Socio-Economic and Environmental Factors Related to Spatial Differences in Human Non-Tuberculous Mycobacterial Diseases in the Czech Republic
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31627484
PubMed Central
PMC6843547
DOI
10.3390/ijerph16203969
PII: ijerph16203969
Knihovny.cz E-zdroje
- Klíčová slova
- Mycobacterium chelonae, heavy industry, mining, mycobacteriosis, occupational exposure, social deprivation,
- MeSH
- atypické mykobakteriální infekce epidemiologie MeSH
- dítě MeSH
- incidence MeSH
- lidé středního věku MeSH
- lidé MeSH
- netuberkulózní mykobakterie * MeSH
- plicní nemoci epidemiologie mikrobiologie MeSH
- předškolní dítě MeSH
- prevalence MeSH
- rizikové faktory MeSH
- socioekonomické faktory MeSH
- životní prostředí MeSH
- Check Tag
- dítě MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
Non-tuberculous mycobacteria (NTM) are ubiquitous environmental bacteria that can induce pulmonary and non-pulmonary diseases in susceptible persons. It is reported that the prevalence of NTM diseases is increasing in developed countries, but this differs by regions and countries. NTM species distribution and the rate of diseases caused by NTM vary widely in the historical territories of Moravia and Silesia (Czech Republic). This epidemiologic study of NTM diseases covers the period 2012-2018, reviews isolates obtained from patients with clinical disease and investigates correlations with related socio-economic and environmental factors. Individual NTM patients were included only once during the studied period and results were presented as incidence rate per year. The most frequently isolated NTM meeting the microbiological and clinical criteria in the study were the Mycobacterium avium-intracellulare complex, followed by Mycobacteriumkansasii and Mycobacteriumxenopi. A previously described endemic incidence of M.kansasii in the Karviná district and M.xenopi in the Ostrava district was also observed in this study. The incidence of NTM patients in the whole studied territory was 1.10/100,000 inhabitants (1.33/100,000 in men and 0.88/100,000 in women). The annual incidence of lymphadenitis in children (≤5 years of age) was 2.35/100,000 of the population of children during the 7 year period but increased in the year 2018 to 5.95/100,000. The rate of human tuberculosis in the studied area was 1.97/100,000 inhabitants. The incidence of NTM pulmonary diseases correlated with a lower socio-economic status (r = 0.63) and a higher concentration of benzo[a]pyrene pollution in the air (r = 0.64).
IFCOR Klinicke Laboratore Ltd Vinicni 235 615 00 Brno Czech Republic
Public Health Institute Ostrava Partyzanske Nam 7 702 00 Ostrava Czech Republic
Zobrazit více v PubMed
Falkinham J.O., III Surrounded by mycobacteria: Nontuberculous mycobacteria in the human environment. J. Appl. Microbiol. 2009;107:356–367. doi: 10.1111/j.1365-2672.2009.04161.x. PubMed DOI
Falkinham J.O., III Environmental sources of nontuberculous mycobacteria. Clin. Chest Med. 2015;36:35–41. doi: 10.1016/j.ccm.2014.10.003. PubMed DOI
Revetta R.P., Gomez-Alvarez V., Gerke T.L., Santo Domingo J.W., Ashbolt N.J. Changes in bacterial composition of biofilm in a metropolitan drinking water distribution system. J. Appl. Microbiol. 2016;121:294–305. doi: 10.1111/jam.13150. PubMed DOI
Roguet A., Therial C., Saad M., Boudahmane L., Moulin L., Lucas F.S. High mycobacterial diversity in recreational lakes. Antonie Van Leeuwenhoek. 2016;109:619–631. doi: 10.1007/s10482-016-0665-x. PubMed DOI
Griffith D.E., Aksamit T., Brown-Elliott B.A., Catanzaro A., Daley C., Gordin F., Holland S.M., Horsburgh R., Huitt G., Iademarco M.F., et al. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 2007;175:367–416. doi: 10.1164/rccm.200604-571ST. PubMed DOI
Donohue M.J. Increasing nontuberculous mycobacteria reporting rates and species diversity identified in clinical laboratory reports. BMC Infect. Dis. 2018;18:163. doi: 10.1186/s12879-018-3043-7. PubMed DOI PMC
Henkle E., Hedberg K., Schafer S., Novosad S., Winthrop L. Population-based incidence of pulmonary nontuberculous mycobacterial disease in Oregon 2007 to 2012. Ann. Am. Thorac. Soc. 2015;12:642–647. doi: 10.1513/AnnalsATS.201412-559OC. PubMed DOI PMC
Namkoong H., Kurashima A., Morimoto K., Hoshino Y., Hasegawa N., Ato M., Mitarai S. Epidemiology of pulmonary nontuberculous mycobacterial disease in Japan. Emerg. Infect. Dis. 2016;22:1116–1117. doi: 10.3201/eid2206.151086. PubMed DOI PMC
Shah N.M., Davidson J.A., Anderson L.F., Lator M.K., Kim J., Thomas H.L., Lipman M., Abubakar I. Pulmonary Mycobacterium avium-intracellulare is the main driver of the rise in non-tuberculous mycobacteria incidence in England, Wales and Northern Ireland, 2007–2012. BMC Infect. Dis. 2016;16:195. doi: 10.1186/s12879-016-1521-3. PubMed DOI PMC
Diel R., Jacob J., Lampenius N., Loebinger M., Nienhaus A., Rabe K.F., Ringshausen F.C. Burden of non-tuberculous mycobacterial pulmonary disease in Germany. Eur. Respir. J. 2017;49:1602109. doi: 10.1183/13993003.02109-2016. PubMed DOI
Hoefsloot W., van Ingen J., Andrejak C., Ängeby K., Bauriaud R., Bemer P., Beylis N., Boeree M.J., Cacho J., Chihota V., et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: An NTM-NET collaborative study. Eur. Respir. J. 2013;42:1604–1613. doi: 10.1183/09031936.00149212. PubMed DOI
Jankovic M., Samarzija M., Sabol I., Jakopovic M., Katalinic Jankovic V., Zmak L., Ticac B., Marusic A., Obrovac M., van Ingen J. Geographical distribution and clinical relevance of non-tuberculous mycobacteria in Croatia. Int. J. Tuberc. Lung Dis. 2013;17:836–841. doi: 10.5588/ijtld.12.0843. PubMed DOI
Spaulding A.B., Lai Y.L., Zelazny A.M., Olivier K.N., Kadri S.S., Prevots D.R., Adjemian J. Geographic distribution of nontuberculous mycobacterial species identified among clinical isolates in the United States, 2009–2013. Ann. Am. Thorac. Soc. 2017;14:1655–1661. doi: 10.1513/AnnalsATS.201611-860OC. PubMed DOI PMC
Adjemian J., Frankland T.B., Daida Y.G., Honda J.R., Olivier K.N., Zelazny A., Honda S., Prevots D.R. Epidemiology of nontuberculous mycobacterial lung disease and tuberculosis, Hawaii, USA. Emerg. Infect. Dis. 2017;23:439–447. doi: 10.3201/eid2303.161827. PubMed DOI PMC
Sonnenberg P., Murray J., Glynn J.R., Thomas R.G., Godfrey-Faussett P., Shearer S. Risk factors for pulmonary disease due to culture-positive M. tuberculosis or nontuberculous mycobacteria in South African gold miners. Eur. Respir. J. 2000;15:291–296. doi: 10.1034/j.1399-3003.2000.15b12.x. PubMed DOI
Stout J.E., Koh W.-J., Yew W.W. Update on pulmonary disease due to non-tuberculous mycobacteria. Int. J. Infect. Dis. 2016;45:123–134. doi: 10.1016/j.ijid.2016.03.006. PubMed DOI
Henkle E., Winthrop K.L. Nontuberculous mycobacteria infections in immunosuppressed host. Clin. Chest Med. 2015;36:91–99. doi: 10.1016/j.ccm.2014.11.002. PubMed DOI PMC
Yang L., Wang W.-C., Lung S.-C.C., Sun Z., Chen C., Chen J.-K., Zou Q., Lin Y.-H., Lin C.-H. Polycyclic aromatic hydrocarbons are associated with increased risk of chronic obstructive pulmonary disease during haze events in China. Sci. Total Environ. 2017;574:1649–1658. doi: 10.1016/j.scitotenv.2016.08.211. PubMed DOI
Raudoniute J., Stasiulaitiene I., Kulvinskiene I., Bagdonas E., Garbaras A., Krugly E., Martuzevicius D., Bironaite D., Aldonyte R. Pro-inflammatory effects of extracted urban fine particulate matter on human bronchial epithelial cells BEAS-2B. Environ. Sci. Pollut. Res. 2018;25:32277–32291. doi: 10.1007/s11356-018-3167-8. PubMed DOI
Falcon-Rodriguez C.I., Osornio-Vargas A.R., Sada-Ovalle I., Segura-Medina P. Aeroparticles, composition, and lung diseases. Front. Immunol. 2016;7:3. doi: 10.3389/fimmu.2016.00003. PubMed DOI PMC
Ranjit S., Midde N.M., Sinha N., Patters B.J., Rahman M.A., Cory T.J., Rao P.S.S., Kumar S. Effect of polyaryl hydrocarbons on cytotoxicity in monocytic cells: Potential role of cytochromes P450 and oxidative stress pathways. PLoS ONE. 2016;11:e0163827. doi: 10.1371/journal.pone.0163827. PubMed DOI PMC
Falkinham J.O., III Mycobacterial aerosols and respiratory disease. Emerg. Infect. Dis. 2003;9:763–767. doi: 10.3201/eid0907.020415. PubMed DOI PMC
McGrath E.E., Bardsley P. An association between Mycobacterium malmoense and coal workers´ pneumoconiosis. Lung. 2009;187:51–54. doi: 10.1007/s00408-008-9104-8. PubMed DOI
Jiřík V., Machaczka O., Miturová H., Tomášek I., Šlachtová H., Janoutová J., Velická H., Janout V. Air pollution and potential health risk in Ostrava Region—A review. Cent. Eur. J. Public Health. 2016;24:S4–S17. doi: 10.21101/cejph.a4533. PubMed DOI
Pokorná P., Hovorka J., Klán M., Hopke P.K. Source apportionment of size resolved particulate matter at a European air pollution hot spot. Sci. Total Environ. 2015;502:172–183. doi: 10.1016/j.scitotenv.2014.09.021. PubMed DOI
OKD Ltd Annual Reports 2005–2015. [(accessed on 10 September 2018)]; Available online: https://www.okd.cz/en/about-us/annual-reports.
Chobot S., Mališ J., Šebáková H., Pelikán M., Zatloukal O., Palička P., Kocurová D. Endemic incidence of infections caused by Mycobacterium kansasii in the Karviná District in 1968–1995. Cent. Eur. J. Public Health. 1997;5:164–173. PubMed
Sosnovcová T. Bachelor’s Thesis. Faculty of Science, Masaryk University in Brno; Brno, Czech Republic: 2016. The Impacts of Coal Mining in the Ostrava Region. (In Czech)
Czech Statistical Office. [(accessed on 12 May 2019)];2019 Available online: https://www.czso.cz/csu/czso/home.
Czech Hydrometeorological Institute. [(accessed on 18 May 2019)];2019 Available online: http://portal.chmi.cz/?l=en.
OECD . Handbook on Constructing Composite Indicators. OECD Publications; Paris, France: 2008. Methodology and User Guide.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2018. [(accessed on 24 April 2019)]. Available online: https://www.R-project.org/
Wickham H., François R., Henry L., Müller K. Dplyr: A Grammar of Data Manipulation; R Package version 0.7.7. [(accessed on 24 April 2019)];2018 Available online: https://CRAN.R-project.org/package=dplyr.
Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2016.
Pebesma E. Simple features for R: Standardized support for spatial vector data. R J. 2018;10:439–446. doi: 10.32614/RJ-2018-009. DOI
Tennekes M. Tmap: Thematic Maps in R. J. Stat. Softw. 2018;84:1–39. doi: 10.18637/jss.v084.i06. PubMed DOI
Andréjak C., Thomsen V.Ø., Johansen I.S., Riis A., Benfield T.L., Duhaut P., Sørensen H.T., Lescure F.-X., Thomsen R.W. Nontuberculous pulmonary mycobacteriosis in Denmark: Incidence and prognostic factor. Am. J. Respir. Crit. Care Med. 2010;181:514–521. doi: 10.1164/rccm.200905-0778OC. PubMed DOI
Gerogianni I., Papala M., Kostikas K., Petinaki E., Gourgoulianis K.I. Epidemiology and clinical significance of mycobacterial respiratory infections in Central Greece. Int. J. Tuberc. Lung Dis. 2008;12:807–812. PubMed
Jankovic M., Sabol I., Zmak L., Katalinic Jankovic V., Jakopovic M., Obrovac M., Ticac B., Kardum Bulat L., Grle S.P., Marekovic I., et al. Microbiological criteria in non-tuberculous mycobacteria pulmonary disease: A tool for diagnosis and epidemiology. Int. J. Tuberc. Lung Dis. 2016;20:934–940. doi: 10.5588/ijtld.15.0633. PubMed DOI
Kennedy M.P., O’Connor T.M., Ryan C., Sheehan S., Cryan B., Bredin C. Nontuberculous mycobacteria: Incidence in Southwest Ireland from 1987 to 2000. Respir. Med. 2003;97:257–263. doi: 10.1053/rmed.2003.1431. PubMed DOI
Prevots D.R., Marras T.K. Epidemiology of human pulmonary infection with non-tuberculous mycobacteria: A review. Clin. Chest Med. 2015;36:13–34. doi: 10.1016/j.ccm.2014.10.002. PubMed DOI PMC
Van Ingen J., Bendien S.A., de Lange W.C.M., Hoefsloot W., Dekhuijzen P.N.R., Boeree M.J., van Soolingen D. Clinical relevance of non-tuberculous mycobacteria isolated in the Nijmegen-Arnhem region, The Netherlands. Thorax. 2009;64:502–506. doi: 10.1136/thx.2008.110957. PubMed DOI
Pavlik I., Gersl M., Bartos M., Ulmann V., Kaucka P., Caha J., Unc A., Hubelova D., Konecny O., Modra H. Nontuberculous mycobacteria in the environment of Hranice Abyss, the world’s deepest flooded cave (Hranice karst, Czech Republic) Environ. Sci. Pollut. Res. 2018;25:23712–23724. doi: 10.1007/s11356-018-2450-z. PubMed DOI
Adjemian J., Olivier K.N., Seitz A.E., Falkinham J.O., III, Holland S.M., Prevots D.R. Spatial clusters of nontuberculous mycobacterial lung disease in the United States. Am. J. Respir. Crit. Care Med. 2012;186:553–558. doi: 10.1164/rccm.201205-0913OC. PubMed DOI PMC
Iivanainen E.K., Martikainen P.J., Räisänen M.L., Katila M.-L. Mycobacteria in boreal coniferous forest soils. FEMS Microbiol. Ecol. 1997;23:325–332. doi: 10.1016/S0168-6496(97)00040-8. DOI
Kirschner R.A., Parker B.C., Falkinham J.O., III Epidemiology of infection by nontuberculous mycobacteria. Am. Rev. Respir. Dis. 1992;145:271–275. doi: 10.1164/ajrccm/145.2_Pt_1.271. PubMed DOI
Dirac M.A., Horan K.L., Doody D.R., Meschke J.S., Park D.R., Jackson L.A., Weiss N.S., Winthrop K.L., Cangelosi G.A. Environment or host? A case-control study of risk factors for Mycobacterium avium complex lung disease. Am. J. Respir. Crit. Care Med. 2012;186:684–691. doi: 10.1164/rccm.201205-0825OC. PubMed DOI PMC
