The tracing of mycobacteria in drinking water supply systems by culture, conventional, and real time PCRs

. 2013 Dec ; 67 (6) : 725-31. [epub] 20130731

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23900570

Mycobacteria are widely present in diverse aquatic habitats, where they can survive for months or years while some species can even proliferate. The resistance of different mycobacterial species to disinfection methods like chlorination or ozonation could result in their presence in the final tap water of consumers. In this study, the culture method, Mycobacterium tuberculosis complex conventional duplex PCR for detection of non-tuberculous mycobacteria (NTM) and quantitative real-time PCR (qPCR) to detect three subspecies of M. avium species (M. a. avium, M. a. hominissuis, and M. a. paratuberculosis) were used to trace their possible path of transmission from the watershed through the reservoir and drinking water plant to raw drinking water and finally to households. A total of 124 samples from four drinking water supply systems in the Czech Republic, 52 dam sediments, 34 water treatment plant sludge samples, and 38 tap water household sediments, were analyzed. NTM of 11 different species were isolated by culture from 42 (33.9 %) samples; the most prevalent were M. gordonae (16.7 %), M. triplex (14.3 %), M. lentiflavum (9.5 %), M. a. avium (7.1 %), M. montefiorenase (7.1 %), and M. nonchromogenicum (7.1 %). NTM DNA was detected in 92 (76.7 %) samples. By qPCR analysis a statistically significant decrease (P < 0.01) was observed along the route from the reservoir (dam sediments), through water treatment sludge and finally to household sediments. The concentrations ranged from 10(0) to 10(4) DNA cells/g. It was confirmed that drinking water supply systems (watershed-reservoir-drinking water treatment plant-household) might be a potential transmission route for mycobacteria.

Zobrazit více v PubMed

Emerg Infect Dis. 2011 Mar;17(3):419-24 PubMed

Jpn J Infect Dis. 2007 May;60(2-3):140-4 PubMed

Int J Food Microbiol. 2008 Dec 10;128(2):250-7 PubMed

J Clin Microbiol. 1999 Apr;37(4):1008-12 PubMed

Appl Environ Microbiol. 2007 Oct;73(19):6201-7 PubMed

BMC Infect Dis. 2003 Nov 11;3:26 PubMed

Clin Infect Dis. 1992 Jul;15(1):1-10 PubMed

JAMA. 1988 Sep 16;260(11):1599-601 PubMed

Lancet. 1994 May 7;343(8906):1137-41 PubMed

Appl Environ Microbiol. 2005 Apr;71(4):2130-9 PubMed

Int J Syst Bacteriol. 1990 Jul;40(3):254-60 PubMed

Res Vet Sci. 2008 Oct;85(2):257-64 PubMed

Vet Microbiol. 2010 Aug 26;144(3-4):437-43 PubMed

Clin Microbiol Rev. 2004 Jan;17(1):98-106 PubMed

Appl Environ Microbiol. 2006 Jun;72(6):4067-77 PubMed

J Appl Microbiol. 2009 Aug;107(2):356-67 PubMed

Appl Environ Microbiol. 1980 Jan;39(1):48-53 PubMed

Appl Environ Microbiol. 2001 Mar;67(3):1225-31 PubMed

Appl Environ Microbiol. 2002 Nov;68(11):5318-25 PubMed

Water Res. 2011 May;45(11):3271-8 PubMed

Appl Environ Microbiol. 2005 Sep;71(9):5304-8 PubMed

J Appl Microbiol. 2004;96(5):922-30 PubMed

Am J Respir Crit Care Med. 2007 Feb 15;175(4):367-416 PubMed

Int J Hyg Environ Health. 2011 Jun;214(3):258-64 PubMed

J Infect Dis. 2004 Jan 1;189(1):98-104 PubMed

Zentralbl Bakteriol Mikrobiol Hyg B. 1985 May;180(5-6):505-14 PubMed

J Clin Microbiol. 2011 Jan;49(1):167-72 PubMed

Med Vet Entomol. 2001 Jun;15(2):208-11 PubMed

Int J Syst Evol Microbiol. 2002 Sep;52(Pt 5):1505-1518 PubMed

BMC Res Notes. 2012 Feb 22;5:114 PubMed

Appl Environ Microbiol. 1999 Jun;65(6):2492-6 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace