Mutation-related differences in exploratory, spatial, and depressive-like behavior in pcd and Lurcher cerebellar mutant mice
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26029065
PubMed Central
PMC4429248
DOI
10.3389/fnbeh.2015.00116
Knihovny.cz E-zdroje
- Klíčová slova
- Lurcher, olivocerebellar degeneration, pcd, spatial learning, water maze,
- Publikační typ
- časopisecké články MeSH
The cerebellum is not only essential for motor coordination but is also involved in cognitive and affective processes. These functions of the cerebellum and mechanisms of their disorders in cerebellar injury are not completely understood. There is a wide spectrum of cerebellar mutant mice which are used as models of hereditary cerebellar degenerations. Nevertheless, they differ in pathogenesis of manifestation of the particular mutation and also in the strain background. The aim of this work was to compare spatial navigation, learning, and memory in pcd and Lurcher mice, two of the most frequently used cerebellar mutants. The mice were tested in the open field for exploration behavior, in the Morris water maze with visible as well as reversal hidden platform tasks and in the forced swimming test for motivation assessment. Lurcher mice showed different space exploration activity in the open field and a lower tendency to depressive-like behavior in the forced swimming test compared with pcd mice. Severe deficit of spatial navigation was shown in both cerebellar mutants. However, the overall performance of Lurcher mice was better than that of pcd mutants. Lurcher mice showed the ability of visual guidance despite difficulties with the direct swim toward a goal. In the probe trial test, Lurcher mice preferred the visible platform rather than the more recent localization of the hidden goal.
Zobrazit více v PubMed
Angelaki D. E., Hess B. J. (2005). Self-motion-induced eye movements: effects on visual acuity and navigation. Nat. Rev. Neurosci. 6, 966–976. 10.1038/nrn1804 PubMed DOI
Araki K., Meguro H., Kushiya E., Takayama C., Inoue Y., Mishina M. (1993). Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem. Biophys. Res. Commun. 197, 1267–1276. 10.1006/bbrc.1993.2614 PubMed DOI
Arvidsson E., Viereckel T., Mikulovic S., Wallen-Mackenzie A. (2014). Age- and sex-dependence of dopamine release and capacity for recovery identified in the dorsal striatum of C57/Bl6J mice. PLoS ONE 9:e99592. 10.1371/journal.pone.0099592 PubMed DOI PMC
Baltanas F. C., Berciano M. T., Valero J., Gomez C., Diaz D., Alonso J. R., et al. . (2013). Differential glial activation during the degeneration of Purkinje cells and mitral cells in the PCD mutant mice. Glia 61, 254–272. 10.1002/glia.22431 PubMed DOI
Baltanas F. C., Casafont I., Lafarga V., Weruaga E., Alonso J. R., Berciano M. T., et al. . (2011). Purkinje cell degeneration in pcd mice reveals large scale chromatin reorganization and gene silencing linked to defective DNA repair. J. Biol. Chem. 286, 28287–28302. 10.1074/jbc.M111.246041 PubMed DOI PMC
Baumann O., Borra R. J., Bower J. M., Cullen K. E., Habas C., Ivry R. B., et al. . (2015). Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum 14, 197–220. 10.1007/s12311-014-0627-7 PubMed DOI PMC
Blanks J. C., Mullen R. J., Lavail M. M. (1982). Retinal degeneration in the pcd cerebellar mutant mouse. II. Electron microscopic analysis. J. Comp. Neurol. 212, 231–246. 10.1002/cne.902120303 PubMed DOI
Blanks J. C., Spee C. (1992). Retinal degeneration in the pcd/pcd mutant mouse: accumulation of spherules in the interphotoreceptor space. Exp. Eye Res. 54, 637–644. 10.1016/0014-4835(92)90019-O PubMed DOI
Boyce R. W., Dorph-Petersen K. A., Lyck L., Gundersen H. J. (2010). Design-based stereology: introduction to basic concepts and practical approaches for estimation of cell number. Toxicol. Pathol. 38, 1011–1025. 10.1177/0192623310385140 PubMed DOI
