"Mycobacterium avium subsp. hominissuis" in neck lymph nodes of children and their environment examined by culture and triplex quantitative real-time PCR
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
PubMed
21084514
PubMed Central
PMC3020421
DOI
10.1128/jcm.00802-10
PII: JCM.00802-10
Knihovny.cz E-zdroje
- MeSH
- bakteriologické techniky metody MeSH
- dítě MeSH
- krk mikrobiologie MeSH
- lidé MeSH
- mikrobiologie životního prostředí * MeSH
- molekulární typizace MeSH
- Mycobacterium avium klasifikace genetika růst a vývoj izolace a purifikace MeSH
- polymerázová řetězová reakce metody MeSH
- polymorfismus délky restrikčních fragmentů MeSH
- předškolní dítě MeSH
- tuberkulóza lymfatických uzlin diagnóza mikrobiologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
"Mycobacterium avium subsp. hominissuis" often causes cervical lymphadenitis in children; its prompt and accurate identification enables adequate therapy, tracing, and prevention. The aims of this study were to determine the causative agent of lymphadenitis using culture, PCR, and triplex quantitative real-time PCR (qPCR) methods with DNA directly isolated from tissue, as well as to identify possible sources of infection from the environment. We confirmed the diagnoses by detecting M. avium subsp. hominissuis using qPCR with DNA directly isolated from lymph node biopsy specimens of two patients. In order to trace the source of infection from the environment, a method of DNA isolation from soil and other environmental samples, such as dust, cobwebs, and compost, was developed. The triplex qPCR examination revealed the presence of M. avium subsp. hominissuis in a high proportion of the environmental samples (42.8% in the first patient's house and 47.6% in the second patient's house). Both patients were also exposed to M. avium subsp. avium, which was present due to the breeding of infected domestic hens. The high infectious dose of M. avium subsp. hominissuis or the increased susceptibility of humans to M. avium subsp. hominissuis compared to M. avium subsp. avium could be the reason why the children were infected with M. avium subsp. hominissuis.
Zobrazit více v PubMed
Bartos, M., et al. 2006. Identification of members of Mycobacterium avium species by Accu-Probes, serotyping, and single IS900, IS901, IS1245 and IS901-flanking region PCR with internal standards. J. Microbiol. Methods 64:333-345. PubMed
Beran, V., M. Havelkova, J. Kaustova, L. Dvorska, and I. Pavlik. 2006. Cell wall deficient forms of mycobacteria: a review. Veterinarni Medicina 51:365-389.
Blyth, C. C., et al. 2009. Nontuberculous mycobacterial infection in children: a prospective national study. Pediatr. Infect. Dis. J. 28:801-805. PubMed
Brooks, R. W., K. L. George, B. C. Parker, J. O. Falkinham, and H. Gruft. 1984. Recovery and survival of nontuberculous mycobacteria under various growth and decontamination conditions. Can. J. Microbiol. 30:1112-1117. PubMed
Choi, P., et al. 2009. Polymerase chain reaction for pathogen identification in persistent pediatric cervical lymphadenitis. Arch. Otolaryngol. Head Neck Surg. 135:243-248. PubMed
Covert, T. C., M. R. Rodgers, A. L. Reyes, and G. N. Stelma. 1999. Occurrence of nontuberculous mycobacteria in environmental samples. Appl. Environ. Microbiol. 65:2492-2496. PubMed PMC
De Groote, M. A., N. R. Pace, K. Fulton, and J. O. Falkinham. 2006. Relationships between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl. Environ. Microbiol. 72:7602-7606. PubMed PMC
Dhand, N. K., J. A. L. M. Toribio, and R. J. Whittington. 2009. Adsorption of Mycobacterium avium subsp. paratuberculosis to soil particles. Appl. Environ. Microbiol. 75:5581-5585. PubMed PMC
Domingos, M., A. Amado, and A. Botelho. 2009. IS1245 RFLP analysis of strains of Mycobacterium avium subspecies hominissuis isolated from pigs with tuberculosis lymphadenitis in Portugal. Vet. Rec. 164:116-120. PubMed
Dvorska, L., M. Bartos, G. Martin, W. Erler, and I. Pavlik. 2001. Strategies for differentiation, identification and typing of medically important species of mycobacteria by molecular methods. Veterinarni Medicina 46:309-328.