Glassroth J. Pulmonary disease due to nontuberculous mycobacteria. Chest. 2008;133:243–251. doi: 10.1378/chest.07-0358. PubMed DOI
Lake M.A., Ambrose L.R., Lipman M.C.I., Lowe D.M. “Why me, why now?” Using clinical immunology and epidemiology to explain who gets nontuberculous mycobacterial infection. BMC Med. 2016;14:54. doi: 10.1186/s12916-016-0606-6. PubMed DOI PMC
Gagneux S. Ecology and evolution of Mycobacterium tuberculosis. Nat. Rev. Microbiol. 2018;16:202–213. doi: 10.1038/nrmicro.2018.8. PubMed DOI
Claeys T.A., Robinson R.T. The many lives of nontuberculous mycobacteria. J. Bacteriol. 2018;200:e00739-e17. doi: 10.1128/JB.00739-17. PubMed DOI PMC
Hashish E., Merwad A., Elgaml S., Amer A., Kamal H., Elsadek A., Marei A., Sitohy M. Mycobacterium marinum infection in fish and man: Epidemiology, pathophysiology and management: A review. Vet. Q. 2018;38:35–46. doi: 10.1080/01652176.2018.1447171. PubMed DOI PMC
Adjemian J., Olivier K.N., Prevots D.R. Epidemiology of pulmonary nontuberculous mycobacterial sputum positivity in patients with cystic fibrosis in the United States, 2010–2014. Ann. Am. Thorac. Soc. 2018;15:817–826. doi: 10.1513/AnnalsATS.201709-727OC. PubMed DOI PMC
Hodge S., Hodge G., Ahern J., Jersmann H., Holmes M., Reynolds P.N. Smoking alters alveolar macrophage recognition and phagocytic ability: Implications in chronic obstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol. 2007;37:748–755. doi: 10.1165/rcmb.2007-0025OC. PubMed DOI
Tan Y., Su B., Shu W., Cai X., Kuang S., Kuang H., Liu J., Pang Y. Epidemiology of pulmonary disease due to nontuberculous mycobacteria in Southern China, 2013–2016. BMC Pulm. Med. 2018;18:168. doi: 10.1186/s12890-018-0728-z. PubMed DOI PMC
Kaustová J., Málková V. Results of ten-year follow-up of patients with repeated isolation of M. gordonae in the Ostrava District. Stud. Pneumol. Phtiseol. Cech. 1982;42:443–447.
Bakuła Z., Kościuch J., Safianowska A., Proboszcz M., Bielecki J., van Ingen J., Krenke R., Jagielski T. Clinical, radiological and molecular features of Mycobacterium kansasii pulmonary disease. Respir. Med. 2018;139:91–100. doi: 10.1016/j.rmed.2018.05.007. PubMed DOI
Hoefsloot W., Boeree M.J., van Ingen J., Bendien S., Magis C., de Lange W., Dekhuijzen P.N.R., van Soolingen D. The rising incidence and clinical relevance of Mycobacterium malmoense: A review of the literature. Int. J. Tuberc. Lung Dis. 2008;12:987–993. PubMed
Haverkamp M.H., Arend S.M., Lindeboom J.A., Hartwig N.G., van Dissel J.T. Nontuberculous mycobacterial infection in children: A 2-year prospective surveillance study in the Netherlands. Clin. Infect. Dis. 2004;39:450–456. doi: 10.1086/422319. PubMed DOI
Reuss M.A., Wiese-Posselt M., Weißmann N., Siedler A., Zuschneid I., An der Heiden M., Claus H., von Kries R., Haas W.H. Incidence rate of nontuberculous mycobacterial disease in immunocompetent children: A prospective nationwide surveillance study in Germany. Pediatr. Infect. Dis. J. 2009;28:642–644. doi: 10.1097/INF.0b013e3181978e8e. PubMed DOI
