bulk Properties. J. Chem. Educ. 2018, 95, 888–894. 10.1021/acs.jchemed.7b00385. DOI
Salsbury A. M.; Lemkul J. A. Molecular Dynamics Simulations of the C-Kit1 Promoter G-Quadruplex: Importance of Electronic Polarization on Stability and Cooperative Ion Binding. J. Phys. Chem. B 2019, 123, 148–159. 10.1021/acs.jpcb.8b11026. PubMed DOI
Gkionis K.; Kruse H.; Platts J. A.; Mládek A.; Koča J.; Šponer J. Ion Binding to Quadruplex DNA Stems. Comparison of MM and QM Descriptions Reveals Sizable Polarization Effects Not Included in Contemporary Simulations. J. Chem. Theory Comput. 2014, 10, 1326–1340. 10.1021/ct4009969. PubMed DOI
Dai Y. X.; Duan X. L.; Fu W. T.; Wang S.; Liu N. N.; Li H. H.; Ai X.; Guo H. L.; Navés C. A.; Bugnard E.; Auguin D.; Hou X. M.; Rety S.; Xi X. G. Stimulation of ATP Hydrolysis by SsDNA Provides the Necessary Mechanochemical Energy for G4 Unfolding. J. Mol. Biol. 2024, 436, 16837310.1016/j.jmb.2023.168373. PubMed DOI
Postberg J.; Tsytlonok M.; Sparvoli D.; Rhodes D.; Lipps H. J. A Telomerase-Associated RecQ Protein-like Helicase Resolves Telomeric G-Quadruplex Structures during Replication. Gene 2012, 497, 147–154. 10.1016/j.gene.2012.01.068. PubMed DOI PMC
Paeschke K.; Bochman M. L.; Garcia P. D.; Cejka P.; Friedman K. L.; Kowalczykowski S. C.; Zakian V. A. Pif1 Family Helicases Suppress Genome Instability at G-Quadruplex Motifs. Nature 2013, 497, 458–462. 10.1038/nature12149. PubMed DOI PMC
Lejault P.; Ré Mie Mitteaux J.; Sperti F. R.; Monchaud D. How to Untie G-Quadruplex Knots and Why?. Cell Chem Biol. 2021, 28 (4), 436–455. 10.1016/j.chembiol.2021.01.015. PubMed DOI
Mendoza O.; Bourdoncle A.; Boulé J. B.; Brosh R. M.; Mergny J. L. G-Quadruplexes and Helicases. Nucleic Acids Res. 2016, 44, 1989–2006. 10.1093/nar/gkw079. PubMed DOI PMC
Hänsel-Hertsch R.; Di Antonio M.; Balasubramanian S. DNA G-Quadruplexes in the Human Genome: Detection, Functions and Therapeutic Potential. Nat. Rev. Mol. Cell Biol. 2017, 18, 279–284. 10.1038/nrm.2017.3. PubMed DOI
Estep K. N.; Butler T. J.; Ding J.; Brosh R. M. G4-Interacting DNA Helicases and Polymerases: Potential Therapeutic Targets. Curr. Med. Chem. 2019, 26, 2881–2897. 10.2174/0929867324666171116123345. PubMed DOI PMC
Lynch Susanna; Baker H.; Byker S. G.; Zhou D.; Sinniah K. Single Molecule Force Spectroscopy on G-Quadruplex DNA. Chemistry (Easton). 2009, 15, 8113–8116. 10.1002/chem.200901390. PubMed DOI PMC
Cheng Y.; Tang Q.; Li Y.; Zhang Y.; Zhao C.; Yan J.; You X. H. Folding/Unfolding Kinetics of G-Quadruplexes Upstream of the P1 Promoter of the Human BCL-2 Oncogene. J. Biol. Chem. 2019, 294 (15), 5890–5895. 10.1074/jbc.RA119.007516. PubMed DOI PMC
Yu Z.; Schonhoft J. D.; Dhakal S.; Bajracharya R.; Hegde R.; Basu S.; Mao H. ILPR G-Quadruplexes Formed in Seconds Demonstrate High Mechanical Stabilities. J. Am. Chem. Soc. 2009, 2009 (131), 1876–1882. 10.1021/ja806782s. PubMed DOI
De Messieres M.; Chang J. C.; Brawn-Cinani B.; La Porta A. Single-Molecule Study of g-Quadruplex Disruption Using Dynamic Force Spectroscopy. Phys. Rev. Lett. 2012, 109, 1–5. 10.1103/PhysRevLett.109.058101. PubMed DOI
