Mycobacterioses Induced by Mycobacterium abscessus: Case Studies Indicating the Importance of Molecular Analysis for the Identification of Antibiotic Resistance

. 2022 Jun 28 ; 11 (7) : . [epub] 20220628

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35884127

Grantová podpora
NU20-09-00114 Czech Health Research Council

Odkazy

PubMed 35884127
PubMed Central PMC9312086
DOI 10.3390/antibiotics11070873
PII: antibiotics11070873
Knihovny.cz E-zdroje

Mycobacterioses are less frequently occurring but serious diseases. In recent years, at a global level, the incidence of mycobacterioses induced by the rapidly growing species Mycobacterium abscessus (M. a.), which is considered to be the most resistant to antibiotics and most difficult to treat, has been on the rise. Correct identification to the level of the subspecies (M. a. abscessus, M. a. massiliense, and M. a. bolletii) and determination of its sensitivity to macrolides, which are the basis of combination therapy, are of principal importance for the management of the disease. We describe five cases of mycobacterioses caused by M. a., where the sequencing of select genes was performed to identify the individual subspecies and antibiotic resistance. The analysis of the rpoB gene showed two isolates each of M. a. abscessus and M. a. massiliense and one isolate of M. a. bolletii. The complete (full length) erm(41) gene responsible for the development of inducible resistance to macrolides was demonstrated in both M. a. abscessus and M. a. bolletii isolates. A partially deleted and non-functional erm(41) gene was demonstrated in M. a. massiliense isolates. The subsequent sequencing of the full length erm(41) gene products showed, however, the mutation (T28→C) in both isolates of M. a. abscessus, causing a loss of the function and preserved sensitivity to macrolides. The antibiotic sensitivity testing confirmed that both the isolates of M. a. abscessus and M. a. massiliense were sensitive to clarithromycin even after prolonged 14-day incubation. The inducible resistance to clarithromycin was maintained only in M. a. bolletii. Thus, the sequence analysis of the erm(41) gene can reliably identify the preservation of sensitivity to macrolides and serve as an important tool in the establishment of therapeutic regimens in cases of infections with M. abscessus.

Zobrazit více v PubMed

Gopalaswamy R., Shanmugam S., Mondal R., Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections—A comparative analysis of epidemiology, diagnosis and treatment. J. Biomed. Sci. 2020;27:74. doi: 10.1186/s12929-020-00667-6. PubMed DOI PMC

Wassilew N., Hoffmann H., Andrejak C., Lange C. Pulmonary disease caused by non-tuberculous mycobacteria. Respiration. 2016;91:386–402. doi: 10.1159/000445906. PubMed DOI

Griffith D.E., Aksamit T., Brown-Elliott B.A., Catanzaro A., Daley C., Gordin F., Holland S.M., Horsburgh R., Huitt G., Iademarco M.F., et al. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 2007;175:367–416. doi: 10.1164/rccm.200604-571ST. PubMed DOI

Falkinham J.O., 3rd Environmental sources of nontuberculous mycobacteria. Clin. Chest Med. 2015;36:35–41. doi: 10.1016/j.ccm.2014.10.003. PubMed DOI

Lopeman R.C., Harrison J., Desai M., Cox J.A.G. Mycobacterium abscessus: Environmental bacterium turned clinical nightmare. Microorganisms. 2019;7:90. doi: 10.3390/microorganisms7030090. PubMed DOI PMC

Fogelson S.B., Camus A.C., Lorenz W.W., Vasireddy R., Vasireddy S., Smith T., Brown-Elliott B.A., Wallace R.J., Jr., Hasan N.A., Reischl U., et al. Variation among human, veterinary and environmental Mycobacterium chelonae-abscessus complex isolates observed using core genome phylogenomic analysis, targeted gene comparison, and anti-microbial susceptibility patterns. PLoS ONE. 2019;14:e0214274. doi: 10.1371/journal.pone.0214274. PubMed DOI PMC

