• This record comes from PubMed

Nontuberculous Mycobacteria Prevalence in Aerosol and Spiders' Webs in Karst Caves: Low Risk for Speleotherapy

. 2021 Dec 13 ; 9 (12) : . [epub] 20211213

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
NU20-09-00114 Czech Health Research Council

Links

PubMed 34946174
PubMed Central PMC8705795
DOI 10.3390/microorganisms9122573
PII: microorganisms9122573
Knihovny.cz E-resources

A total of 152 aerosol and spider web samples were collected: 96 spider's webs in karst areas in 4 European countries (Czech Republic, France, Italy, and Slovakia), specifically from the surface environment (n = 44), photic zones of caves (n = 26), and inside (aphotic zones) of caves (n = 26), 56 Particulate Matter (PM) samples from the Sloupsko-Sosuvsky Cave System (speleotherapy facility; n = 21) and from aerosol collected from the nearby city of Brno (n = 35) in the Czech Republic. Nontuberculous mycobacteria (NTM) were isolated from 13 (13.5%) spider's webs: 5 isolates of saprophytic NTM (Mycobacterium gordonae, M. kumamotonense, M. terrae, and M. terrae complex) and 6 isolates of potentially pathogenic NTM (M. avium ssp. hominissuis, M. fortuitum, M. intracellulare, M. peregrinum and M. triplex). NTM were not isolated from PM collected from cave with the speleotherapy facility although mycobacterial DNA was detected in 8 (14.3%) samples. Temperature (8.2 °C, range 8.0-8.4 °C) and relative humidity (94.7%, range 93.6-96.6%) of air in this cave were relatively constant. The average PM2.5 and PM10 mass concentration was 5.49 µg m-3 and 11.1 µg m-3. Analysed anions (i.e., F-, Cl-, NO2-, SO42-, PO43- and NO3-) originating largely from the burning of wood and coal for residential heating in nearby villages in the surrounding area. The air in the caves with speleotherapy facilities should be monitored with respect to NTM, PM and anions to ensure a safe environment.

See more in PubMed

Paskova S., Kolesar J., Siposova E. Pulmonary autoantibodies in bronchial asthma patients undergoing cave and climate therapy in Bystra. Allerg. Immunol. 1976;22:23–27. (In German) PubMed

Karakoca Y., Demir A.U., Kisacik G., Kalyoncu A.F., Findik S. Speleotherapy in asthma and allergic diseases. Clin. Exp. Allergy. 1995;25:666–667. doi: 10.1111/j.1365-2222.1995.tb01115.x. PubMed DOI

Kostrzon M., Sliwka A., Wloch T., Szpunar M., Ankowska D., Nowobilski R. Subterranean pulmonary rehabilitation in chronic obstructive pulmonary disease. Adv. Exp. Med. Biol. 2019;1176:35–46. PubMed

Monsalve M.S., Martinez L., Vasquez K.Y., Orellana S.A., Vergara K.J., Mateo M.M. Trace element contents in fine particulate matter (PM2.5) in urban school microenvironments near a contaminated beach with mine tailings, Chaaral, Chile. Environ. Geochem. Health. 2018;40:1077–1091. doi: 10.1007/s10653-017-9980-z. PubMed DOI

Freidl J., Huber D., Braunschmid H., Romodow C., Pichler C., Weisbock-Erdheim R., Mayr M., Hartl A. Winter exercise and speleotherapy for allergy and asthma: A randomized controlled clinical trial. J. Clin. Med. 2020;9:3311. doi: 10.3390/jcm9103311. PubMed DOI PMC

Sram R.J., Binkova B., Dostal M., Merkerova-Dostalova M., Libalova H., Milcova A., Rossner P., Jr., Rossnerova A., Schmuczerova J., Svecova V., et al. Health impact of air pollution to children. Int. J. Hyg. Environ. Health. 2013;216:533–540. doi: 10.1016/j.ijheh.2012.12.001. PubMed DOI

Mohapl J., Bohac S., Weigl E. Values of selected immunological parameters before and after speleotherapy. Acta Univ. Palacki. Olomuc. Fac. Med. 1991;131:197–211. PubMed