Brown K. L., Agelan A., Woodruff-Pak D. S. (2010). Unimpaired trace classical eyeblink conditioning in Purkinje cell degeneration (pcd) mutant mice. Neurobiol. Learn. Mem. 93, 303–311. 10.1016/j.nlm.2009.11.004 PubMed DOI PMC
Caddy K. W., Biscoe T. J. (1979). Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos. Trans. R. Soc. Lond. B Biol. Sci. 287, 167–201. 10.1098/rstb.1979.0055 PubMed DOI
Caston J., Chianale C., Delhaye-Bouchaud N., Mariani J. (1998). Role of the cerebellum in exploration behavior. Brain Res. 808, 232–237. 10.1016/S0006-8993(98)00847-6 PubMed DOI
Cendelin J. (2014). From mice to men: lessons from mutant ataxic mice. Cerebellum Ataxias 1:4 10.1186/2053-8871-1-4 PubMed DOI PMC
Cendelin J., Korelusova I., Vozeh F. (2008). The effect of repeated rotarod training on motor skills and spatial learning ability in Lurcher mutant mice. Behav. Brain. Res. 189, 65–74. 10.1016/j.bbr.2007.12.013 PubMed DOI
Cendelin J., Tuma J., Korelusova I., Vozeh F. (2014). The effect of genetic background on behavioral manifestation of Grid2 mutation. Behav. Brain. Res. 271C, 218–227. 10.1016/j.bbr.2014.06.023 PubMed DOI
Chen L., Bao S., Lockard J. M., Kim J. K., Thompson R. F. (1996). Impaired classical eyeblink conditioning in cerebellar-lesioned and Purkinje cell degeneration (pcd) mutant mice. J. Neurosci. 16, 2829–2838. PubMed PMC
Cooper F. E., Grube M., Elsegood K. J., Welch J. L., Kelly T. P., Chinnery P. F., et al. . (2010). The contribution of the cerebellum to cognition in spinocerebellar ataxia type 6. Behav. Neurol. 23, 3–15. 10.1155/2010/724861 PubMed DOI PMC
Dalley J. W., Cardinal R. N., Robbins T. W. (2004). Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev. 28, 771–784. 10.1016/j.neubiorev.2004.09.006 PubMed DOI
de Jager P. L., Zuo J., Cook S. A., Heintz N. (1997). A new allele of the lurcher gene, lurcherJ. Mamm. Genome 8, 647–650. 10.1007/s003359900530 PubMed DOI
D'hooge R., de Deyn P. P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Res. Brain Res. Rev. 36, 60–90. 10.1016/S0165-0173(01)00067-4 PubMed DOI
Dickson P. E., Rogers T. D., Del Mar N., Martin L. A., Heck D., Blaha C. D., et al. . (2010). Behavioral flexibility in a mouse model of developmental cerebellar Purkinje cell loss. Neurobiol. Learn. Mem. 94, 220–228. 10.1016/j.nlm.2010.05.010 PubMed DOI PMC
Fancellu R., Paridi D., Tomasello C., Panzeri M., Castaldo A., Genitrini S., et al. . (2013). Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J. Neurol. 260, 3134–3143. 10.1007/s00415-013-7138-1 PubMed DOI
Fernandez-Gonzalez A., La Spada A. R., Treadaway J., Higdon J. C., Harris B. S., Sidman R. L., et al. . (2002). Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science 295, 1904–1906. 10.1126/science.1068912 PubMed DOI
Fortier P. A., Smith A. M., Rossignol S. (1987). Locomotor deficits in the mutant mouse, Lurcher. Exp. Brain Res. 66, 271–286. 10.1007/BF00243304 PubMed DOI
Frederic F., Chautard T., Brochard R., Chianale C., Wollman E., Oliver C., et al. . (1997). Enhanced endocrine response to novel environment stress and endotoxin in Lurcher mutant mice. Neuroendocrinology 66, 341–347. 10.1159/000127257 PubMed DOI
Furuya S., Irie F., Hashikawa T., Nakazawa K., Kozakai A., Hasegawa A., et al. . (1994). Ganglioside GD1 alpha in cerebellar Purkinje cells. Its specific absence in mouse mutants with Purkinje cell abnormality and altered immunoreactivity in response to conjunctive stimuli causing long-term desensitization. J. Biol. Chem. 269, 32418–32425. PubMed
Ghetti B., Norton J., Triarhou L. C. (1987). Nerve cell atrophy and loss in the inferior olivary complex of “Purkinje cell degeneration” mutant mice. J. Comp. Neurol. 260, 409–422. 10.1002/cne.902600307 PubMed DOI
Glaser J., Greene G., Hendricks S. (2007). Stereology for Biological Research with a Focus on Neuroscience. Williston, VT: MBF Press.