Hoefsloot W., van Ingen J., Andrejak C., Angeby K., Bauriaud R., Bemer P., Beylis N., Boeree M.J., Cacho J., Chihota V., et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: An NTM-NET collaborative study. Eur. Respir. J. 2013;42:1604–1613. doi: 10.1183/09031936.00149212. PubMed DOI

Namkoong H., Kurashima A., Morimoto K., Hoshino Y., Hasegawa N., Ato M., Mitarai S. Epidemiology of pulmonary nontuberculous mycobacterial disease, Japan. Emerg. Infect. Dis. 2016;22:1116–1117. doi: 10.3201/eid2206.151086. PubMed DOI PMC

Modra H., Ulmann V., Caha J., Hubelova D., Konecny O., Svobodova J., Weston R.T., Pavlik I. Socio-economic and environmental factors related to spatial differences in human non-tuberculous mycobacterial diseases in the Czech Republic. Int. J. Environ. Res. Public Health. 2019;16:3969. doi: 10.3390/ijerph16203969. PubMed DOI PMC

Johansen M.D., Herrmann J.L., Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat. Rev. Microbiol. 2020;18:392–407. doi: 10.1038/s41579-020-0331-1. PubMed DOI

American Thoracic Society: Statements, Guidelines & Reports. [(accessed on 11 February 2022)]. Available online: https://www.thoracic.org/statements/

Kim S.Y., Shin S.J., Jeong B.H., Koh W.J. Successful antibiotic treatment of pulmonary disease caused by Mycobacterium abscessus subsp. abscessus with C-to-T mutation at position 19 in erm(41) gene: Case report. BMC Infect. Dis. 2016;16:207. doi: 10.1186/s12879-016-1554-7. PubMed DOI PMC

Daley C.L., Iaccarino J.M., Lange C., Cambau E., Wallace R.J., Jr., Andrejak C., Bottger E.C., Brozek J., Griffith D.E., Guglielmetti L., et al. Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur. Respir. J. 2020;56:e1–e36. doi: 10.1183/13993003.00535-2020. PubMed DOI PMC

Floto R.A., Olivier K.N., Saiman L., Daley C.L., Herrmann J.L., Nick J.A., Noone P.G., Bilton D., Corris P., Gibson R.L., et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax. 2016;71((Suppl. S1)):i1–i22. doi: 10.1136/thoraxjnl-2015-207360. PubMed DOI PMC

Maurer F.P., Ruegger V., Ritter C., Bloemberg G.V., Bottger E.C. Acquisition of clarithromycin resistance mutations in the 23S rRNA gene of Mycobacterium abscessus in the presence of inducible erm(41) J. Antimicrob. Chemother. 2012;67:2606–2611. doi: 10.1093/jac/dks279. PubMed DOI

Bastian S., Veziris N., Roux A.L., Brossier F., Gaillard J.L., Jarlier V., Cambau E. Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob. Agents Chemother. 2011;55:775–781. doi: 10.1128/AAC.00861-10. PubMed DOI PMC

Mase A., Yamaguchi F., Funaki T., Yamazaki Y., Shikama Y., Fukuchi K. PCR amplification of the erm(41) gene can be used to predict the sensitivity of Mycobacterium abscessus complex strains to clarithromycin. Exp. Ther. Med. 2020;19:945–955. doi: 10.3892/etm.2019.8289. PubMed DOI PMC

Koh W.J., Jeon K., Lee N.Y., Kim B.J., Kook Y.H., Lee S.H., Park Y.K., Kim C.K., Shin S.J., Huitt G.A., et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am. J. Respir. Crit. Care Med. 2011;183:405–410. doi: 10.1164/rccm.201003-0395OC. PubMed DOI

Mougari F., Amarsy R., Veziris N., Bastian S., Brossier F., Bercot B., Raskine L., Cambau E. Standardized interpretation of antibiotic susceptibility testing and resistance genotyping for Mycobacterium abscessus with regard to subspecies and erm41 sequevar. J. Antimicrob. Chemother. 2016;71:2208–2212. doi: 10.1093/jac/dkw130. PubMed DOI

Lyu J., Kim B.J., Kim B.J., Song J.W., Choi C.M., Oh Y.M., Lee S.D., Kim W.S., Kim D.S., Shim T.S. A shorter treatment duration may be sufficient for patients with Mycobacterium massiliense lung disease than with Mycobacterium abscessus lung disease. Respir. Med. 2014;108:1706–1712. doi: 10.1016/j.rmed.2014.09.002. PubMed DOI

Nash K.A., Brown-Elliott B.A., Wallace R.J., Jr. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob. Agents Chemother. 2009;53:1367–1376. doi: 10.1128/AAC.01275-08. PubMed DOI PMC

Degiacomi G., Sammartino J.C., Chiarelli L.R., Riabova O., Makarov V., Pasca M.R. Mycobacterium abscessus, an emerging and worrisome pathogen among cystic fibrosis patients. Int. J. Mol. Sci. 2019;20:5868. doi: 10.3390/ijms20235868. PubMed DOI PMC

Szturmowicz M., Oniszh K., Wyrostkiewicz D., Radwan-Rohrenschef P., Filipczak D., Zabost A. Non-tuberculous mycobacteria in respiratory specimens of patients with obstructive lung diseases-colonization or disease? Antibiotics. 2020;9:424. doi: 10.3390/antibiotics9070424. PubMed DOI PMC

Feng J.Y., Chen W.C., Chen Y.Y., Su W.J. Clinical relevance and diagnosis of nontuberculous mycobacterial pulmonary disease in populations at risk. J. Formos. Med. Assoc. 2020;119((Suppl. S1)):S23–S31. doi: 10.1016/j.jfma.2020.05.012. PubMed DOI

Chmiel J.F., Aksamit T.R., Chotirmall S.H., Dasenbrook E.C., Elborn J.S., LiPuma J.J., Ranganathan S.C., Waters V.J., Ratjen F.A. Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi. Ann. Am. Thorac. Soc. 2014;11:1298–1306. doi: 10.1513/AnnalsATS.201405-203AS. PubMed DOI PMC

Weng Y.W., Huang C.K., Sy C.L., Wu K.S., Tsai H.C., Lee S.S. Treatment for Mycobacterium abscessus complex-lung disease. J. Formos. Med. Assoc. 2020;119((Suppl. S1)):S58–S66. doi: 10.1016/j.jfma.2020.05.028. PubMed DOI

Jeon K., Kwon O.J., Lee N.Y., Kim B.J., Kook Y.H., Lee S.H., Park Y.K., Kim C.K., Koh W.J. Antibiotic treatment of Mycobacterium abscessus lung disease: A retrospective analysis of 65 patients. Am. J. Respir. Crit. Care Med. 2009;180:896–902. doi: 10.1164/rccm.200905-0704OC. PubMed DOI

Pasipanodya J.G., Ogbonna D., Ferro B.E., Magombedze G., Srivastava S., Deshpande D., Gumbo T. Systematic Review and meta-analyses of the effect of chemotherapy on pulmonary Mycobacterium abscessus outcomes and disease recurrence. Antimicrob. Agents Chemother. 2017;61:e01206-17. doi: 10.1128/AAC.01206-17. PubMed DOI PMC

Koh W.J., Stout J.E., Yew W.W. Advances in the management of pulmonary disease due to Mycobacterium abscessus complex. Int. J. Tuberc. Lung Dis. 2014;18:1141–1148. doi: 10.5588/ijtld.14.0134. PubMed DOI

Varghese B., Al-Hajoj S. A global update on rare non-tuberculous mycobacteria in humans: Epidemiology and emergence. Int. J. Tuberc. Lung Dis. 2020;24:214–223. doi: 10.5588/ijtld.19.0194. PubMed DOI

