Mycobacterioses Induced by Mycobacterium abscessus: Case Studies Indicating the Importance of Molecular Analysis for the Identification of Antibiotic Resistance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-09-00114
Czech Health Research Council
PubMed
35884127
PubMed Central
PMC9312086
DOI
10.3390/antibiotics11070873
PII: antibiotics11070873
Knihovny.cz E-zdroje
- Klíčová slova
- erm(41) gene, macrolide resistance, multiresistance, nontuberculous mycobacteria, rapidly growing mycobacteria,
- Publikační typ
- časopisecké články MeSH
Mycobacterioses are less frequently occurring but serious diseases. In recent years, at a global level, the incidence of mycobacterioses induced by the rapidly growing species Mycobacterium abscessus (M. a.), which is considered to be the most resistant to antibiotics and most difficult to treat, has been on the rise. Correct identification to the level of the subspecies (M. a. abscessus, M. a. massiliense, and M. a. bolletii) and determination of its sensitivity to macrolides, which are the basis of combination therapy, are of principal importance for the management of the disease. We describe five cases of mycobacterioses caused by M. a., where the sequencing of select genes was performed to identify the individual subspecies and antibiotic resistance. The analysis of the rpoB gene showed two isolates each of M. a. abscessus and M. a. massiliense and one isolate of M. a. bolletii. The complete (full length) erm(41) gene responsible for the development of inducible resistance to macrolides was demonstrated in both M. a. abscessus and M. a. bolletii isolates. A partially deleted and non-functional erm(41) gene was demonstrated in M. a. massiliense isolates. The subsequent sequencing of the full length erm(41) gene products showed, however, the mutation (T28→C) in both isolates of M. a. abscessus, causing a loss of the function and preserved sensitivity to macrolides. The antibiotic sensitivity testing confirmed that both the isolates of M. a. abscessus and M. a. massiliense were sensitive to clarithromycin even after prolonged 14-day incubation. The inducible resistance to clarithromycin was maintained only in M. a. bolletii. Thus, the sequence analysis of the erm(41) gene can reliably identify the preservation of sensitivity to macrolides and serve as an important tool in the establishment of therapeutic regimens in cases of infections with M. abscessus.
Zobrazit více v PubMed
Gopalaswamy R., Shanmugam S., Mondal R., Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections—A comparative analysis of epidemiology, diagnosis and treatment. J. Biomed. Sci. 2020;27:74. doi: 10.1186/s12929-020-00667-6. PubMed DOI PMC
Wassilew N., Hoffmann H., Andrejak C., Lange C. Pulmonary disease caused by non-tuberculous mycobacteria. Respiration. 2016;91:386–402. doi: 10.1159/000445906. PubMed DOI
Griffith D.E., Aksamit T., Brown-Elliott B.A., Catanzaro A., Daley C., Gordin F., Holland S.M., Horsburgh R., Huitt G., Iademarco M.F., et al. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 2007;175:367–416. doi: 10.1164/rccm.200604-571ST. PubMed DOI
Falkinham J.O., 3rd Environmental sources of nontuberculous mycobacteria. Clin. Chest Med. 2015;36:35–41. doi: 10.1016/j.ccm.2014.10.003. PubMed DOI