Dvorska, L., et al. 2007. Avian tuberculosis in naturally infected captive water birds of the Ardeideae and Threskiornithidae families studied by serotyping, IS901 RFLP typing, and virulence for poultry. Vet. Microbiol. 119:366-374. PubMed
Dvorska, L., et al. 2004. Study of Mycobacterium avium complex strains isolated from cattle in the Czech Republic between 1996 and 2000. Vet. Microbiol. 99:239-250. PubMed
Eriksson, M., R. Bennet, and N. Danielsson. 2001. Non-tuberculous mycobacterial lymphadenitis in healthy children: another “lifestyle disease”? Acta Paediatr. 90:1340-1342. PubMed
Espy, M. J., et al. 2006. Real-time PCR in clinical microbiology: applications for a routine laboratory testing. Clin. Microbiol. Rev. 19:165-256. PubMed PMC
Falkinham, J. O., III. 2002. Nontuberculous mycobacteria in the environment. Clin. Chest Med. 23:529-551. PubMed
Falkinham, J. O. 2009. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J. Appl. Microbiol. 107:356-367. PubMed
Falkinham, J. O., M. D. Iseman, P. de Haas, and D. van Soolingen. 2008. Mycobacterium avium in a shower linked to pulmonary disease. J. Water Health 6:209-213. PubMed
Fischer, O., et al. 2001. Diptera as vectors of mycobacterial infections in cattle and pigs. Med. Vet. Entomol. 15:208-211. PubMed
Fischer, O. A., et al. 2004. Beetles as possible vectors of infections caused by Mycobacterium avium species. Vet. Microbiol. 102:247-255. PubMed
Guerrero, C., C. Bernasconi, D. Burki, T. Bodmer, and A. Telenti. 1995. A novel insertion element from Mycobacterium-avium, IS1245, is a specific target for analysis of strain relatedness. J. Clin. Microbiol. 33:304-307. PubMed PMC
Harmsen, D., et al. 2003. RIDOM: comprehensive and public sequence database for identification of Mycobacterium species. BMC Infect. Dis. 3:26. PubMed PMC
Inderlied, C. B., C. A. Kemper, and L. E. M. Bermudez. 1993. The Mycobacterium avium complex. Clin. Microbiol. Rev. 6:266-310. PubMed PMC
Johansen, T. B., et al. 2007. New probes used for IS1245 and IS1311 restriction fragment length polymorphism of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. hominissuis isolates of human and animal origin in Norway. BMC Microbiol. 7:14. PubMed PMC
Kaevska, M., I. Slana, P. Kralik, and I. Pavlik. 2010. Examination of Mycobacterium avium subsp. avium distribution in naturally infected hens by culture and triplex quantitative real time PCR. Veterinarni Medicina 55:325-330.
Kazda, J., I. Pavlik, J. O. Falkinham III, and K. Hruska. 2009. The ecology of mycobacteria: impact on animal's and human's health. Springer, Bertlin, Germany.
Kubin, M., E. Wisingerova, J. Pekarek, and B. Prochazka. 1986. The patterns of complex and partially purified mycobacterial antigens in macrophage-migration inhibition testing. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 261:362-369. PubMed
Kuth, G., J. Lamprecht, and G. Haase. 1995. Cervical lymphadenitis due to mycobacteria other than tuberculosis—an emerging problem in children. ORL J. Otorhinolaryngol. Relat. Spec. 57:36-38. PubMed
Lim, S. Y., B. J. Kim, M. K. Lee, and K. Kim. 2008. Development of a real-time PCR-based method for rapid differential identification of Mycobacterium species. Lett. Appl. Microbiol. 46:101-106. PubMed
Matlova, L., et al. 2004. Impact of sawdust and wood shavings in bedding on pig tuberculous lesions in lymph nodes, and IS1245 RFLP analysis of Mycobacterium avium subsp. hominissuis of serotypes 6 and 8 isolated from pigs and environment. Vet. Microbiol. 102:227-236. PubMed
Mendum, T. A., B. Z. Chilima, and P. R. Hirsch. 2000. The PCR amplification of non-tuberculous mycobacterial 16S rRNA sequences from soil. FEMS Microbiol. Lett. 185:189-192. PubMed
Mijs, W., et al. 2002. Molecular evidence to support a proposal to reserve the designation Mycobacterium avium subsp. avium for bird-type isolates and ‘M. avium subsp. hominissuis’ for the human/porcine type of M. avium. Int. J. Syst. Evol. Microbiol. 52:1505-1518. PubMed
Moravkova, M., et al. 2008. Strategy for the detection and differentiation of Mycobacterium avium species in isolates and heavily infected tissues. Res. Vet. Sci. 85:257-264. PubMed
Nieminen, T., et al. 2006. 16S rRNA targeted sandwich hybridization method for direct quantification of mycobacteria in soils. J. Microbiol. Methods 67:44-55. PubMed
Pakarinen, J., et al. 2007. Proliferation of mycobacteria in a piggery environment revealed by Mycobacterium-specific real-time quantitative PCR and 16S rRNA sandwich hybridization. Vet. Microbiol. 120:105-112. PubMed
Pavlik, I., P. Svastova, J. Bartl, L. Dvorska, and I. Rychlik. 2000. Relationship between IS901 in the Mycobacterium avium complex strains isolated from birds, animals, humans, and the environment and virulence for poultry. Clin. Diagn. Lab. Immunol. 7:212-217. PubMed PMC
Primm, T. P., C. A. Lucero, and J. O. Falkinham. 2004. Health impacts of environmental mycobacteria. Clin. Microbiol. Rev. 17:98-106. PubMed PMC
Reddy, V. C. K., et al. 2008. Mycobacterial culture of fine needle aspirate—a useful tool in diagnosing tuberculous lymphadenitis. Indian J. Med. Microbiol. 26:259-261. PubMed
Reed, C., et al. 2006. Environmental risk factors for infection with Mycobacterium avium complex. Am. J. Epidemiol. 164:32-40. PubMed
Rhodes, G., et al. 2008. Detection of Mycobacterium immunogenum by real-time quantitative Taqman PCR. J. Microbiol. Methods 73:266-268. PubMed
Shitaye, E. J., et al. 2009. Comparison of the conventional culture, the manual fluorescent MGIT system and the automated fluorescent MGIT 960 culture system for the detection of Mycobacterium avium ssp avium in tissues of naturally infected hens. Folia Microbiol. 54:137-141. PubMed
Shitaye, J. E., et al. 2008. Diagnostic testing of different stages of avian tuberculosis in naturally infected hens (Gallus domesticus) by the tuberculin skin and rapid agglutination tests, faecal and egg examinations. Veterinarni Medicina 53:101-110.
