Hippocampal mitochondrial dysfunction and psychiatric-relevant behavioral deficits in spinocerebellar ataxia 1 mouse model
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32214165
PubMed Central
PMC7096488
DOI
10.1038/s41598-020-62308-0
PII: 10.1038/s41598-020-62308-0
Knihovny.cz E-zdroje
- MeSH
- atrofie metabolismus patologie MeSH
- biologické markery metabolismus MeSH
- duševní poruchy metabolismus patologie MeSH
- hipokampus metabolismus patologie MeSH
- mitochondrie metabolismus patologie MeSH
- modely nemocí na zvířatech MeSH
- mozeček metabolismus patologie MeSH
- myši MeSH
- spinocerebelární ataxie metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
Spinocerebellar ataxia 1 (SCA1) is a devastating neurodegenerative disease associated with cerebellar degeneration and motor deficits. However, many patients also exhibit neuropsychiatric impairments such as depression and apathy; nevertheless, the existence of a causal link between the psychiatric symptoms and SCA1 neuropathology remains controversial. This study aimed to explore behavioral deficits in a knock-in mouse SCA1 (SCA1154Q/2Q) model and to identify the underlying neuropathology. We found that the SCA1 mice exhibit previously undescribed behavioral impairments such as increased anxiety- and depressive-like behavior and reduced prepulse inhibition and cognitive flexibility. Surprisingly, non-motor deficits characterize the early SCA1 stage in mice better than does ataxia. Moreover, the SCA1 mice exhibit significant hippocampal atrophy with decreased plasticity-related markers and markedly impaired neurogenesis. Interestingly, the hippocampal atrophy commences earlier than the cerebellar degeneration and directly reflects the individual severity of some of the behavioral deficits. Finally, mitochondrial respirometry suggests profound mitochondrial dysfunction in the hippocampus, but not in the cerebellum of the young SCA1 mice. These findings imply the essential role of hippocampal impairments, associated with profound mitochondrial dysfunction, in SCA1 behavioral deficits. Moreover, they underline the view of SCA1 as a complex neurodegenerative disease and suggest new avenues in the search for novel SCA1 therapies.
Department of Biology Faculty of Medicine in Pilsen Charles University Pilsen Czechia
Department of Physiology Faculty of Medicine in Pilsen Charles University Pilsen Czechia
Zobrazit více v PubMed
Matilla-Dueñas A, Goold R, Giunti P. Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1. Cerebellum. 2008;7:106–14. doi: 10.1007/s12311-008-0009-0. PubMed DOI
Rub U, et al. Spinocerebellar ataxia type 1 (SCA1): New pathoanatomical and clinico-pathological insights. Neuropathol. Appl. Neurobiol. 2012;38:665–680. doi: 10.1111/j.1365-2990.2012.01259.x. PubMed DOI
Paulson HL, Shakkottai VG, Clark HB, Orr HT. Polyglutamine spinocerebellar ataxias-from genes to potential treatments. Nat. Rev. Neurosci. 2017;18:613–626. doi: 10.1038/nrn.2017.92. PubMed DOI PMC
Ma J, Wu C, Lei J, Zhang X. Cognitive impairments in patients with spinocerebellar ataxia types 1, 2 and 3 are positively correlated to the clinical severity of ataxia symptoms. Int. J. Clin. Exp. Med. 2014;7:5765–5771. PubMed PMC
McMurtray AM, Clark DG, Flood MK, Perlman S, Mendez MF. Depressive and memory symptoms as presenting features of spinocerebellar ataxia. J. Neuropsychiatry Clin. Neurosci. 2006;18:420–2. doi: 10.1176/jnp.2006.18.3.420. PubMed DOI
Sokolovsky N, Cook A, Hunt H, Giunti P, Cipolotti L. A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behav. Neurol. 2010;23:17–29. doi: 10.1155/2010/395045. PubMed DOI PMC
