Multimerization rules for G-quadruplexes
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
28911118
PubMed Central
PMC5587800
DOI
10.1093/nar/gkx637
PII: 4002725
Knihovny.cz E-zdroje
- MeSH
- cirkulární dichroismus MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- kationty dvojmocné chemie farmakologie MeSH
- konformace nukleové kyseliny MeSH
- mutace fyziologie MeSH
- polymerizace MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- kationty dvojmocné MeSH
G-quadruplexes can multimerize under certain conditions, but the sequence requirements of such structures are not well understood. In this study, we investigated the ability of all possible variants of the central tetrad in a monomeric, parallel-strand G-quadruplex to form higher-order structures. Although most of these 256 variants existed primarily as monomers under the conditions of our screen, ∼10% formed dimers or tetramers. These structures could form in a wide range of monovalent and divalent metal ions, and folding was highly cooperative in both KCl and MgCl2. As was previously shown for G-quadruplexes that bind GTP and promote peroxidase reactions, G-quadruplexes that form dimers and tetramers have distinct sequence requirements. Some mutants could also form heteromultimers, and a second screen was performed to characterize the sequence requirements of these structures. Taken together, these experiments provide new insights into the sequence requirements and structures of both homomultimeric and heteromultimeric G-quadruplexes.
Zobrazit více v PubMed
Powers E.T., Powers D.L.. A perspective on mechanisms of protein tetramer formation. Biophys. J. 2003; 85:3587–3599. PubMed PMC
Marianayagam N.J., Sunde M., Matthews J.M.. The power of two: protein dimerization in biology. Trends Biochem. Sci. 2004; 29:618–625. PubMed
Ali M.H., Imperiali B.. Protein oligomerization: how and why. Bioorg. Med. Chem. 2005; 13:5013–5020. PubMed
Griffin M.D., Gerrard J.A.. The relationship between oligomeric state and protein function. Adv. Exp. Med. Biol. 2012; 747:74–90. PubMed
Mannige R.V., Brooks C.L. III. Periodic table of virus capsids: implications for natural selection and design. PLoS One. 2010; 5:e9423. PubMed PMC
Neves S.R., Ram P.T., Iyengar R.. G protein pathways. Science. 2002; 296:1636–1639. PubMed
Watson J.D., Crick F.H.. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature. 1953; 171:737–738. PubMed
Turner D.H. Thermodynamics of base pairing. Curr. Opin. Struct. Biol. 1996; 6:299–304. PubMed
Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136:215–233. PubMed PMC
Sen D., Gilbert W.. Novel DNA superstructures formed by telomere-like oligomers. Biochemistry. 1992; 31:65–70. PubMed
Marsh T.C., Henderson E.. G-wires: self-assembly of a telomeric oligonucleotide, d(GGGGTTGGGG), into large superstructures. Biochemistry. 1994; 33:10718–10724. PubMed
Protozanova E., Macgregor R.B. Jr. Frayed wires: a thermally stable form of DNA with two distinct structural domains. Biochemistry. 1996; 35:16638–16645. PubMed
Mergny J.L., De Cian A., Amrane S., Webba da Silva M.. Kinetics of double-chain reversals bridging contiguous quartets in tetramolecular quadruplexes. Nucleic Acids Res. 2006; 34:2386–2397. PubMed PMC
Bardin C., Leroy J.L.. The formation pathway of tetramolecular G-quadruplexes. Nucleic Acids Res. 2008; 36:477–488. PubMed PMC
Rosu F., Gabelica V., Poncelet H., De Pauw E.. Tetramolecular G-quadruplex formation pathways studied by electrospray mass spectrometry. Nucleic Acids Res. 2010; 38:5217–5225. PubMed PMC
Matsugami A., Ouhashi K., Kanagawa M., Liu H., Kanagawa S., Uesugi S., Katahira M.. An intramolecular quadruplex of (GGA)(4) triplet repeat DNA with a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad, and its dimeric interaction. J. Mol. Biol. 2001; 313:255–269. PubMed
Krishnan-Ghosh Y., Liu D., Balasubramanian S.. Formation of an interlocked quadruplex dimer by d(GGGT). J. Am. Chem. Soc. 2004; 126:11009–11016. PubMed
Kato Y., Ohyama T., Mita H., Yamamoto Y.. Dynamics and thermodynamics of dimerization of parallel G-quadruplexed DNA formed from d(TTAGn) (n = 3-5). J. Am. Chem. Soc. 2005; 127:9980–9981. PubMed
Kuryavyi V., Phan A.T., Patel D.J.. Solution structures of all parallel-stranded monomeric and dimeric G-quadruplex scaffolds of the human c-kit2 promoter. Nucleic Acids Res. 2010; 38:6757–6773. PubMed PMC
Borbone N., Amato J., Oliviero G., D’Atri V., Gabelica V., De Pauw E., Piccialli G., Mayol L.. d(CGGTGGT) forms an octameric parallel G-quadruplex via stacking of unusual G(:C):G(:C):G(:C):G(:C) octads. Nucleic Acids Res. 2011; 39:7848–7857. PubMed PMC
