Hippocampal mitochondrial dysfunction and psychiatric-relevant behavioral deficits in spinocerebellar ataxia 1 mouse model

. 2020 Mar 25 ; 10 (1) : 5418. [epub] 20200325

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32214165
Odkazy

PubMed 32214165
PubMed Central PMC7096488
DOI 10.1038/s41598-020-62308-0
PII: 10.1038/s41598-020-62308-0
Knihovny.cz E-zdroje

Spinocerebellar ataxia 1 (SCA1) is a devastating neurodegenerative disease associated with cerebellar degeneration and motor deficits. However, many patients also exhibit neuropsychiatric impairments such as depression and apathy; nevertheless, the existence of a causal link between the psychiatric symptoms and SCA1 neuropathology remains controversial. This study aimed to explore behavioral deficits in a knock-in mouse SCA1 (SCA1154Q/2Q) model and to identify the underlying neuropathology. We found that the SCA1 mice exhibit previously undescribed behavioral impairments such as increased anxiety- and depressive-like behavior and reduced prepulse inhibition and cognitive flexibility. Surprisingly, non-motor deficits characterize the early SCA1 stage in mice better than does ataxia. Moreover, the SCA1 mice exhibit significant hippocampal atrophy with decreased plasticity-related markers and markedly impaired neurogenesis. Interestingly, the hippocampal atrophy commences earlier than the cerebellar degeneration and directly reflects the individual severity of some of the behavioral deficits. Finally, mitochondrial respirometry suggests profound mitochondrial dysfunction in the hippocampus, but not in the cerebellum of the young SCA1 mice. These findings imply the essential role of hippocampal impairments, associated with profound mitochondrial dysfunction, in SCA1 behavioral deficits. Moreover, they underline the view of SCA1 as a complex neurodegenerative disease and suggest new avenues in the search for novel SCA1 therapies.

Zobrazit více v PubMed

Matilla-Dueñas A, Goold R, Giunti P. Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1. Cerebellum. 2008;7:106–14. doi: 10.1007/s12311-008-0009-0. PubMed DOI

Rub U, et al. Spinocerebellar ataxia type 1 (SCA1): New pathoanatomical and clinico-pathological insights. Neuropathol. Appl. Neurobiol. 2012;38:665–680. doi: 10.1111/j.1365-2990.2012.01259.x. PubMed DOI

Paulson HL, Shakkottai VG, Clark HB, Orr HT. Polyglutamine spinocerebellar ataxias-from genes to potential treatments. Nat. Rev. Neurosci. 2017;18:613–626. doi: 10.1038/nrn.2017.92. PubMed DOI PMC

Ma J, Wu C, Lei J, Zhang X. Cognitive impairments in patients with spinocerebellar ataxia types 1, 2 and 3 are positively correlated to the clinical severity of ataxia symptoms. Int. J. Clin. Exp. Med. 2014;7:5765–5771. PubMed PMC

McMurtray AM, Clark DG, Flood MK, Perlman S, Mendez MF. Depressive and memory symptoms as presenting features of spinocerebellar ataxia. J. Neuropsychiatry Clin. Neurosci. 2006;18:420–2. doi: 10.1176/jnp.2006.18.3.420. PubMed DOI

Sokolovsky N, Cook A, Hunt H, Giunti P, Cipolotti L. A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behav. Neurol. 2010;23:17–29. doi: 10.1155/2010/395045. PubMed DOI PMC

Bürk K, et al. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J. Neurol. 2003;250:207–11. doi: 10.1007/s00415-003-0976-5. PubMed DOI

Fancellu Roberto, Paridi Dominga, Tomasello Chiara, Panzeri Marta, Castaldo Anna, Genitrini Silvia, Soliveri Paola, Girotti Floriano. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. Journal of Neurology. 2013;260(12):3134–3143. doi: 10.1007/s00415-013-7138-1. PubMed DOI

Lo RY, et al. Depression and clinical progression in spinocerebellar ataxias. Park. Relat. Disord. 2016;22:87–92. doi: 10.1016/j.parkreldis.2015.11.021. PubMed DOI PMC

Watase K, et al. A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron. 2002;34:905–919. doi: 10.1016/S0896-6273(02)00733-X. PubMed DOI

Hatanaka Y, Watase K, Wada K, Nagai Y. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1. Sci. Rep. 2015;5:16102. doi: 10.1038/srep16102. PubMed DOI PMC

Watase K, et al. Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med. 2007;4:0836–0847. doi: 10.1371/journal.pmed.0040182. PubMed DOI PMC

Asher M, Johnson A, Zecevic B, Pease D, Cvetanovic M. ATAXIN-1 REGULATES PROLIFERATION OF HIPPOCAMPAL NEURAL PRECURSORS. Neuroscience. 2016;322:54–65. doi: 10.1016/j.neuroscience.2016.02.011. PubMed DOI

