NMR Screen Reveals the Diverse Structural Landscape of a G-Quadruplex Library
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
152120
Grantová Agentura, Univerzita Karlova
CZ.02.01.01/00/22_008/0004575
OP JAK
PubMed
39159147
PubMed Central
PMC11610706
DOI
10.1002/chem.202401437
Knihovny.cz E-resources
- Keywords
- DNA, G-quadruplex, Multimeric structures, NMR,
- MeSH
- G-Quadruplexes * MeSH
- Guanosine Triphosphate chemistry metabolism MeSH
- Magnetic Resonance Spectroscopy methods MeSH
- Mutation MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Guanosine Triphosphate MeSH
G-quadruplexes are noncanonical nucleic acid structures formed by stacked guanosine tetrads. Despite their functional and structural diversity, a single consensus model is typically used to describe sequences with the potential to form G-quadruplex structures. We are interested in developing more specific sequence models for G-quadruplexes. In previous work, we functionally characterized each sequence in a 496-member library of variants of a monomeric reference G-quadruplex for the ability to bind GTP, promote a model peroxidase reaction, generate intrinsic fluorescence, and to form multimers. Here we used NMR to obtain a broad overview of the structural features of this library. After determining the 1H NMR spectrum of each of these 496 sequences, spectra were sorted into multiple classes, most of which could be rationalized based on mutational patterns in the primary sequence. A more detailed screen using representative sequences provided additional information about spectral classes, and confirmed that the classes determined based on analysis of 1H NMR spectra are correlated with functional categories identified in previous studies. These results provide new insights into the surprising structural diversity of this library. They also show how NMR can be used to identify classes of sequences with distinct mutational signatures and functions.
Department of Cell Biology Faculty of Science Charles University Prague Prague Czech Republic
Department of Informatics and Chemistry University of Chemistry and Technology Prague Czech Republic
Institute of Organic Chemistry and Biochemistry Prague Czech Republic
See more in PubMed
Spiegel J., Adhikari S., Balasubramanian S., Trends in Chem. 2020, 2, 123–136. PubMed PMC
Huppert J. L., Balasubramanian S., Nucleic Acids Res. 2005, 33, 2908–2916. PubMed PMC
Sengar A., Vandana J. J., Chambers V. S., Di Antonio M., Winnerdy F. R., Balasubramanian S., Phan A. T., Nucleic Acids Res. 2019, 47, 1564–1572. PubMed PMC
Mukundan V. T., Phan A. T., J Am.Chem. Soc. 2013, 135, 5017–5028. PubMed
Heddi B., Nucleic Acids Res. 2016, 44, 910–916. PubMed PMC
Guedin A., Gros J., Alberti P., Mergny J.-L., Nucleic Acids Res. 2010, 38, 7858–7868. PubMed PMC
Kocman V., Plavec J., Nature Commun. 2017, 8, 1–15. PubMed PMC
Patel P. K., Koti A. S. R., Hosur R. V., Nucleic Acids Res. 1999, 27, 3836–3843. PubMed PMC
Besnard E., Babled A., Lapasset L., Milhavet O., Parrinello H., Dantec C., Marin J.-M., Lemaitre J.-M., Nature Struct. Mol. Biol. 2012, 19, 837–844. PubMed
Paeschke K., Bochman M. L., Garcia P. D., Cejka P., Friedman K. L., Kowalczykowski S. C., Zakian V. A., Nature 2013, 497, 458–462. PubMed PMC
Curtis E. A., Liu D. R., Chem. Biol. 2013, 20(4), 521–532. PubMed PMC
Mishra S. K., Tawani A., Mishra A., Kumar A., Scientific Rep. 2016, 6, 1–9.