Do N.Q., Lim K.W., Teo M.H., Heddi B., Phan A.T.. Stacking of G-quadruplexes: NMR structure of a G-rich oligonucleotide with potential anti-HIV and anticancer activity. Nucleic Acids Res. 2011; 39:9448–9457. PubMed PMC
Trajkovski M., da Silva M.W., Plavec J.. Unique structural features of interconverting monomeric and dimeric G-quadruplexes adopted by a sequence from the intron of the N-myc gene. J. Am. Chem. Soc. 2012; 134:4132–4141. PubMed
Wei D., Todd A.K., Zloh M., Gunaratnam M., Parkinson G.N., Neidle S.. Crystal structure of a promoter sequence in the B-raf gene reveals an intertwined dimer quadruplex. J. Am. Chem. Soc. 2013; 135:19319–19329. PubMed
D’Atri V., Borbone N., Amato J., Gabelica V., D’Errico S., Piccialli G., Mayol L., Oliviero G.. DNA-based nanostructures: the effect of the base sequence on octamer formation from d(XGGYGGT) tetramolecular G-quadruplexes. Biochimie. 2014; 99:119–128. PubMed
Podbevšek P., Plavec J.. KRAS promoter oligonucleotide with decoy activity dimerizes into a unique topology consisting of two G-quadruplex units. Nucleic Acids Res. 2015; 44:917–925. PubMed PMC
Gao S., Cao Y., Yan Y., Guo X.. Sequence effect on the topology of 3 + 1 interlocked bimolecular DNA G-quadruplexes. Biochemistry. 2016; 55:2694–2703. PubMed
Laughlan G., Murchie A.I., Norman D.G., Moore M.H., Moody P.C., Lilley D.M., Luisi B.. The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science. 1994; 265:520–524. PubMed
Švehlová K., Lawrence M.S., Bednárová L., Curtis E.A.. Altered biochemical specificity of G-quadruplexes with mutated tetrads. Nucleic Acids Res. 2016; 44:10789–10803. PubMed PMC
Weiss J.N. The Hill equation revisited: uses and misuses. FASEB J. 1997; 11:835–841. PubMed
Curtis E.A., Liu D.R.. Discovery of widespread GTP-binding motifs in genomic RNA and DNA. Chem. Biol. 2013; 20:521–532. PubMed PMC
Kypr J., Kejnovská I., Renčiuk D., Vorlíčková M.. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009; 37:1713–1725. PubMed PMC
Vorlíčková M., Kejnovská I., Sagi J., Renčiuk D., Bednářová K., Motlová J., Kypr J.. Circular dichroism and guanine quadruplexes. Methods. 2012; 57:64–75. PubMed
Tóthová P., Krafčíková P., Víglaský V.. Formation of highly ordered multimers in G-quadruplexes. Biochemistry. 2014; 31:8112–8119. PubMed
Smargiasso N., Rosu F., Hsia W., Colson P., Baker E.S., Bowers M.T., De Pauw E., Gabelica V.. G-quadruplex DNA assemblies: loop length, cation identity, and multimer formation. J. Am. Chem. Soc. 2008; 130:10208–10216. PubMed
Yuan G., Zhang Q., Zhou J., Li H.. Mass spectrometry of G-quadruplex DNA: formation, recognition, property, conversion, and conformation. Mass. Spectrom. Rev. 2011; 30:1121–1142. PubMed
Balthasart F., Plavec J., Gabelica V.. Ammonium ion binding to DNA G-quadruplexes: do electrospray mass spectra faithfully reflect the solution-phase species. J. Am. Soc. Mass Spectrom. 2013; 24:1–8. PubMed PMC
Chen F.M. Sr2+ facilitates intermolecular G-quadruplex formation of telomeric sequences. Biochemistry. 1992; 31:3769–3776. PubMed
Smirnov I., Shafer R.H.. Lead is unusually effective in sequence-specific folding of DNA. J. Mol. Biol. 2000; 296:1–5. PubMed
Davis J.T. G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angew. Chem. Int. Ed. Engl. 2004; 43:668–698. PubMed
Wei C., Tang Q., Li C.. Structural transition from the random coil to quadruplex of AG(3)(T(2)AG(3))(3) induced by Zn(2+). Biophys. Chem. 2008; 132:110–113. PubMed
Guiset Miserachs H., Donghi D., Börner N., Johannsen S., Sigel R.K.. Distinct differences in metal ion specificity of RNA and DNA G-quadruplexes. J. Biol. Inorg. Chem. 2016; 21:975–986. PubMed
Mullen M.A., Assmann S.M., Bevilacqua P.C.. Toward a digital gene response: RNA G-quadruplexes with fewer quartets fold with higher cooperativity. J. Am. Chem. Soc. 2012; 134:812–815. PubMed
Kwok C.K., Sherlock M.E., Bevilacqua P.C.. Decrease in RNA folding cooperativity by deliberate population of intermediates in RNA G-quadruplexes. Angew. Chem. Int. Ed. Engl. 2013; 52:683–686. PubMed
Wilkie A.O.M. The molecular basis of genetic dominance. J. Med. Genet. 1994; 31:89–98. PubMed PMC
Wang Y., Patel D.J.. Guanine residues in d(T2AG3) and d(T2G4) form parallel-stranded potassium cation stabilized G-quadruplexes with anti glycosidic torsion angles in solution. Biochemistry. 1992; 31:8112–8119. PubMed
Lech C.J., Heddi B., Phan A.T.. Guanine base stacking in G-quadruplex nucleic acids. Nucleic Acids Res. 2013; 41:2034–2046. PubMed PMC
NMR Screen Reveals the Diverse Structural Landscape of a G-Quadruplex Library
Pushing the Limits of Nucleic Acid Function
Overlapping but distinct: a new model for G-quadruplex biochemical specificity
Diversity of Parallel Guanine Quadruplexes Induced by Guanine Substitutions
Structure and Function of Multimeric G-Quadruplexes