Shitaye, J. E., et al. 2008. Mycobacterium avium subsp. avium distribution studied in a naturally infected hen flock and in the environment by culture, serotyping and IS901 RFLP methods. Vet. Microbiol. 127:155-164. PubMed
Shitaye, J. E., et al. 2006. Mycobacterial and Rhodococcus equi infections in pigs in the Czech Republic between the years 1996 and 2004: the causal factors and distribution of infections in the tissues. Veterinarni Medicina 51:497-511.
Shrestha, N. K., et al. 2003. Detection and differentiation of Mycobacterium tuberculosis and nontuberculous mycobacterial isolates by real-time PCR. J. Clin. Microbiol. 41:5121-5126. PubMed PMC
Slana, I., M. Kaevska, P. Kralik, A. Horvathova, and I. Pavlik. 2010. Distribution of Mycobacterium avium subsp. avium and M. a. hominissuis in artificially infected pigs studied by culture and IS901 and IS1245 quantitative real time PCR. Vet. Microbiol. 144:437-443. PubMed
Slana, I., P. Kralik, A. Kralova, and I. Pavlik. 2008. On-farm spread of Mycobacterium avium subsp. paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination. Int. J. Food Microbiol. 128:250-257. PubMed
Tell, L. A., et al. 2003. Real-time polymerase chain reaction testing for the detection of Mycobacterium genavense and Mycobacterium avium complex species in avian samples. Avian Dis. 47:1406-1415. PubMed
Trevors, J. T. 1996. Nucleic acids in the environment. Curr. Opin. Biotechnol. 7:331-336. PubMed
van Coppenraet, E. S. B., et al. 2004. Real-time PCR assay using fine-needle aspirates and tissue biopsy specimens for rapid diagnosis of mycobacterial lymphadenitis in children. J. Clin. Microbiol. 42:2644-2650. PubMed PMC
van Coppenraet, L. E. S. B., P. E. W. de Haas, J. A. Lindeboom, E. J. Kuijper, and D. van Soolingen. 2008. Lymphadenitis in children is caused by Mycobacterium avium hominissuis and not related to ‘bird tuberculosis’. Eur. J. Clin. Microbiol. Infect. Dis. 27:293-299. PubMed PMC
van Soolingen, D., et al. 1998. IS1245 restriction fragment length polymorphism typing of Mycobacterium avium isolates: proposal for standardization. J. Clin. Microbiol. 36:3051-3054. PubMed PMC
van Soolingen, D., P. E. de Haas, P. W. Hermans, and J. D. van Embden. 1994. DNA fingerprinting of Mycobacterium tuberculosis. Methods Enzymol. 235:196-205. PubMed
Wagner, D., and L. S. Young. 2004. Nontuberculous mycobacterial infections: a clinical review. Infection 32:257-270. PubMed
Wolinsky, E., and W. B. Schaefer. 1973. Proposed numbering scheme for mycobacterial serotypes by agglutination. Int. J. Syst. Bacteriol. 23:182-183.
Wright, C. A., K. G. Hoek, B. J. Marais, P. van Helden, and R. M. Warren. 2010. Combining fine-needle aspiration biopsy (FNAB) and high-resolution melt analysis to reduce diagnostic delay in mycobacterial lymphadenitis. Diagn. Cytopathol. 38:482-488. PubMed
Yajko, D. M., et al. 1995. Mycobacterium avium complex in water, food, and soil samples collected from the environment of HIV-infected individuals. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 9:176-182. PubMed
Changes in Microbial Composition of Wastewater During Treatment in a Full-Scale Plant