Lopeman R.C., Harrison J., Desai M., Cox J.A.G. Mycobacterium abscessus: Environmental bacterium turned clinical nightmare. Microorganisms. 2019;7:90. doi: 10.3390/microorganisms7030090. PubMed DOI PMC
Fogelson S.B., Camus A.C., Lorenz W.W., Vasireddy R., Vasireddy S., Smith T., Brown-Elliott B.A., Wallace R.J., Jr., Hasan N.A., Reischl U., et al. Variation among human, veterinary and environmental Mycobacterium chelonae-abscessus complex isolates observed using core genome phylogenomic analysis, targeted gene comparison, and anti-microbial susceptibility patterns. PLoS ONE. 2019;14:e0214274. doi: 10.1371/journal.pone.0214274. PubMed DOI PMC
Hoefsloot W., van Ingen J., Andrejak C., Angeby K., Bauriaud R., Bemer P., Beylis N., Boeree M.J., Cacho J., Chihota V., et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: An NTM-NET collaborative study. Eur. Respir. J. 2013;42:1604–1613. doi: 10.1183/09031936.00149212. PubMed DOI
Namkoong H., Kurashima A., Morimoto K., Hoshino Y., Hasegawa N., Ato M., Mitarai S. Epidemiology of pulmonary nontuberculous mycobacterial disease, Japan. Emerg. Infect. Dis. 2016;22:1116–1117. doi: 10.3201/eid2206.151086. PubMed DOI PMC
Modra H., Ulmann V., Caha J., Hubelova D., Konecny O., Svobodova J., Weston R.T., Pavlik I. Socio-economic and environmental factors related to spatial differences in human non-tuberculous mycobacterial diseases in the Czech Republic. Int. J. Environ. Res. Public Health. 2019;16:3969. doi: 10.3390/ijerph16203969. PubMed DOI PMC
Johansen M.D., Herrmann J.L., Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat. Rev. Microbiol. 2020;18:392–407. doi: 10.1038/s41579-020-0331-1. PubMed DOI
American Thoracic Society: Statements, Guidelines & Reports. [(accessed on 11 February 2022)]. Available online: https://www.thoracic.org/statements/
Kim S.Y., Shin S.J., Jeong B.H., Koh W.J. Successful antibiotic treatment of pulmonary disease caused by Mycobacterium abscessus subsp. abscessus with C-to-T mutation at position 19 in erm(41) gene: Case report. BMC Infect. Dis. 2016;16:207. doi: 10.1186/s12879-016-1554-7. PubMed DOI PMC
Daley C.L., Iaccarino J.M., Lange C., Cambau E., Wallace R.J., Jr., Andrejak C., Bottger E.C., Brozek J., Griffith D.E., Guglielmetti L., et al. Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur. Respir. J. 2020;56:e1–e36. doi: 10.1183/13993003.00535-2020. PubMed DOI PMC
Floto R.A., Olivier K.N., Saiman L., Daley C.L., Herrmann J.L., Nick J.A., Noone P.G., Bilton D., Corris P., Gibson R.L., et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax. 2016;71((Suppl. S1)):i1–i22. doi: 10.1136/thoraxjnl-2015-207360. PubMed DOI PMC
Maurer F.P., Ruegger V., Ritter C., Bloemberg G.V., Bottger E.C. Acquisition of clarithromycin resistance mutations in the 23S rRNA gene of Mycobacterium abscessus in the presence of inducible erm(41) J. Antimicrob. Chemother. 2012;67:2606–2611. doi: 10.1093/jac/dks279. PubMed DOI
Bastian S., Veziris N., Roux A.L., Brossier F., Gaillard J.L., Jarlier V., Cambau E. Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob. Agents Chemother. 2011;55:775–781. doi: 10.1128/AAC.00861-10. PubMed DOI PMC
Mase A., Yamaguchi F., Funaki T., Yamazaki Y., Shikama Y., Fukuchi K. PCR amplification of the erm(41) gene can be used to predict the sensitivity of Mycobacterium abscessus complex strains to clarithromycin. Exp. Ther. Med. 2020;19:945–955. doi: 10.3892/etm.2019.8289. PubMed DOI PMC