Gaus W., Weber H. Efficacy and safety of speleotherapy in children with asthma bronchiale. Physikalische Medizin Rehabilitationsmedizin Kurortmedizin. 2010;20:144–151. doi: 10.1055/s-0030-1249701. DOI

Dockery D.W., Pope C.A., Xu X., Spengler J.D., Ware J.H., Fay M.E., Ferris B.G., Jr., Speizer F.E. An association between air pollution and mortality in six U.S. cities. N. Eng. J. Med. 1993;329:1753–1759. doi: 10.1056/NEJM199312093292401. PubMed DOI

Pope C.A., III, Burnett R.T., Thun M.J., Calle E.E., Krewski D., Ito K., Thurston G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Air Waste Manag. Assoc. 2002;287:1132–1141. doi: 10.1001/jama.287.9.1132. PubMed DOI PMC

Pope C.A., III Mortality effects of longer term exposures to fine particulate air pollution: Review of recent epidemiological evidence. Inhal. Toxicol. 2007;19:33–38. doi: 10.1080/08958370701492961. PubMed DOI

Noutsios G.T., Floros J. Childhood asthma: Causes, risks, and protective factors; a role of innate immunity. Swiss Med. Wkly. 2014;144:14036. doi: 10.4414/smw.2014.14036. PubMed DOI

Asher M.I., Montefort S., Bjorksten B., Lai C.K., Strachan D.P., Weiland S.K., Williams H., ISAAC Phase Three Study Group Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet. 2006;368:733–743. doi: 10.1016/S0140-6736(06)69283-0. PubMed DOI

Beamon S., Falkenbach A., Fainburg G., Linde K. Speleotherapy for asthma. Cochrane Database Syst. Rev. 2000;2:CD001741. doi: 10.1002/14651858.CD001741. PubMed DOI

Rashleigh R., Smith S.M., Roberts N.J. A review of halotherapy for chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2014;9:239–246. PubMed PMC

Metel S., Kostrzon M., Adamiak J., Gattner H., Koscielecka D., Sosulska A., Szczygiel E., Golec J. The influence of speleotherapy combined with pulmonary rehabilitation on functional fitness in older adults—Preliminary report. Ther. Adv. Respir. Dis. 2020;14:1753466620926952. doi: 10.1177/1753466620926952. PubMed DOI PMC

PCS Permanent Commission on Speleotherapy. 2021. [(accessed on 15 October 2021)]. Available online: https://speleotherapycommission.webgarden.com.

UIS International Union of Speleology 2021. [(accessed on 15 October 2021)]. Available online: https://uis-speleo.org.

Billings F.T., Jr., Hillman J.W., Regen E.M., Jr. Speleologic management of consumption in Mammoth Cave, an early effort in climatologic therapy. Trans. Am. Clin. Climatol. Assoc. 1956;68:10–15. PubMed PMC

Sides S.D., Meloy H. The pursuit of health in the Mammoth Cave. Bull. Hist. Med. 1971;45:367–379. PubMed

Pavlik I., Falkinham J., Kazda J. Environments Providing Favourable Conditions for the Multiplication and Transmission of Mycobacteria, Chapter 5. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 89–197.

Varghese B., Al-Hajoj S. A global update on rare non-tuberculous mycobacteria in humans: Epidemiology and emergence. Int. J. Tuberc. Lung Dis. 2020;24:214–223. doi: 10.5588/ijtld.19.0194. PubMed DOI

Pavlik I., Kazda J., Falkinham J. The ecology of potentially pathogenic mycobacteria, Chapter 3. In: Kazda J., Pavlik I., Falkinham J., Hruska K., editors. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. pp. 21–79.