Cvetanovic M, Hu YS, Opal P. Mutant Ataxin-1 Inhibits Neural Progenitor Cell Proliferation in SCA1. Cerebellum. 2017;16:340–347. doi: 10.1007/s12311-016-0794-9. PubMed DOI PMC

Khacho Mireille, Harris Richard, Slack Ruth S. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nature Reviews Neuroscience. 2018;20(1):34–48. doi: 10.1038/s41583-018-0091-3. PubMed DOI

Khacho M, et al. Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. 2017;26:3327–3341. PubMed PMC

Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 2018;19:63–80. doi: 10.1038/nrn.2017.170. PubMed DOI

Mattson MP, Gleichmann M, Cheng A. Review Mitochondria in Neuroplasticity and Neurological Disorders. Neuron. 2008;60:748–766. doi: 10.1016/j.neuron.2008.10.010. PubMed DOI PMC

Gan L, Cookson MR, Petrucelli L, La Spada AR. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat. Neurosci. 2018;21:1300–1309. doi: 10.1038/s41593-018-0237-7. PubMed DOI PMC

Allen J, Romay-Tallon R, Brymer KJ, Caruncho HJ, Kalynchuk LE. Mitochondria and mood: Mitochondrial dysfunction as a key player in the manifestation of depression. Front. Neurosci. 2018;12:1–13. doi: 10.3389/fnins.2018.00386. PubMed DOI PMC

Marazziti D, et al. Psychiatric disorders and mitochondrial dysfunctions. Eur. Rev. Med. Pharmacol. Sci. 2012;16:270–275. PubMed

Pereira C, et al. Mitochondrial agents for bipolar disorder. Int. J. Neuropsychopharmacol. 2018;21:550–569. doi: 10.1093/ijnp/pyy018. PubMed DOI PMC

Ferro A, et al. Short-term succinic acid treatment mitigates cerebellar mitochondrial OXPHOS dysfunction, neurodegeneration and ataxia in a Purkinje-specific spinocerebellar ataxia type 1 (SCA1) mouse model. PLoS One. 2017;12:1–20. doi: 10.1371/journal.pone.0188425. PubMed DOI PMC

Stucki DM, et al. Free Radical Biology and Medicine Mitochondrial impairments contribute to Spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ. Free Radic. Biol. Med. 2016;97:427–440. doi: 10.1016/j.freeradbiomed.2016.07.005. PubMed DOI

Ripolone M, et al. Purkinje cell cox deficiency and mtdna depletion in an animal model of spinocerebellar ataxia type 1. J. Neurosci. Res. 2018;96:1576–1585. doi: 10.1002/jnr.24263. PubMed DOI

Sánchez I, Balagué E, Matilla-Dueñas A. Ataxin-1 regulates the cerebellar bioenergetics proteome through the GSK3β-mTOR pathway which is altered in Spinocerebellar ataxia type 1 (SCA1) Hum. Mol. Genet. 2016;25:4021–4040. doi: 10.1093/hmg/ddw242. PubMed DOI

Varbanov H, Dityatev A. Regulation of extrasynaptic signaling by polysialylated NCAM: Impact for synaptic plasticity and cognitive functions. Mol. Cell. Neurosci. 2017;81:12–21. doi: 10.1016/j.mcn.2016.11.005. PubMed DOI

Dityatev A, et al. Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J. Neurosci. 2004;24:9372–9382. doi: 10.1523/JNEUROSCI.1702-04.2004. PubMed DOI PMC

Kang K, et al. Tissue-based metabolic labeling of polysialic acids in living primary hippocampal neurons. Proc. Natl. Acad. Sci. USA. 2015;112:E241–E248. doi: 10.1073/pnas.1419683112. PubMed DOI PMC

Boldrini Maura, Fulmore Camille A., Tartt Alexandria N., Simeon Laika R., Pavlova Ina, Poposka Verica, Rosoklija Gorazd B., Stankov Aleksandar, Arango Victoria, Dwork Andrew J., Hen René, Mann J. John. Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell. 2018;22(4):589-599.e5. doi: 10.1016/j.stem.2018.03.015. PubMed DOI PMC

Doerrier Carolina, Garcia-Souza Luiz F., Krumschnabel Gerhard, Wohlfarter Yvonne, Mészáros András T., Gnaiger Erich. Mitochondrial Bioenergetics. New York, NY: Springer New York; 2018. High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria; pp. 31–70. PubMed

Cvetanovic M, Patel JM, Marti HH, Kini AR, Opal P. Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1. Nat. Med. 2011;17:1445–7. doi: 10.1038/nm.2494. PubMed DOI PMC

Cvetanovic M, Ingram M, Orr H, Opal P. Early activation of microglia and astrocytes in mouse models of Spinocerebellar Ataxia Type 1. Neuroscience. 2015;48:289–299. doi: 10.1016/j.neuroscience.2015.01.003. PubMed DOI PMC

Andersen Per, Morris Richard, Amaral David, Bliss Tim, O'Keefe John., editors. The Hippocampus Book. 2006.