Koh W.J., Jeon K., Lee N.Y., Kim B.J., Kook Y.H., Lee S.H., Park Y.K., Kim C.K., Shin S.J., Huitt G.A., et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am. J. Respir. Crit. Care Med. 2011;183:405–410. doi: 10.1164/rccm.201003-0395OC. PubMed DOI
Mougari F., Amarsy R., Veziris N., Bastian S., Brossier F., Bercot B., Raskine L., Cambau E. Standardized interpretation of antibiotic susceptibility testing and resistance genotyping for Mycobacterium abscessus with regard to subspecies and erm41 sequevar. J. Antimicrob. Chemother. 2016;71:2208–2212. doi: 10.1093/jac/dkw130. PubMed DOI
Lyu J., Kim B.J., Kim B.J., Song J.W., Choi C.M., Oh Y.M., Lee S.D., Kim W.S., Kim D.S., Shim T.S. A shorter treatment duration may be sufficient for patients with Mycobacterium massiliense lung disease than with Mycobacterium abscessus lung disease. Respir. Med. 2014;108:1706–1712. doi: 10.1016/j.rmed.2014.09.002. PubMed DOI
Nash K.A., Brown-Elliott B.A., Wallace R.J., Jr. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob. Agents Chemother. 2009;53:1367–1376. doi: 10.1128/AAC.01275-08. PubMed DOI PMC
Degiacomi G., Sammartino J.C., Chiarelli L.R., Riabova O., Makarov V., Pasca M.R. Mycobacterium abscessus, an emerging and worrisome pathogen among cystic fibrosis patients. Int. J. Mol. Sci. 2019;20:5868. doi: 10.3390/ijms20235868. PubMed DOI PMC
Szturmowicz M., Oniszh K., Wyrostkiewicz D., Radwan-Rohrenschef P., Filipczak D., Zabost A. Non-tuberculous mycobacteria in respiratory specimens of patients with obstructive lung diseases-colonization or disease? Antibiotics. 2020;9:424. doi: 10.3390/antibiotics9070424. PubMed DOI PMC
Feng J.Y., Chen W.C., Chen Y.Y., Su W.J. Clinical relevance and diagnosis of nontuberculous mycobacterial pulmonary disease in populations at risk. J. Formos. Med. Assoc. 2020;119((Suppl. S1)):S23–S31. doi: 10.1016/j.jfma.2020.05.012. PubMed DOI
Chmiel J.F., Aksamit T.R., Chotirmall S.H., Dasenbrook E.C., Elborn J.S., LiPuma J.J., Ranganathan S.C., Waters V.J., Ratjen F.A. Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi. Ann. Am. Thorac. Soc. 2014;11:1298–1306. doi: 10.1513/AnnalsATS.201405-203AS. PubMed DOI PMC
Weng Y.W., Huang C.K., Sy C.L., Wu K.S., Tsai H.C., Lee S.S. Treatment for Mycobacterium abscessus complex-lung disease. J. Formos. Med. Assoc. 2020;119((Suppl. S1)):S58–S66. doi: 10.1016/j.jfma.2020.05.028. PubMed DOI
Jeon K., Kwon O.J., Lee N.Y., Kim B.J., Kook Y.H., Lee S.H., Park Y.K., Kim C.K., Koh W.J. Antibiotic treatment of Mycobacterium abscessus lung disease: A retrospective analysis of 65 patients. Am. J. Respir. Crit. Care Med. 2009;180:896–902. doi: 10.1164/rccm.200905-0704OC. PubMed DOI
Pasipanodya J.G., Ogbonna D., Ferro B.E., Magombedze G., Srivastava S., Deshpande D., Gumbo T. Systematic Review and meta-analyses of the effect of chemotherapy on pulmonary Mycobacterium abscessus outcomes and disease recurrence. Antimicrob. Agents Chemother. 2017;61:e01206-17. doi: 10.1128/AAC.01206-17. PubMed DOI PMC
Koh W.J., Stout J.E., Yew W.W. Advances in the management of pulmonary disease due to Mycobacterium abscessus complex. Int. J. Tuberc. Lung Dis. 2014;18:1141–1148. doi: 10.5588/ijtld.14.0134. PubMed DOI