Honda J.R., Virdi R., Chan E.D. Global environmental nontuberculous mycobacteria and their contemporaneous man-made and natural niches. Front. Microbiol. 2018;9:2029. doi: 10.3389/fmicb.2018.02029. PubMed DOI PMC

Torvinen E., Torkko P., Rintala A.N. Real-time PCR detection of environmental mycobacteria in house dust. J. Microbiol. Methods. 2010;82:78–84. doi: 10.1016/j.mimet.2010.04.007. PubMed DOI

Lahiri A., Kneisel J., Kloster I., Kamal E., Lewin A. Abundance of Mycobacterium avium ssp. hominissuis in soil and dust in Germany—Implications for the infection route. Lett. Appl. Microbiol. 2014;59:65–70. doi: 10.1111/lam.12243. PubMed DOI

Modra H., Bartos M., Hribova P., Ulmann V., Hubelova D., Konecny O., Gersl M., Kudelka J., Voros D., Pavlik I. Detection of mycobacteria in the environment of the Moravian Karst (Bull Rock Cave and the relevant water catchment area): The impact of water sediment, earthworm castings and bat guano. Vet. Med. Czech. 2017;62:153–168. doi: 10.17221/126/2016-VETMED. DOI

Modra M., Gruberova E., Konecny O., Ulmann V., Kaucka P., Vlkova M., Tuma A., Halesova T., Kudelka J., Gersl M., et al. Influx and concentration of triazine pesticides in the Amaterska Cave System, Moravian Karst, Czech Republic. J. Soils Sediments. 2018;18:640–647. doi: 10.1007/s11368-017-1831-0. DOI

Pavlik I., Ulmann V., Modra H., Gersl M., Rantova B., Zukal J., Zukalova K., Konecny O., Kana V., Kubalek P., et al. Nontuberculous mycobacteria prevalence in bats’ guano from caves and attics of buildings studied by culture and qPCR examinations. Microorganism. 2021;9:2236. doi: 10.3390/microorganisms9112236. PubMed DOI PMC

Ulmann V., Modra H., Babak V., Weston R.T., Pavlik I. Recovery of mycobacteria from heavily contaminated environmental matrices. Microorganism. 2021;9:2178. doi: 10.3390/microorganisms9102178. PubMed DOI PMC

Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work. Off. J. Eur. Communities. 2000;262:21–45.

LPSN: List of Prokaryotic Names with Standing in Nomenclature. [(accessed on 15 October 2021)]. Available online: https://lpsn.dsmz.de/

Dvorska L., Bartos M., Ostadal O., Kaustova J., Matlova L., Pavlik I. IS1311 and IS1245 restriction fragment length polymorphism analyses, serotypes, and drug susceptibilities of Mycobacterium avium complex isolates obtained from a human immunodeficiency virus-negative patient. J. Clin. Microbiol. 2002;40:3712–3719. doi: 10.1128/JCM.40.10.3712-3719.2002. PubMed DOI PMC

Kaevska M., Sterba J., Svobodova J., Pavlik I. Mycobacterium avium subsp. avium and Mycobacterium neoaurum detection in an immunocompromised patient. Epidemiol. Infect. 2014;142:882–885. doi: 10.1017/S0950268813001660. PubMed DOI PMC

Matlova L., Dvorska L., Bartl J., Bartos M., Ayele W.Y., Alexa M., Pavlik I. Mycobacteria isolated from the environment of pig farms in the Czech Republic during the years 1996 to 2002. Vet. Med. Czech. 2003;48:343–357. doi: 10.17221/5789-VETMED. DOI

Kaevska M., Slana I., Kralik P., Reischl U., Orosova J., Holcikova A., Pavlik I. “Mycobacterium avium subsp. hominissuis” in neck lymph nodes of children and their environment examined by culture and triplex quantitative real time PCR. J. Clin. Microbiol. 2011;49:167–172. doi: 10.1128/JCM.00802-10. PubMed DOI PMC

Jirik V., Machaczka O., Miturova H., Tomasek I., Slachtova H., Janoutova J., Velicka H., Janout V. Air pollution and potential health risk in Ostrava Region—A review. Cent. Eur. J. Public Health. 2016;24:S4–S17. doi: 10.21101/cejph.a4533. PubMed DOI

Modra H., Ulmann V., Caha J., Hubelova D., Konecny O., Svobodova J., Weston R.T., Pavlik I. Socio-economic and environmental factors related to spatial differences in human non-tuberculous mycobacterial diseases in the Czech Republic. Int. J. Environ. Res. Public Health. 2019;16:3969. doi: 10.3390/ijerph16203969. PubMed DOI PMC

Licbinsky R., Faimon J., Tanda S., Hegrova J., Goessler W., Uberhuberova J. Changes in the elemental composition of particulate matter in a speleotherapeutic cave. Atmos. Poll. Res. 2020;11:1142–1154. doi: 10.1016/j.apr.2020.04.008. DOI