Harada T., Akiyama Y., Kurashima A., Nagai H., Tsuyuguchi K., Fujii T., Yano S., Shigeto E., Kuraoka T., Kajiki A., et al. Clinical and microbiological differences between Mycobacterium abscessus and Mycobacterium massiliense lung diseases. J. Clin. Microbiol. 2012;50:3556–3561. doi: 10.1128/JCM.01175-12. PubMed DOI PMC

Koh W.J., Jeong B.H., Kim S.Y., Jeon K., Park K.U., Jhun B.W., Lee H., Park H.Y., Kim D.H., Huh H.J., et al. Mycobacterial characteristics and treatment outcomes in Mycobacterium abscessus lung disease. Clin. Infect. Dis. 2017;64:309–316. doi: 10.1093/cid/ciw724. PubMed DOI

Choi H., Jhun B.W., Kim S.Y., Kim D.H., Lee H., Jeon K., Kwon O.J., Huh H.J., Ki C.S., Lee N.Y., et al. Treatment outcomes of macrolide-susceptible Mycobacterium abscessus lung disease. Diagn. Microbiol. Infect. Dis. 2018;90:293–295. doi: 10.1016/j.diagmicrobio.2017.12.008. PubMed DOI

Bemer P., Peuchant O., Guet-Revillet H., Bador J., Balavoine C., Basille D., Beltramo G., Blanc F.X., Blanchard E., Boulanger S., et al. Management of patients with pulmonary mycobacteriosis in France: A multicenter retrospective cohort study. BMC Pulm. Med. 2021;21:333. doi: 10.1186/s12890-021-01701-5. PubMed DOI PMC

Bryant J.M., Grogono D.M., Rodriguez-Rincon D., Everall I., Brown K.P., Moreno P., Verma D., Hill E., Drijkoningen J., Gilligan P., et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science. 2016;354:751–757. doi: 10.1126/science.aaf8156. PubMed DOI PMC

Redondo N., Mok S., Montgomery L., Flanagan P.R., McNamara E., Smyth E.G., O’Sullivan N., Schaffer K., Rogers T.R., Fitzgibbon M.M. Genomic analysis of Mycobacterium abscessus complex isolates collected in ireland between 2006 and 2017. J. Clin. Microbiol. 2020;58:e00295-20. doi: 10.1128/JCM.00295-20. PubMed DOI PMC

Teri A., Sottotetti S., Arghittu M., Girelli D., Biffi A., D’Accico M., Dacco V., Gambazza S., Pizzamiglio G., Trovato A., et al. Molecular characterization of Mycobacterium abscessus subspecies isolated from patients attending an Italian Cystic Fibrosis Centre. New Microbiol. 2020;43:127–132. PubMed

Adekambi T., Colson P., Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J. Clin. Microbiol. 2003;41:5699–5708. doi: 10.1128/JCM.41.12.5699-5708.2003. PubMed DOI PMC

Choi G.E., Chang C.L., Whang J., Kim H.J., Kwon O.J., Koh W.J., Shin S.J. Efficient differentiation of Mycobacterium abscessus complex isolates to the species level by a novel PCR-based variable-number tandem-repeat assay. J. Clin. Microbiol. 2011;49:1107–1109. doi: 10.1128/JCM.02318-10. PubMed DOI PMC

Inagaki T., Yagi T., Ichikawa K., Nakagawa T., Moriyama M., Uchiya K., Nikai T., Ogawa K. Evaluation of a rapid detection method of clarithromycin resistance genes in Mycobacterium avium complex isolates. J. Antimicrob. Chemother. 2011;66:722–729. doi: 10.1093/jac/dkq536. PubMed DOI

Biehle J.R., Cavalieri S.J., Saubolle M.A., Getsinger L.J. Evaluation of Etest for susceptibility testing of rapidly growing mycobacteria. J. Clin. Microbiol. 1995;33:1760–1764. doi: 10.1128/jcm.33.7.1760-1764.1995. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...