Mendez M. A., Szalai V. A., Biopolymers: Orig. Res. Biomol. 2009, 91, 841–850. PubMed
Kwok C. K., Sherlock M. E., Bevilacqua P. C., Biochemistry 2013, 52, 3019–3021. PubMed
Majerová T., Streckerová T., Bednárová L., Curtis E. A., Biochemistry 2018, 57, 4052–4062. PubMed
Travascio P., Li Y., Sen D., Chem. Biol. 1998, 5, 505–517. PubMed
Sen D., Poon L. C. H., Crit. Rev. Biochem. Mol. Biol. 2011, 46, 478–492. PubMed
Mergny J.-L., Sen D., Chem. Rev. 2019, 119, 6290–6325. PubMed
Volek M., Kolesnikova S., Svehlova K., Srb P., Sgallová R., Streckerová T., Redondo J. A., Veverka V., Curtis E. A., Nucleic Acids Res. 2021, 49, 1816–1827. PubMed PMC
Kolesnikova S., Hubálek M., Bednárová L., Cvačka J., Curtis E. A., Nucleic Acids Res. 2017, 45, 8684–8696. PubMed PMC
Kolesnikova S., Srb P., Vrzal L., Lawrence M. S., Veverka V., Curtis E. A., ACS Chem. Biol. 2019, 14, 1951–1963. PubMed
Švehlová K., Lawrence M. S., Bednárová L., Curtis E. A., Nucleic Acids Res. 2016, 44, 10789–10803. PubMed PMC
Huppert J. L., Biochimie 2008, 90, 1140–1148. PubMed
Gray D. M., Wen J.-D., Gray C. W., Repges R., Repges C., Raabe G., Fleischhauer J., Chirality: Pharmacol., Biol., Chem. Conseq. Mol. Asymmetry 2008, 20, 431–440. PubMed
Mergny J.-L., Phan A.-T., Lacroix L., FEBS Lett. 1998, 435, 74–78. PubMed
Mergny J.-L., Maurizot J.-C., ChemBioChem 2001, 2, 124–132. PubMed
Rosu F., Gabelica V., Houssier C., Colson P., Pauw E. D., Rapid Commun. Mass Spectrom. 2002, 16, 1729–1736. PubMed
Campbell N. H., Parkinson G. N., Methods 2007, 43, 252–263. PubMed
Adrian M., Heddi B., Phan A. T., Methods 2012, 57, 11–24. PubMed
Čeru S., Šket P., Prislan I., Lah J., Plavec J., Angewandte Chemie 2014, 126. PubMed
Nguyen T. Q. N., Lim K. W., Phan A. T., J. Phys. Chem. B 2020, 124, 5122–5130. PubMed
Marchand A., Gabelica V., Nucleic Acids Res. 2016, gkw970. PubMed PMC
Kejnovská I., Stadlbauer P., Journal 2021, 27, 12115–12125. PubMed
Goddard T. D., Kneller D. G., Sparky 3, University of California, San Francisco: 2008.
Lee W., Tonelli M., Markley J. L., Bioinformatics 2015, 31, 1325–1327. PubMed PMC
Tsukakoshi K., Yamagishi Y., Kanazashi M., Nakama K., Oshikawa D., Savory N., Matsugami A., Hayashi F., Lee J., Saito T., Sode K., Khunathai K., Kuno H., Ikebukuro K., Nucleic Acids Res. 2021, 49, 6069–6081. PubMed PMC
Do N. Q., Chung W. J., Truong T. H. A., Heddi B., Phan A. T., Nucleic Acids Res. 2017, 45, 7487–7493. PubMed PMC
Ngoc Nguyen T. Q., Lim K. W., Phan A. T., Nucleic Acids Res. 2020, 48, 10567–10575. PubMed PMC
Escaja N., Mir B., Molecules 2022, 27, 5287. PubMed PMC
Liu H., Wang R., Yu X., Shen F., Lan W., Haruehanroengra P., Yao Q., Zhang J., Chen Y., Nucleic Acids Res. 2018, 46, 11627–11638. PubMed PMC
Guedin A., Alberti P., Mergny J.-L., Nucleic Acids Res. 2009, 37, 5559–5567. PubMed PMC
Chambers V. S., Marsico G., Boutell J. M., Di Antonio M., Smith G. P., Balasubramanian S., Nature Biotech. 2015, 33, 877–881. PubMed
Muniyappa K., Anuradha S., Byers B., Mol. Cell. Biol. 2000, 20, 1361–1369. PubMed PMC
Arimondo P. B., Riou J.-F., Mergny J.-L., Tazi J., Sun J.-S., Garestier T., Hélène C., Nucleic Acids Res. 2000, 28, 4832–4838. PubMed PMC
Rajendran A., Endo M., Hidaka K., Tran P. L. T., Mergny J.-L., Gorelick R. J., Sugiyama H., J. Am. Chem. Soc. 2013, 135, 18575–18585. PubMed PMC
Guédin A., De Cian A., Gros J., Lacroix L., Mergny J.-L., Biochimie 2008, 90, 686–696. PubMed
Puig Lombardi E., Holmes A., Verga D., Teulade-Fichou M.-P., Nicolas A., Londono-Vallejo A., Nucleic Acids Res. 2019, 47, 6098–6113. PubMed PMC