Mikuska P., Capka L., Vecera Z. Aerosol sampler for analysis of fine and ultrafine aerosols. Anal. Chim. Acta. 2018;1020:123–133. doi: 10.1016/j.aca.2018.02.070. PubMed DOI

Ulmann V., Kracalikova A., Dziedzinska R. Mycobacteria in water used for personal hygiene in heavy industry and collieries: A potential risk for employees. Int. J. Environ. Res. Public Health. 2015;12:2870–2877. doi: 10.3390/ijerph120302870. PubMed DOI PMC

Slana I., Kaevska M., Kralik P., Horvathova A., Pavlik I. Distribution of Mycobacterium avium subsp. avium and M. a. hominissuis in artificially infected pigs studied by culture and IS901 and IS1245 quantitative real time PCR. Vet. Microbiol. 2010;26:437–443. doi: 10.1016/j.vetmic.2010.02.024. PubMed DOI

Hose G.C., James J.M., Gray M.R. Spider webs as environmental indicators. Environ. Pollut. 2002;120:725–733. doi: 10.1016/S0269-7491(02)00171-9. PubMed DOI

Xiao-Li S., Yu P., Hose G.C., Jian C., Feng-Xiang L. Spider webs as indicators of heavy metal pollution in air. Bull. Environ. Contam. Toxicol. 2006;76:271–277. doi: 10.1007/s00128-006-0917-y. PubMed DOI

Rybak J., Olejniczak T. Accumulation of polycyclic aromatic hydrocarbons (PAHs) on the spider webs in the vicinity of road traffic emissions. Environ. Sci. Pollut. Res. Int. 2014;21:2313–2324. doi: 10.1007/s11356-013-2092-0. PubMed DOI PMC

Bartz W., Gorka M., Rybak J., Rutkowski R., Stojanowska A. The assessment of effectiveness of SEM- EDX and ICP-MS methods in the process of determining the mineralogical and geochemical composition of particulate matter deposited on spider webs. Chemosphere. 2021;278:130454. doi: 10.1016/j.chemosphere.2021.130454. PubMed DOI

Iwai K., Aisaka K., Suzuki M. Friedmanniella luteola sp. nov., Friedmanniella lucida sp. nov., Friedmanniella okinawensis sp. nov. and Friedmanniella sagamiharensis sp. nov., isolated from spiders. Int. J. Syst. Evol. Microbiol. 2010;60:113–120. doi: 10.1099/ijs.0.007815-0. PubMed DOI

Smith B.P., Robinson R.C. Studies of an outbreak of Corynebacterium equi pneumonia in foals. Equine Vet. J. 1981;13:223–228. doi: 10.1111/j.2042-3306.1981.tb03500.x. PubMed DOI

Debey M.C., Bailie W.E. Rhodococcus equi in fecal and environmental samples from Kansas horse farms. Vet. Microbiol. 1987;14:251–257. doi: 10.1016/0378-1135(87)90112-X. PubMed DOI

Smither S.J., Piercy T.J., Eastaugh L., Steward J.A., Lever M.S. An alternative method of measuring aerosol survival using spiders’ webs and its use for the filoviruses. J. Virol. Methods. 2011;177:123–127. doi: 10.1016/j.jviromet.2011.06.021. PubMed DOI

Sauka D.H., Benintende G.B. Diversity and distribution of lepidopteran-specific toxin genes in Bacillus thuringiensis strains from Argentina. Rev. Argent. Microbiol. 2017;49:273–281. doi: 10.1016/j.ram.2017.02.003. PubMed DOI

Moravkova M., Babak V., Kralova A., Pavlik I., Slana I. Culture and quantitative IS900 real-time PCR-based analysis of the persistence of Mycobacterium avium subsp. paratuberculosis in a controlled dairy cow farm environment. Appl. Environ. Microbiol. 2012;78:6608–6614. doi: 10.1128/AEM.01264-12. PubMed DOI PMC