Goodlett C. R., Hamre K. M., West J. R. (1992). Dissociation of spatial navigation and visual guidance performance in Purkinje cell degeneration (pcd) mutant mice. Behav. Brain. Res. 47, 129–141. 10.1016/S0166-4328(05)80119-6 PubMed DOI
Greer C. A., Shepherd G. M. (1982). Mitral cell degeneration and sensory function in the neurological mutant mouse Purkinje cell degeneration (PCD). Brain Res. 235, 156–161. 10.1016/0006-8993(82)90206-2 PubMed DOI
Gruart A., Pastor A. M., Armengol J. A., Delgado-Garcia J. M. (1997). Involvement of cerebellar cortex and nuclei in the genesis and control of unconditioned and conditioned eyelid motor responses. Prog. Brain Res. 114, 511–528. 10.1016/S0079-6123(08)63383-X PubMed DOI
Gundersen H. J. (1986). Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J. Microsc. 143, 3–45. 10.1111/j.1365-2818.1986.tb02764.x PubMed DOI
Gundersen H. J., Jensen E. B. (1987). The efficiency of systematic sampling in stereology and its prediction. J. Microsc. 147, 229–263. 10.1111/j.1365-2818.1987.tb02837.x PubMed DOI
Harris A., Morgan J. I., Pecot M., Soumare A., Osborne A., Soares H. D. (2000). Regenerating motor neurons express Nna1, a novel ATP/GTP-binding protein related to zinc carboxypeptidases. Mol. Cell Neurosci. 16, 578–596. 10.1006/mcne.2000.0900 PubMed DOI
Hilber P., Lorivel T., Delarue C., Caston J. (2004). Stress and anxious-related behaviors in Lurcher mutant mice. Brain Res. 1003, 108–112. 10.1016/j.brainres.2004.01.008 PubMed DOI
Jimenez-Diaz L., Navarro-Lopez Jde D., Gruart A., Delgado-Garcia J. M. (2004). Role of cerebellar interpositus nucleus in the genesis and control of reflex and conditioned eyelid responses. J. Neurosci. 24, 9138–9145. 10.1523/JNEUROSCI.2025-04.2004 PubMed DOI PMC
Killian J. E., Baker J. F. (2002). Horizontal vestibuloocular reflex (VOR) head velocity estimation in Purkinje cell degeneration (pcd/pcd) mutant mice. J. Neurophysiol. 87, 1159–1164. 10.1152/jn.00219.2001 PubMed DOI
Lalonde R. (1998). Immobility responses in Lurcher mutant mice. Behav. Genet. 28, 309–314. 10.1023/A:1021627631721 PubMed DOI
Lalonde R., Filali M., Bensoula A. N., Lestienne F. (1996). Sensorimotor learning in three cerebellar mutant mice. Neurobiol. Learn. Mem. 65, 113–120. 10.1006/nlme.1996.0013 PubMed DOI
Lalonde R., Lamarre Y., Smith A. M. (1988). Does the mutant mouse lurcher have deficits in spatially oriented behaviours? Brain Res. 455, 24–30. 10.1016/0006-8993(88)90109-6 PubMed DOI
Lalonde R., Manseau M., Botez M. I. (1987). Spontaneous alternation and habituation in Purkinje cell degeneration mutant mice. Brain Res. 411, 187–189. 10.1016/0006-8993(87)90699-8 PubMed DOI
Lalonde R., Manseau M., Botez M. I. (1989). Exploration and habituation in Purkinje cell degeneration mutant mice. Brain Res. 479, 201–203. 10.1016/0006-8993(89)91354-1 PubMed DOI
Lalonde R., Strazielle C. (2007). Spontaneous and induced mouse mutations with cerebellar dysfunctions: behavior and neurochemistry. Brain Res. 1140, 51–74. 10.1016/j.brainres.2006.01.031 PubMed DOI