Bürk K, et al. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J. Neurol. 2003;250:207–11. doi: 10.1007/s00415-003-0976-5. PubMed DOI
Fancellu Roberto, Paridi Dominga, Tomasello Chiara, Panzeri Marta, Castaldo Anna, Genitrini Silvia, Soliveri Paola, Girotti Floriano. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. Journal of Neurology. 2013;260(12):3134–3143. doi: 10.1007/s00415-013-7138-1. PubMed DOI
Lo RY, et al. Depression and clinical progression in spinocerebellar ataxias. Park. Relat. Disord. 2016;22:87–92. doi: 10.1016/j.parkreldis.2015.11.021. PubMed DOI PMC
Watase K, et al. A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron. 2002;34:905–919. doi: 10.1016/S0896-6273(02)00733-X. PubMed DOI
Hatanaka Y, Watase K, Wada K, Nagai Y. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1. Sci. Rep. 2015;5:16102. doi: 10.1038/srep16102. PubMed DOI PMC
Watase K, et al. Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med. 2007;4:0836–0847. doi: 10.1371/journal.pmed.0040182. PubMed DOI PMC
Asher M, Johnson A, Zecevic B, Pease D, Cvetanovic M. ATAXIN-1 REGULATES PROLIFERATION OF HIPPOCAMPAL NEURAL PRECURSORS. Neuroscience. 2016;322:54–65. doi: 10.1016/j.neuroscience.2016.02.011. PubMed DOI
Cvetanovic M, Hu YS, Opal P. Mutant Ataxin-1 Inhibits Neural Progenitor Cell Proliferation in SCA1. Cerebellum. 2017;16:340–347. doi: 10.1007/s12311-016-0794-9. PubMed DOI PMC
Khacho Mireille, Harris Richard, Slack Ruth S. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nature Reviews Neuroscience. 2018;20(1):34–48. doi: 10.1038/s41583-018-0091-3. PubMed DOI
Khacho M, et al. Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. 2017;26:3327–3341. PubMed PMC
Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 2018;19:63–80. doi: 10.1038/nrn.2017.170. PubMed DOI
Mattson MP, Gleichmann M, Cheng A. Review Mitochondria in Neuroplasticity and Neurological Disorders. Neuron. 2008;60:748–766. doi: 10.1016/j.neuron.2008.10.010. PubMed DOI PMC
Gan L, Cookson MR, Petrucelli L, La Spada AR. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat. Neurosci. 2018;21:1300–1309. doi: 10.1038/s41593-018-0237-7. PubMed DOI PMC
Allen J, Romay-Tallon R, Brymer KJ, Caruncho HJ, Kalynchuk LE. Mitochondria and mood: Mitochondrial dysfunction as a key player in the manifestation of depression. Front. Neurosci. 2018;12:1–13. doi: 10.3389/fnins.2018.00386. PubMed DOI PMC
Marazziti D, et al. Psychiatric disorders and mitochondrial dysfunctions. Eur. Rev. Med. Pharmacol. Sci. 2012;16:270–275. PubMed
Pereira C, et al. Mitochondrial agents for bipolar disorder. Int. J. Neuropsychopharmacol. 2018;21:550–569. doi: 10.1093/ijnp/pyy018. PubMed DOI PMC
Ferro A, et al. Short-term succinic acid treatment mitigates cerebellar mitochondrial OXPHOS dysfunction, neurodegeneration and ataxia in a Purkinje-specific spinocerebellar ataxia type 1 (SCA1) mouse model. PLoS One. 2017;12:1–20. doi: 10.1371/journal.pone.0188425. PubMed DOI PMC
Stucki DM, et al. Free Radical Biology and Medicine Mitochondrial impairments contribute to Spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ. Free Radic. Biol. Med. 2016;97:427–440. doi: 10.1016/j.freeradbiomed.2016.07.005. PubMed DOI
Ripolone M, et al. Purkinje cell cox deficiency and mtdna depletion in an animal model of spinocerebellar ataxia type 1. J. Neurosci. Res. 2018;96:1576–1585. doi: 10.1002/jnr.24263. PubMed DOI
Sánchez I, Balagué E, Matilla-Dueñas A. Ataxin-1 regulates the cerebellar bioenergetics proteome through the GSK3β-mTOR pathway which is altered in Spinocerebellar ataxia type 1 (SCA1) Hum. Mol. Genet. 2016;25:4021–4040. doi: 10.1093/hmg/ddw242. PubMed DOI