Wolinsky E. Mycobacterial lymphadenitis in children: A prospective study of 105 nontuberculous cases with long-term follow-up. Clin. Infect. Dis. 1995;20:954–963. doi: 10.1093/clinids/20.4.954. PubMed DOI
Lacroix A., Piau C., Lanotte P., Carricajo A., Guillouzouic A., Peuchant O., Cady A., Dupin C., Fangous M.-S., Martin C., et al. Emergence of nontuberculous mycobacterial lymphadenitis in children after the discontinuation of mandatory Bacillus Calmette and Guérin immunization in France. Pediatr. Infect. Dis. J. 2018;37:e257–e260. doi: 10.1097/INF.0000000000001977. PubMed DOI
Hermansen T.S., Ravn P., Svensson E., Lillebaek T. Nontuberculous mycobacteria in Denmark, incidence and clinical importance during the last quarter-century. Sci. Rep. 2017;7:6696. doi: 10.1038/s41598-017-06931-4. PubMed DOI PMC
Moore J.E., Kruijshaar M.E., Ormerod L.P., Drobniewski F., Abubakar I. Increasing reports of non-tuberculous mycobacteria in England, Wales and Northern Ireland, 1995–2006. BMC Public Health. 2010;10:612. doi: 10.1186/1471-2458-10-612. PubMed DOI PMC
Dailloux M., Abalain M.L., Laurain C., Lebrun L., Loos-Ayav C., Lozniewski A., Maugein J. Respiratory infections associated with nontuberculous mycobacteria in non-HIV patients. Eur. Resp. J. 2006;28:1211–1215. doi: 10.1183/09031936.00063806. PubMed DOI
Marras T.K., Daley C.L. Epidemiology of human pulmonary infections with nontuberculous mycobacteria. Clin. Chest Med. 2002;23:553–568. doi: 10.1016/S0272-5231(02)00019-9. PubMed DOI
Chan E.D., Iseman M.D. Slender, older women appear to be more susceptible to nontuberculous mycobacterial lung disease. Gend. Med. 2010;7:5–18. doi: 10.1016/j.genm.2010.01.005. PubMed DOI
Halstrom S., Price P., Thomson R. Review: Environmental mycobacteria as a cause of human infection. Int. J. Mycobacteriol. 2015;4:81–91. doi: 10.1016/j.ijmyco.2015.03.002. PubMed DOI
Thomson R., Tolson C., Huygens F., Hargreaves M. Strain variation amongst clinical and potable water isolates of M. kansasii using automated repetitive unit PCR. Int. J. Med. Microbiol. 2014;304:484–489. doi: 10.1016/j.ijmm.2014.02.004. PubMed DOI
Ling F., Whitaker R., Lechevallier M.W., Wen-Tso Liu W.-L. Drinking water microbiome assembly induced by water stagnation. ISME J. 2018;12:1520–1531. doi: 10.1038/s41396-018-0101-5. PubMed DOI PMC
Bédard E., Laferrière C., Déziel E., Prévost M., Li M. Impact of stagnation and sampling volume on water microbial quality monitoring in large buildings. PLoS ONE. 2018;13:e0199429. doi: 10.1371/journal.pone.0199429. PubMed DOI PMC
Mirsaedi M., Farshidpour M., Ebrahimi G., Aliberti S., Falkinham J.O., III Management of nontuberculous mycobacterial infection in the elderly. Eur. J. Intern. Med. 2014;25:356–363. doi: 10.1016/j.ejim.2014.03.008. PubMed DOI PMC
Loret J.F., Dumoutier N. Non-tuberculous mycobacteria in drinking water systems: A review of prevalence data and control means. Int. J. Hyg. Environ. Health. 2019;222:628–634. doi: 10.1016/j.ijheh.2019.01.002. PubMed DOI
Gebert M.J., Delgado-Baquerizo M., Oliverio A.M., Webster T.M., Nichols L.M., Honda J.R., Chan E.D., Adjemian J., Dunn R.R., Fierer N. Ecological analyses of mycobacteria in showerhead biofilms and their relevance to human health. MBio. 2018;9:e01614–e01618. doi: 10.1128/mBio.01614-18. PubMed DOI PMC