Lalonde R., Thifault S. (1994). Absence of an association between motor coordination and spatial orientation in lurcher mutant mice. Behav. Genet. 24, 497–501. 10.1007/BF01071563 PubMed DOI
Lalouette A., Lohof A., Sotelo C., Guenet J., Mariani J. (2001). Neurobiological effects of a null mutation depend on genetic context: comparison between two hotfoot alleles of the delta-2 ionotropic glutamate receptor. Neuroscience 105, 443–455. 10.1016/S0306-4522(01)00193-2 PubMed DOI
Lavail M. M., Blanks J. C., Mullen R. J. (1982). Retinal degeneration in the pcd cerebellar mutant mouse. I. Light microscopic and autoradiographic analysis. J. Comp. Neurol. 212, 217–230. 10.1002/cne.902120302 PubMed DOI
Le Marec N., Lalonde R. (1997). Sensorimotor learning and retention during equilibrium tests in Purkinje cell degeneration mutant mice. Brain Res. 768, 310–316. 10.1016/S0006-8993(97)00666-5 PubMed DOI
Le Marec N., Lalonde R. (1998). Treadmill performance of mice with cerebellar lesions: 1. Purkinje cell degeneration mutant mice. Behav. Neurosci. 112, 225–232. 10.1037/0735-7044.112.1.225 PubMed DOI
Le Marec N., Lalonde R. (2000). Treadmill performance of mice with cerebellar lesions: 2. Lurcher mutant mice. Neurobiol. Learn. Mem. 73, 195–206. 10.1006/nlme.1999.3926 PubMed DOI
Llano Lopez L., Hauser J., Feldon J., Gargiulo P. A., Yee B. K. (2010). Evaluating spatial memory function in mice: a within-subjects comparison between the water maze test and its adaptation to dry land. Behav. Brain. Res. 209, 85–92. 10.1016/j.bbr.2010.01.020 PubMed DOI
Lorivel T., Roy V., Hilber P. (2014). Fear-related behaviors in Lurcher mutant mice exposed to a predator. Genes Brain Behav. 13, 794–801. 10.1111/gbb.12173 PubMed DOI
Manto M., Marmolino D. (2009). Animal models of human cerebellar ataxias: a cornerstone for the therapies of the twenty-first century. Cerebellum 8, 137–154. 10.1007/s12311-009-0127-3 PubMed DOI
Manto M. U. (2005). The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 4, 2–6. 10.1080/14734220510007914 PubMed DOI
Marchena M., Lara J., Aijon J., Germain F., de La Villa P., Velasco A. (2011). The retina of the PCD/PCD mouse as a model of photoreceptor degeneration. A structural and functional study. Exp. Eye Res. 93, 607–617. 10.1016/j.exer.2011.07.010 PubMed DOI
Marien P., Beaton A. (2014). The enigmatic linguistic cerebellum: clinical relevance and unanswered questions on nonmotor speech and language deficits in cerebellar disorders. Cerebellum Ataxias 1, 1–12 10.1186/2053-8871-1-12 PubMed DOI PMC
Morris R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47–60. 10.1016/0165-0270(84)90007-4 PubMed DOI
Mullen R. J., Eicher E. M., Sidman R. L. (1976). Purkinje cell degeneration, a new neurological mutation in the mouse. Proc. Natl. Acad. Sci. U.S.A. 73, 208–212. 10.1073/pnas.73.1.208 PubMed DOI PMC
O'Keefe J., Nadel L. (1978). The Hippocampus as a Cognitive Map. Oxford: Oxford University Press.