Varbanov H, Dityatev A. Regulation of extrasynaptic signaling by polysialylated NCAM: Impact for synaptic plasticity and cognitive functions. Mol. Cell. Neurosci. 2017;81:12–21. doi: 10.1016/j.mcn.2016.11.005. PubMed DOI
Dityatev A, et al. Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J. Neurosci. 2004;24:9372–9382. doi: 10.1523/JNEUROSCI.1702-04.2004. PubMed DOI PMC
Kang K, et al. Tissue-based metabolic labeling of polysialic acids in living primary hippocampal neurons. Proc. Natl. Acad. Sci. USA. 2015;112:E241–E248. doi: 10.1073/pnas.1419683112. PubMed DOI PMC
Boldrini Maura, Fulmore Camille A., Tartt Alexandria N., Simeon Laika R., Pavlova Ina, Poposka Verica, Rosoklija Gorazd B., Stankov Aleksandar, Arango Victoria, Dwork Andrew J., Hen René, Mann J. John. Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell. 2018;22(4):589-599.e5. doi: 10.1016/j.stem.2018.03.015. PubMed DOI PMC
Doerrier Carolina, Garcia-Souza Luiz F., Krumschnabel Gerhard, Wohlfarter Yvonne, Mészáros András T., Gnaiger Erich. Mitochondrial Bioenergetics. New York, NY: Springer New York; 2018. High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria; pp. 31–70. PubMed
Cvetanovic M, Patel JM, Marti HH, Kini AR, Opal P. Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1. Nat. Med. 2011;17:1445–7. doi: 10.1038/nm.2494. PubMed DOI PMC
Cvetanovic M, Ingram M, Orr H, Opal P. Early activation of microglia and astrocytes in mouse models of Spinocerebellar Ataxia Type 1. Neuroscience. 2015;48:289–299. doi: 10.1016/j.neuroscience.2015.01.003. PubMed DOI PMC
Andersen Per, Morris Richard, Amaral David, Bliss Tim, O'Keefe John., editors. The Hippocampus Book. 2006.
Yousef A, et al. Neuron loss and degeneration in the progression of TDP-43 in frontotemporal lobar degeneration. Acta Neuropathol. Commun. 2017;5:68. doi: 10.1186/s40478-017-0471-3. PubMed DOI PMC
Duan W, et al. Novel Insights into NeuN: from Neuronal Marker to Splicing Regulator. Mol. Neurobiol. 2016;53:1637–1647. doi: 10.1007/s12035-015-9122-5. PubMed DOI
Wu KL, et al. Loss of neuronal protein expression in mouse hippocampus after irradiation. J. Neuropathol. Exp. Neurol. 2010;69:272–280. doi: 10.1097/NEN.0b013e3181d1afe4. PubMed DOI
Collombet JM, et al. Early reduction of NeuN antigenicity induced by soman poisoning in mice can be used to predict delayed neuronal degeneration in the hippocampus. Neurosci. Lett. 2006;398:337–342. doi: 10.1016/j.neulet.2006.01.029. PubMed DOI
Suh J, et al. Loss of Ataxin-1 Potentiates Alzheimer’s Pathogenesis by Elevating Cerebral BACE1 Transcription. Cell. 2019;178:1159–1175.e17. doi: 10.1016/j.cell.2019.07.043. PubMed DOI PMC
Mellesmoen A, Sheeler C, Ferro A, Rainwater O, Cvetanovic M. Brain derived neurotrophic factor (BDNF) delays onset of pathogenesis in transgenic mouse model of spinocerebellar ataxia type 1 (SCA1) Front. Cell. Neurosci. 2019;12:1–8. doi: 10.3389/fncel.2018.00509. PubMed DOI PMC
Liu PZ, Nusslock R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Front. Neurosci. 2018;12:1–6. PubMed PMC
Ghosh A, Carnahan J, Greenberg ME. Requirement for BDNF in activity-dependent survival of cortical neurons. Science (80-.). 1994;263:1618–1623. doi: 10.1126/science.7907431. PubMed DOI
Lipsky RH, Marini AM. Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann. N. Y. Acad. Sci. 2007;1122:130–143. doi: 10.1196/annals.1403.009. PubMed DOI
Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA. Stress and Loss of Adult Neurogenesis Differentially Reduce Hippocampal Volume. Biol. Psychiatry. 2017;82:914–923. doi: 10.1016/j.biopsych.2017.05.013. PubMed DOI PMC
Bessa JM, et al. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol. Psychiatry. 2009;14:764–773. doi: 10.1038/mp.2008.119. PubMed DOI