Koirala D.; Dhakal S.; Ashbridge B.; Sannohe Y.; Rodriguez R.; Sugiyama H.; Balasubramanian S.; Mao H. A Single-Molecule Platform for Investigation of Interactions between G-Quadruplexes and Small-Molecule Ligands. Nat. Chem. 2011, 3, 782–787. 10.1038/nchem.1126. PubMed DOI PMC
You H.; Zeng X.; Xu Y.; Lim C. J.; Efremov A. K.; Phan A. T.; Yan J. Dynamics and Stability of Polymorphic Human Telomeric G-Quadruplex under Tension. Nucleic Acids Res. 2014, 42, 8789–8795. 10.1093/nar/gku581. PubMed DOI PMC
Mitra J.; Makurath M. A.; Ngo T. T. M.; Troitskaia A.; Chemla Y. R.; Ha T.; Block S. M. Extreme Mechanical Diversity of Human Telomeric DNA Revealed by Fluorescence-Force Spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 8350–8359. 10.1073/pnas.1815162116. PubMed DOI PMC
Dhakal S.; Cui Y.; Koirala D.; Ghimire C.; Kushwaha S.; Yu Z.; Yangyuoru P. M.; Mao H. Structural and Mechanical Properties of Individual Human Telomeric G-Quadruplexes in Molecularly Crowded Solutions. Nucleic Acids Res. 2013, 41 (6), 3915.10.1093/nar/gkt038. PubMed DOI PMC
Zhang Y.; Cheng Y.; Chen J.; Zheng K.; You H. Mechanical Diversity and Folding Intermediates of Parallel-Stranded G-Quadruplexes with a Bulge. Nucleic Acids Res. 2021, 49, 7179–7188. 10.1093/nar/gkab531. PubMed DOI PMC
Yang C.; Jang S.; Pak Y. Multiple Stepwise Pattern for Potential of Mean Force in Unfolding the Thrombin Binding Aptamer in Complex with Sr2+. J. Chem. Phys. 2011, 135, 22510410.1063/1.3669424. PubMed DOI
Bergues-Pupo A. E.; Gutiérrez I.; Arias-Gonzalez J. R.; Falo F.; Fiasconaro A. Mesoscopic Model for DNA G-Quadruplex Unfolding. Sci. Rep. 2017, 7, 1–13. 10.1038/s41598-017-10849-2. PubMed DOI PMC
Parkinson G. N.; Lee M. P. H.; Neidle S. Crystal Structure of Parallel Quadruplexes from Human Telomeric DNA. Nature 2002, 417, 876–880. 10.1038/nature755. PubMed DOI
Islam B.; Stadlbauer P.; Gil-Ley A.; Pérez-Hernández G.; Haider S.; Neidle S.; Bussi G.; Banas P.; Otyepka M.; Šponer J. Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic Simulations. J. Chem. Theory Comput. 2017, 13, 2458–2480. 10.1021/acs.jctc.7b00226. PubMed DOI PMC
Šponer J.; Islam B.; Stadlbauer P.; Haider S. Molecular Dynamics Simulations of G-Quadruplexes: The Basic Principles and Their Application to Folding and Ligand Binding. Annu. Rep. Med. Chem. 2020, 54, 197–241. 10.1016/bs.armc.2020.04.002. DOI
Qiu D.; Cheng M.; Stadlbauer P.; Chen J.; Langer M.; Zhang X.; Gao Q.; Ju H.; Šponer J.; Mergny J.-L.; Monchaud D.; Zhou J. Topology of DNA G-Quadruplexes Can Be Harnessed in Holliday Junction-Based DNA Suprastructures to Control and Optimize Their Biocatalytic Properties. ACS Catal. 2023, 13, 10722–10733. 10.1021/acscatal.3c02818. DOI
Pipier A.; Devaux A.; Lavergne T.; Adrait A.; Couté Y.; Britton S.; Calsou P.; Riou J. F.; Defrancq E.; Gomez D. Constrained G4 Structures Unveil Topology Specificity of Known and New G4 Binding Proteins. Sci. Rep. 2021, 11, 1–15. 10.1038/s41598-021-92806-8. PubMed DOI PMC