O'Gorman S. (1985). Degeneration of thalamic neurons in “Purkinje cell degeneration” mutant mice. II. Cytology of neuron loss. J. Comp. Neurol. 234, 298–316. 10.1002/cne.902340303 PubMed DOI
O'Gorman S., Sidman R. L. (1985). Degeneration of thalamic neurons in “Purkinje cell degeneration” mutant mice. I. Distribution of neuron loss. J. Comp. Neurol. 234, 277–297. 10.1002/cne.902340302 PubMed DOI
Onuki Y., van Someren E. J., de Zeeuw C. I., van der Werf Y. D. (2013). Hippocampal-cerebellar interaction during spatio-temporal prediction. Cereb. Cortex 25, 313–321. 10.1093/cercor/bht221 PubMed DOI
Perciavalle V., Apps R., Bracha V., Delgado-Garcia J. M., Gibson A. R., Leggio M., et al. . (2013). Consensus paper: current views on the role of cerebellar interpositus nucleus in movement control and emotion. Cerebellum 12, 738–757. 10.1007/s12311-013-0464-0 PubMed DOI
Pesarin F., Salmaso L. (2010). Permutation Tests for Complex Data: Theory, Applications and Software. Chippenham: A John Wiley and Sons, Ltd.
Phillips R. J. S. (1960). ‘Lurcher’, a new gene in linkage group XI of the house mouse. J. Genet. 57, 35–42 10.1007/BF02985337 DOI
Porras-Garcia E., Cendelin J., Dominguez-Del-Toro E., Vozeh F., Delgado-Garcia J. M. (2005). Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice. Eur. J. Neurosci. 21, 979–988. 10.1111/j.1460-9568.2005.03940.x PubMed DOI
Porras-Garcia E., Sanchez-Campusano R., Martinez-Vargas D., Dominguez-Del-Toro E., Cendelin J., Vozeh F., et al. . (2010). Behavioral characteristics, associative learning capabilities, and dynamic association mapping in an animal model of cerebellar degeneration. J. Neurophysiol. 104, 346–365. 10.1152/jn.00180.2010 PubMed DOI
Porsolt R. D., Bertin A., Blavet N., Deniel M., Jalfre M. (1979). Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. Eur. J. Pharmacol. 57, 201–210. 10.1016/0014-2999(79)90366-2 PubMed DOI
Robbins T. W., Arnsten A. F. (2009). The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu. Rev. Neurosci. 32, 267–287. 10.1146/annurev.neuro.051508.135535 PubMed DOI PMC
Rochefort C., Arabo A., Andre M., Poucet B., Save E., Rondi-Reig L. (2011). Cerebellum shapes hippocampal spatial code. Science 334, 385–389. 10.1126/science.1207403 PubMed DOI
Rochefort C., Lefort J. M., Rondi-Reig L. (2013). The cerebellum: a new key structure in the navigation system. Front. Neural Circuits 7:35. 10.3389/fncir.2013.00035 PubMed DOI PMC
Rogers T. D., Dickson P. E., McKimm E., Heck D. H., Goldowitz D., Blaha C. D., et al. . (2013). Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder. Cerebellum 12, 547–556. 10.1007/s12311-013-0462-2 PubMed DOI PMC
Rotter A., Rath S., Evans J. E., Frostholm A. (2000). Modulation of GABA(A) receptor subunit mRNA levels in olivocerebellar neurons of purkinje cell degeneration and weaver mutant mice. J. Neurochem. 74, 2190–2200. 10.1046/j.1471-4159.2000.0742190.x PubMed DOI
Schmahmann J. D., Sherman J. C. (1997). Cerebellar cognitive affective syndrome. Int. Rev. Neurobiol. 41, 433–440. 10.1016/S0074-7742(08)60363-3 PubMed DOI
Strick P. L., Dum R. P., Fiez J. A. (2009). Cerebellum and nonmotor function. Annu. Rev. Neurosci. 32, 413–434. 10.1146/annurev.neuro.31.060407.125606 PubMed DOI
Thompson R. F., Steinmetz J. E. (2009). The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience 162, 732–755. 10.1016/j.neuroscience.2009.01.041 PubMed DOI