Travis S, et al. Dentate gyrus volume and memory performance in major depressive disorder. J. Affect. Disord. 2015;172:159–164. doi: 10.1016/j.jad.2014.09.048. PubMed DOI
Huang Y, et al. Structural changes in hippocampal subfields in major depressive disorder: A high-field magnetic resonance imaging study. Biol. Psychiatry. 2013;74:62–68. doi: 10.1016/j.biopsych.2013.01.005. PubMed DOI
Cao B, et al. Hippocampal subfield volumes in mood disorders. Mol. Psychiatry. 2017;22:1352–1358. doi: 10.1038/mp.2016.262. PubMed DOI PMC
Anacker Christoph, Hen René. Adult hippocampal neurogenesis and cognitive flexibility — linking memory and mood. Nature Reviews Neuroscience. 2017;18(6):335–346. doi: 10.1038/nrn.2017.45. PubMed DOI PMC
Watanabe Y, Gould E, McEwen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 1992;588:341–345. doi: 10.1016/0006-8993(92)91597-8. PubMed DOI
Tuma J, Kolinko Y, Vozeh F, Cendelin J. Mutation-related differences in exploratory, spatial, and depressive-like behavior in pcd and Lurcher cerebellar mutant mice. Front. Behav. Neurosci. 2015;9:116. doi: 10.3389/fnbeh.2015.00116. PubMed DOI PMC
Monnier C, Lalonde R. Elevated +-maze and hole-board exploration in lurcher mutant mice. Brain Res. 1995;702:169–172. doi: 10.1016/0006-8993(95)01036-5. PubMed DOI
Hilber P, Lorivel T, Delarue C, Caston J. Stress and anxious-related behaviors in Lurcher mutant mice. Brain Res. 2004;1003:108–112. doi: 10.1016/j.brainres.2004.01.008. PubMed DOI
Cendelin J, Tuma J, Korelusova I, Vozeh F. The effect of genetic background on behavioral manifestation of Grid2Lc mutation. Behav. Brain Res. 2014;271:218–227. doi: 10.1016/j.bbr.2014.06.023. PubMed DOI
Cendelin Jan, Tichanek Filip. Cerebellar degeneration averts blindness-induced despaired behavior during spatial task in mice. Neuroscience Letters. 2020;722:134854. doi: 10.1016/j.neulet.2020.134854. PubMed DOI
Yamamoto M, Kim M, Imai H, Itakura Y, Ohtsuki G. Microglia-Triggered Plasticity of Intrinsic Excitability Modulates Psychomotor Behaviors in Acute Cerebellar Inflammation. Cell Rep. 2019;28:2923–2938.e8. doi: 10.1016/j.celrep.2019.07.078. PubMed DOI
Krook-Magnuson E, Szabo GG, Armstrong C, Oijala M, Soltesz I. Cerebellar Directed Optogenetic Intervention Inhibits Spontaneous Hippocampal Seizures in a Mouse Model of Temporal Lobe Epilepsy. eNeuro. 2014;1:1–27. doi: 10.1523/ENEURO.0005-14.2014. PubMed DOI PMC
Yu W, Krook-Magnuson E. Cognitive Collaborations: Bidirectional Functional Connectivity Between the Cerebellum and the Hippocampus. Front. Syst. Neurosci. 2015;9:1–10. doi: 10.3389/fnsys.2015.00177. PubMed DOI PMC
Lefort JM, et al. Impaired cerebellar Purkinje cell potentiation generates unstable spatial map orientation and inaccurate navigation. Nat. Commun. 2019;10:2251. doi: 10.1038/s41467-019-09958-5. PubMed DOI PMC
Fernandez Alejandra, Meechan Daniel W., Karpinski Beverly A., Paronett Elizabeth M., Bryan Corey A., Rutz Hanna L., Radin Eric A., Lubin Noah, Bonner Erin R., Popratiloff Anastas, Rothblat Lawrence A., Maynard Thomas M., LaMantia Anthony-Samuel. Mitochondrial Dysfunction Leads to Cortical Under-Connectivity and Cognitive Impairment. Neuron. 2019;102(6):1127-1142.e3. doi: 10.1016/j.neuron.2019.04.013. PubMed DOI PMC
Arrázola Macarena S., Andraini Trinovita, Szelechowski Marion, Mouledous Lionel, Arnauné-Pelloquin Laetitia, Davezac Noélie, Belenguer Pascale, Rampon Claire, Miquel Marie-Christine. Mitochondria in Developmental and Adult Neurogenesis. Neurotoxicity Research. 2018;36(2):257–267. doi: 10.1007/s12640-018-9942-y. PubMed DOI
Oettinghaus B, et al. Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons. Cell Death Differ. 2016;23:18–28. doi: 10.1038/cdd.2015.39. PubMed DOI PMC