Kaustová J., Chmelík M., Ettlová D., Hudec V., Lazarevá H., Richtrová S. Disease due to Mycobacterium kansasii in the Czech Republic: 1984–89. Tuber. Lung Dis. 1995;76:205–209. doi: 10.1016/S0962-8479(05)80006-1. PubMed DOI
Corbett E.L., Hay M., Churchyard G.J., Herselman P., Clayton T., Williams B.G., Hayes R., Mulder D., De Cock K.M. Mycobacterium kansasii and M. scrofulaceum isolates from HIV-negative South African gold miners: Incidence, clinical significance and radiology. Int. J. Tuberc. Lung Dis. 1999;3:501–507. PubMed
Ulmann V., Kracalikova A., Dziedzinska R. Mycobacteria in water used for personal hygiene in heavy industry and collieries: A potential risk for employees. Int. J. Environ. Public Health. 2015;12:2870–2877. doi: 10.3390/ijerph120302870. PubMed DOI PMC
Vaerewijck M.J.M., Huys G., Palomino J.C., Swings J., Portaels F. Mycobacteria in drinking water distribution systems: Ecology and significance for human health. FEMS Microbiol. Rev. 2005;29:911–934. doi: 10.1016/j.femsre.2005.02.001. PubMed DOI
Bentham R., Whiley H. Quantitative microbial risk assessment and opportunist waterborne infections—Are there too many gaps to fill? Int. J. Environ. Public Health. 2018;15:1150. doi: 10.3390/ijerph15061150. PubMed DOI PMC
Danelishvili L., Stang B., Bermudez L.E. Identification of Mycobacterium avium genes expressed during in vivo infection and the role of the Oligopeptide transporter OppA in virulence. Microb. Pathog. 2014;76:67–76. doi: 10.1016/j.micpath.2014.09.010. PubMed DOI PMC
Dvorska L., Bartos M., Ostadal O., Kaustova J., Matlova J., Pavlik I. IS1311 and IS1245 restriction fragment length polymorphism analyses, serotypes, and drug susceptibilities of Mycobacterium avium complex isolates obtained from a human immunodeficiency virus-negative patient. J. Clin. Microbiol. 2002;40:3712–3719. doi: 10.1128/JCM.40.10.3712-3719.2002. PubMed DOI PMC
Gupta S., Chatterji D. Stress responses in mycobacteria. Life. 2005;57:149–159. doi: 10.1080/15216540500090611. PubMed DOI
Yano H., Iwamoto T., Nishiuchi Y., Nakajima C., Starkova D.A., Mokrousov I., Narvskaya O., Yoshida S., Arikawa K., Nakanishi N., et al. Population structure and local adaptation of MAC lung disease agent Mycobacterium avium subsp. hominissuis. Genome Biol. Evol. 2017;9:2403–2417. doi: 10.1093/gbe/evx183. PubMed DOI PMC
Kaustová J., Charvát B., Mudra R., Holendová E. Ostrava—A new endemic focus of Mycobacteria xenopi in the Czech Republic. Cent. Eur. J. Public Health. 1993;1:35–37. PubMed
Marmot M. Social justice, epidemiology and health inequalities. Eur. J. Epidemiol. 2017;32:537–546. doi: 10.1007/s10654-017-0286-3. PubMed DOI PMC
Marmot M., Bell R. Fair society, healthy lives. Public Health. 2012;126:S4–S10. doi: 10.1016/j.puhe.2012.05.014. PubMed DOI
Ouředníček M., Temelová J., Pospíšilová L., editors. Atlas of Socio-Spatial Differentiation of the Czech Republic. 1st ed. Carolinum; Prague, Czech Republic: 2011. p. 137. (In Czech)