Triarhou L. C., Norton J., Ghetti B. (1987). Anterograde transsynaptic degeneration in the deep cerebellar nuclei of Purkinje cell degeneration (pcd) mutant mice. Exp. Brain Res. 66, 577–588. 10.1007/BF00270691 PubMed DOI
Truong D. T., Bonet A., Rendall A. R., Rosen G. D., Fitch R. H. (2013). A behavioral evaluation of sex differences in a mouse model of severe neuronal migration disorder. PLoS ONE 8:e73144. 10.1371/journal.pone.0073144 PubMed DOI PMC
van Alphen A. M., Schepers T., Luo C., de Zeeuw C. I. (2002). Motor performance and motor learning in Lurcher mice. Ann. N.Y. Acad. Sci. 978, 413–424. 10.1111/j.1749-6632.2002.tb07584.x PubMed DOI
Vinueza Veloz M. F., Zhou K., Bosman L. W., Potters J. W., Negrello M., Seepers R. M., et al. . (2014). Cerebellar control of gait and interlimb coordination. Brain Struct. Funct. [Epub ahead of print]. 10.1007/s00429-014-0870-1 PubMed DOI PMC
Walton J. C., Schilling K., Nelson R. J., Oberdick J. (2012). Sex-dependent behavioral functions of the Purkinje cell-specific Galphai/o binding protein, Pcp2(L7). Cerebellum 11, 982–1001. 10.1007/s12311-012-0368-4 PubMed DOI PMC
Wang T., Morgan J. I. (2007). The Purkinje cell degeneration (pcd) mouse: an unexpected molecular link between neuronal degeneration and regeneration. Brain Res. 1140, 26–40. 10.1016/j.brainres.2006.07.065 PubMed DOI
Wetts R., Herrup K. (1982a). Cerebellar Purkinje cells are descended from a small number of progenitors committed during early development: quantitative analysis of lurcher chimeric mice. J. Neurosci. 2, 1494–1498. PubMed PMC
Wetts R., Herrup K. (1982b). Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimeric mice. II. Granule cell death. Brain Res. 250, 358–362. 10.1016/0006-8993(82)90431-0 PubMed DOI
Wolfer D. P., Lipp H. P. (2000). Dissecting the behaviour of transgenic mice: is it the mutation, the genetic background, or the environment? Exp. Physiol. 85, 627–634. 10.1111/j.1469-445X.2000.02095.x PubMed DOI
Yakusheva T. A., Shaikh A. G., Green A. M., Blazquez P. M., Dickman J. D., Angelaki D. E. (2007). Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54, 973–985. 10.1016/j.neuron.2007.06.003 PubMed DOI
Young S. E., Friedman N. P., Miyake A., Willcutt E. G., Corley R. P., Haberstick B. C., et al. . (2009). Behavioral disinhibition: liability for externalizing spectrum disorders and its genetic and environmental relation to response inhibition across adolescence. J. Abnorm. Psychol. 118, 117–130. 10.1037/a0014657 PubMed DOI PMC
Zanjani S. H., Selimi F., Vogel M. W., Haeberle A. M., Boeuf J., Mariani J., et al. . (2006). Survival of interneurons and parallel fiber synapses in a cerebellar cortex deprived of Purkinje cells: studies in the double mutant mouse Grid2Lc/+;Bax(–/–). J. Comp. Neurol. 497, 622–635. 10.1002/cne.21017 PubMed DOI
Zhang W., Lee W. H., Triarhou L. C. (1996). Grafted cerebellar cells in a mouse model of hereditary ataxia express IGF-I system genes and partially restore behavioral function. Nat. Med. 2, 65–71. 10.1038/nm0196-65 PubMed DOI
Zuo J., de Jager P. L., Takahashi K. A., Jiang W., Linden D. J., Heintz N. (1997). Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388, 769–773. 10.1038/42009 PubMed DOI
Lurcher Mouse as a Model of Cerebellar Syndromes
Quantification of Solid Embryonic Cerebellar Graft Volume in a Degenerative Ataxia Model
Experimental Treatment with Edaravone in a Mouse Model of Spinocerebellar Ataxia 1
Embryonic Cerebellar Graft Morphology Differs in Two Mouse Models of Cerebellar Degeneration