Dvorska L., Matlova L., Ayele W.Y., Fischer O.A., Amemori T., Weston R.T., Alvarez J., Beran V., Moravkova M., Pavlik I. Avian tuberculosis in naturally infected captive water birds of the Ardeidae and Threskiornithidae families studied by serotyping, IS901 RFLP typing and virulence for poultry. Vet. Microbiol. 2007;119:366–374. doi: 10.1016/j.vetmic.2006.09.010. PubMed DOI

Pavlik I., Matlova L., Gilar M., Bartl J., Parmova I., Lysak F., Alexa M., Dvorska-Bartosova L., Svec V., Vrbas V., et al. Isolation of conditionally pathogenic mycobacteria from the environment of one pig farm and the effectiveness of preventive measures between 1997 and 2003. Vet. Med. Czech. 2007;52:392–404. doi: 10.17221/1997-VETMED. DOI

Matlova L., Dvorska L., Palecek K., Maurenc L., Bartos M., Pavlik I. Impact of sawdust and wood shavings in bedding on pig tuberculous lesions in lymph nodes, and IS1245 RFLP analysis of Mycobacterium avium subsp. hominissuis of serotypes 6 and 8 isolated from pigs and environment. Vet. Microbiol. 2004;102:227–236. doi: 10.1016/j.vetmic.2004.06.003. PubMed DOI

Krizova K., Matlova L., Horvathova A., Moravkova M., Beran V., Boisselet T., Babak V., Slana I., Pavlik I. Mycobacteria in the environment of pig farms in the Czech Republic between 2003 and 2007. Vet. Med. Czech. 2010;55:55–69. doi: 10.17221/85/2009-VETMED. DOI

Shitaye J.E., Matlova L., Horvathova A., Moravkova M., Dvorska-Bartosova L., Treml F., Lamka J., Pavlik I. Mycobacterium avium subsp. avium distribution studied in a naturally infected hen flock and in the environment by culture, serotyping and IS901 RFLP methods. Vet. Microbiol. 2008;127:155–164. doi: 10.1016/j.vetmic.2007.07.026. PubMed DOI

Hromas J. Caves. In: Mackovcin P., Sedlacek M., editors. Protected Areas in the Czech Republic. 1st ed. Volume 14. Agentura Ochrany Prirody a Krajiny CR a Eko Centrum Brno; Praha, Czech Republic: 2009. p. 608. (In Czech)

Mikuska P., Vojtesek M., Krumal K., Mikuskova-Campulova M., Michalek J., Vecera Z. Characterization and source identification of elements and water-soluble ions in submicrometre aerosols in Brno and Slapanice (Czech Republic) Atmosphere. 2020;11:688. doi: 10.3390/atmos11070688. DOI

Brunekreef B., Holgate S.T. Air pollution and health. Lancet. 2002;360:1233–1242. doi: 10.1016/S0140-6736(02)11274-8. PubMed DOI

Jeong G.Y., Kim S.J., Chang S.J. Black carbon pollution of speleothems by fine urban aerosols in tourist caves. Am. Mineral. 2003;88:1872–1878. doi: 10.2138/am-2003-11-1230. DOI

Chang S.J., Jeong G.Y., Kim S.J. The origin of black carbon on speleothems in tourist caves in South Korea: Chemical characterization and source discrimination by radiocarbon measurement. Atmos. Environ. 2008;42:1790–1800. doi: 10.1016/j.atmosenv.2007.11.042. DOI

Smith A.C., Wynn P.M., Barker P.A. Natural and anthropogenic factors which influence aerosol distribution in Ingleborough Show Cave, UK. Int. J. Speleol. 2013;42:49–56. doi: 10.5038/1827-806X.42.1.6. DOI

Vanghi V., Frisia S., Borsato A. Genesis and microstratigraphy of calcite coralloids analysed by high resolution imaging and petrography. Sediment. Geol. 2017;359:16–28. doi: 10.1016/j.sedgeo.2017.08.001. DOI

Alfoldy B., Torok S., Kocsonya A., Szokefalvi-Nagy Z., Balla M.I. X-ray analysis of aerosol samples from a therapeutic cave. Nucl. Instrum. Methods Phys. Res. Sect. B Beam. Instrum. Mater. Atoms. 2001;174:361–366. doi: 10.1016/S0168-583X(00)00586-3. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...