Varghese B., Al-Hajoj S. A global update on rare non-tuberculous mycobacteria in humans: Epidemiology and emergence. Int. J. Tuberc. Lung Dis. 2020;24:214–223. doi: 10.5588/ijtld.19.0194. PubMed DOI
Harada T., Akiyama Y., Kurashima A., Nagai H., Tsuyuguchi K., Fujii T., Yano S., Shigeto E., Kuraoka T., Kajiki A., et al. Clinical and microbiological differences between Mycobacterium abscessus and Mycobacterium massiliense lung diseases. J. Clin. Microbiol. 2012;50:3556–3561. doi: 10.1128/JCM.01175-12. PubMed DOI PMC
Koh W.J., Jeong B.H., Kim S.Y., Jeon K., Park K.U., Jhun B.W., Lee H., Park H.Y., Kim D.H., Huh H.J., et al. Mycobacterial characteristics and treatment outcomes in Mycobacterium abscessus lung disease. Clin. Infect. Dis. 2017;64:309–316. doi: 10.1093/cid/ciw724. PubMed DOI
Choi H., Jhun B.W., Kim S.Y., Kim D.H., Lee H., Jeon K., Kwon O.J., Huh H.J., Ki C.S., Lee N.Y., et al. Treatment outcomes of macrolide-susceptible Mycobacterium abscessus lung disease. Diagn. Microbiol. Infect. Dis. 2018;90:293–295. doi: 10.1016/j.diagmicrobio.2017.12.008. PubMed DOI
Bemer P., Peuchant O., Guet-Revillet H., Bador J., Balavoine C., Basille D., Beltramo G., Blanc F.X., Blanchard E., Boulanger S., et al. Management of patients with pulmonary mycobacteriosis in France: A multicenter retrospective cohort study. BMC Pulm. Med. 2021;21:333. doi: 10.1186/s12890-021-01701-5. PubMed DOI PMC
Bryant J.M., Grogono D.M., Rodriguez-Rincon D., Everall I., Brown K.P., Moreno P., Verma D., Hill E., Drijkoningen J., Gilligan P., et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science. 2016;354:751–757. doi: 10.1126/science.aaf8156. PubMed DOI PMC
Redondo N., Mok S., Montgomery L., Flanagan P.R., McNamara E., Smyth E.G., O’Sullivan N., Schaffer K., Rogers T.R., Fitzgibbon M.M. Genomic analysis of Mycobacterium abscessus complex isolates collected in ireland between 2006 and 2017. J. Clin. Microbiol. 2020;58:e00295-20. doi: 10.1128/JCM.00295-20. PubMed DOI PMC
Teri A., Sottotetti S., Arghittu M., Girelli D., Biffi A., D’Accico M., Dacco V., Gambazza S., Pizzamiglio G., Trovato A., et al. Molecular characterization of Mycobacterium abscessus subspecies isolated from patients attending an Italian Cystic Fibrosis Centre. New Microbiol. 2020;43:127–132. PubMed
Adekambi T., Colson P., Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J. Clin. Microbiol. 2003;41:5699–5708. doi: 10.1128/JCM.41.12.5699-5708.2003. PubMed DOI PMC
Choi G.E., Chang C.L., Whang J., Kim H.J., Kwon O.J., Koh W.J., Shin S.J. Efficient differentiation of Mycobacterium abscessus complex isolates to the species level by a novel PCR-based variable-number tandem-repeat assay. J. Clin. Microbiol. 2011;49:1107–1109. doi: 10.1128/JCM.02318-10. PubMed DOI PMC
Inagaki T., Yagi T., Ichikawa K., Nakagawa T., Moriyama M., Uchiya K., Nikai T., Ogawa K. Evaluation of a rapid detection method of clarithromycin resistance genes in Mycobacterium avium complex isolates. J. Antimicrob. Chemother. 2011;66:722–729. doi: 10.1093/jac/dkq536. PubMed DOI
Biehle J.R., Cavalieri S.J., Saubolle M.A., Getsinger L.J. Evaluation of Etest for susceptibility testing of rapidly growing mycobacteria. J. Clin. Microbiol. 1995;33:1760–1764. doi: 10.1128/jcm.33.7.1760-1764.1995. PubMed DOI PMC