Chou M.P., Clements A.C.A., Thomson R. A spatial epidemiological analysis of nontuberculous mycobacterial infections in Queensland, Australia. BMC Infect. Dis. 2014;14:279. doi: 10.1186/1471-2334-14-279. PubMed DOI PMC
Bloch K.C., Zwerling L., Pletcher M.J., Hahn J.A., Gerberding J.L., Osroff S.M., Vugia D.J., Reingold A.L. Incidence and clinical implication of isolation of Mycobacterium kansasii: Results of a 5-year, population-based study. Ann. Intern. Med. 1998;129:698–704. doi: 10.7326/0003-4819-129-9-199811010-00004. PubMed DOI
Alene K.A., Viney K., McBryde E.S., Clements A.C.A. Spatial patterns of multidrug resistant tuberculosis and relationships to socioeconomic, demographic and household factors in northwest Ethiopia. PLoS ONE. 2017;12:e0171800. doi: 10.1371/journal.pone.0171800. PubMed DOI PMC
Munch Z., Van Lill S., Booysen C., Zietsman H., Enarson D., Beyers N. Tuberculosis transmission patterns in a high- incidence area: A spatial analysis. Int. J. Tuberc. Lung Dis. 2003;7:271–277. PubMed
Wei W., Yuan-Yuan J., Ci Y., Ahan A., Ming-Qin C. Local spatial variations analysis of smear-positive tuberculosis in Xinjiang using Geographically Weighted Regression model. BMC Public Health. 2016;16:1–9. doi: 10.1186/s12889-016-3723-4. PubMed DOI PMC
Heyder J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc. Am. Thorac. Soc. USA. 2004;1:315–320. doi: 10.1513/pats.200409-046TA. PubMed DOI
Cohen A., Brauer M., Burnett R., Anderson H.R., Frostad J., Estep K., Balakrishnan K., Brunekreef B., Dandona L., Dandona R., et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389:1907–1918. doi: 10.1016/S0140-6736(17)30505-6. PubMed DOI PMC
Srogi K. Monitoring of environmental exposure of polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett. 2007;5:169–195. PubMed PMC
Li Y., Juhasz A.L., Ma L.Q., Cui X. Inhalation bioaccessibility of PAHs in PM2.5: Implications for risk assessment and toxicity prediction. Sci. Total Environ. 2019;650:56–64. doi: 10.1016/j.scitotenv.2018.08.246. PubMed DOI
Boström C.-E., Gerde P., Hanberg A., Jernström B., Johansson C., Kyrklund T., Rannug A., Törnquist M., Victorin K., Westerholm R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect. 2002;110:451–488. PubMed PMC
Delgado-Saborit J.M., Stark C., Harrison R.M. Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environ. Int. 2011;37:383–392. doi: 10.1016/j.envint.2010.10.011. PubMed DOI
Shrivastava M., Lou S., Zelenyuk A., Easter R.C., Corley R.A., Thrall B.D., Rasch P.J., Fast J.D., Simonich S.L.M., Shen H., et al. Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coating of organic aerosol. Proc. Natl. Acad. Sci. USA. 2017;114:1246–1251. doi: 10.1073/pnas.1618475114. PubMed DOI PMC
ECDC/WHO European Centre for Disease Prevention and Control. Regional Office for Europe . Tuberculosis Surveillance and Monitoring in Europe 2018. 2016 Data. ECDC; Stockholm, Sweden: WHO; Geneva, Switzerland: 2018. p. 195.
ÚZIS CR (Institute of Health Information and Statistics of the Czech Republic) Basic Overview of Tuberculosis Epidemiology in the Czech Republic in 2016. ÚZIS CR; Prague, Czech Republic: 2017. p. 13.
Nontuberculous Mycobacteria: Ecology and Impact on Animal and Human Health