Bachmann RF, et al. Common effects of lithium and valproate on mitochondrial functions: Protection against methamphetamine-induced mitochondrial damage. Int. J. Neuropsychopharmacol. 2009;12:805–822. doi: 10.1017/S1461145708009802. PubMed DOI PMC
Peng M, et al. Inhibiting cytosolic translation and autophagy improves health in mitochondrial disease. Hum. Mol. Genet. 2015;24:4829–4847. doi: 10.1093/hmg/ddv207. PubMed DOI PMC
Tam ZY, Gruber J, Ng LF, Halliwell B, Gunawan R. Effects of lithium on age-related decline in mitochondrial turnover and function in caenorhabditis elegans. Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 2014;69:810–820. doi: 10.1093/gerona/glt210. PubMed DOI
Maurer IC, Schippel P, Volz HP. Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue. Bipolar Disord. 2009;11:515–522. doi: 10.1111/j.1399-5618.2009.00729.x. PubMed DOI
Bernardo TC, et al. Physical Exercise and Brain Mitochondrial Fitness: The Possible Role Against Alzheimer’s Disease. Brain Pathol. 2016;26:648–663. doi: 10.1111/bpa.12403. PubMed DOI PMC
Sarkar A, et al. Efficient Generation of CA3 Neurons from Human Pluripotent Stem Cells Enables Modeling of Hippocampal Connectivity In Vitro. Cell Stem Cell. 2018;22:684–697.e9. doi: 10.1016/j.stem.2018.04.009. PubMed DOI PMC
Hiragi T, et al. Differentiation of human induced pluripotent stem cell (hiPSC)-derived neurons in mouse hippocampal slice cultures. Front. Cell. Neurosci. 2017;11:1–10. doi: 10.3389/fncel.2017.00143. PubMed DOI PMC
Cendelin J, et al. Long-Term Development of Embryonic Cerebellar Grafts in Two Strains of Lurcher Mice. Cerebellum. 2018;17:1–10. doi: 10.1007/s12311-018-0928-3. PubMed DOI
Purkartova Z, Tichanek F, Kolinko Y, Cendelin J. Embryonic Cerebellar Graft Morphology Differs in Two Mouse Models of Cerebellar Degeneration. The Cerebellum. 2019;18:855–865. doi: 10.1007/s12311-019-01067-9. PubMed DOI
Salomova Martina, Tichanek Filip, Jelinkova Dana, Cendelin Jan. Abnormalities in the cerebellar levels of trophic factors BDNF and GDNF in pcd and lurcher cerebellar mutant mice. Neuroscience Letters. 2020;725:134870. doi: 10.1016/j.neulet.2020.134870. PubMed DOI
Komlódi Timea, Sobotka Ondrej, Krumschnabel Gerhard, Bezuidenhout Nicole, Hiller Elisabeth, Doerrier Carolina, Gnaiger Erich. Mitochondrial Bioenergetics. New York, NY: Springer New York; 2018. Comparison of Mitochondrial Incubation Media for Measurement of Respiration and Hydrogen Peroxide Production; pp. 137–155. PubMed
R Development Core Team. R: A Language and Environment for Statistical Computing. (2016).
Diciccio TJ, Efron B. Bootstrap Confidence Intervals. Stat. Sci. 1996;11:189–212. doi: 10.1214/ss/1032280214. DOI
Torchiano, M. Effsize - a package for efficient effect size computation., 10.5281/ZENODO.1480624 (2016).
Canty, A. & Ripley, B. D. boot: Bootstrap R (S-Plus) Functions. (2017).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models (2018).
Luo, D., Ganesh, S. & Koolaard, J. predictmeans: Calculate Predicted Means for Linear Models (2018).
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300.
Oksanen, J. et al. Package ‘vegan’ Title Community Ecology Package (2019).
Robin X, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. doi: 10.1186/1471-2105-12-77. PubMed DOI PMC
Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B (Statistical Methodol. 2011;73:3–36. doi: 10.1111/j.1467-9868.2010.00749.x. DOI
Experimental Treatment with Edaravone in a Mouse Model of Spinocerebellar Ataxia 1
Novel stereological method for estimation of cell counts in 3D collagen scaffolds
Impact of aging on mitochondrial respiration in various organs
Complex Interplay of Genes Underlies Invasiveness in Fibrosarcoma Progression Model