Yousef A, et al. Neuron loss and degeneration in the progression of TDP-43 in frontotemporal lobar degeneration. Acta Neuropathol. Commun. 2017;5:68. doi: 10.1186/s40478-017-0471-3. PubMed DOI PMC

Duan W, et al. Novel Insights into NeuN: from Neuronal Marker to Splicing Regulator. Mol. Neurobiol. 2016;53:1637–1647. doi: 10.1007/s12035-015-9122-5. PubMed DOI

Wu KL, et al. Loss of neuronal protein expression in mouse hippocampus after irradiation. J. Neuropathol. Exp. Neurol. 2010;69:272–280. doi: 10.1097/NEN.0b013e3181d1afe4. PubMed DOI

Collombet JM, et al. Early reduction of NeuN antigenicity induced by soman poisoning in mice can be used to predict delayed neuronal degeneration in the hippocampus. Neurosci. Lett. 2006;398:337–342. doi: 10.1016/j.neulet.2006.01.029. PubMed DOI

Suh J, et al. Loss of Ataxin-1 Potentiates Alzheimer’s Pathogenesis by Elevating Cerebral BACE1 Transcription. Cell. 2019;178:1159–1175.e17. doi: 10.1016/j.cell.2019.07.043. PubMed DOI PMC

Mellesmoen A, Sheeler C, Ferro A, Rainwater O, Cvetanovic M. Brain derived neurotrophic factor (BDNF) delays onset of pathogenesis in transgenic mouse model of spinocerebellar ataxia type 1 (SCA1) Front. Cell. Neurosci. 2019;12:1–8. doi: 10.3389/fncel.2018.00509. PubMed DOI PMC

Liu PZ, Nusslock R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Front. Neurosci. 2018;12:1–6. PubMed PMC

Ghosh A, Carnahan J, Greenberg ME. Requirement for BDNF in activity-dependent survival of cortical neurons. Science (80-.). 1994;263:1618–1623. doi: 10.1126/science.7907431. PubMed DOI

Lipsky RH, Marini AM. Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann. N. Y. Acad. Sci. 2007;1122:130–143. doi: 10.1196/annals.1403.009. PubMed DOI

Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA. Stress and Loss of Adult Neurogenesis Differentially Reduce Hippocampal Volume. Biol. Psychiatry. 2017;82:914–923. doi: 10.1016/j.biopsych.2017.05.013. PubMed DOI PMC

Bessa JM, et al. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol. Psychiatry. 2009;14:764–773. doi: 10.1038/mp.2008.119. PubMed DOI

Travis S, et al. Dentate gyrus volume and memory performance in major depressive disorder. J. Affect. Disord. 2015;172:159–164. doi: 10.1016/j.jad.2014.09.048. PubMed DOI

Huang Y, et al. Structural changes in hippocampal subfields in major depressive disorder: A high-field magnetic resonance imaging study. Biol. Psychiatry. 2013;74:62–68. doi: 10.1016/j.biopsych.2013.01.005. PubMed DOI

Cao B, et al. Hippocampal subfield volumes in mood disorders. Mol. Psychiatry. 2017;22:1352–1358. doi: 10.1038/mp.2016.262. PubMed DOI PMC

Anacker Christoph, Hen René. Adult hippocampal neurogenesis and cognitive flexibility — linking memory and mood. Nature Reviews Neuroscience. 2017;18(6):335–346. doi: 10.1038/nrn.2017.45. PubMed DOI PMC

Watanabe Y, Gould E, McEwen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 1992;588:341–345. doi: 10.1016/0006-8993(92)91597-8. PubMed DOI

Tuma J, Kolinko Y, Vozeh F, Cendelin J. Mutation-related differences in exploratory, spatial, and depressive-like behavior in pcd and Lurcher cerebellar mutant mice. Front. Behav. Neurosci. 2015;9:116. doi: 10.3389/fnbeh.2015.00116. PubMed DOI PMC

Monnier C, Lalonde R. Elevated +-maze and hole-board exploration in lurcher mutant mice. Brain Res. 1995;702:169–172. doi: 10.1016/0006-8993(95)01036-5. PubMed DOI

Hilber P, Lorivel T, Delarue C, Caston J. Stress and anxious-related behaviors in Lurcher mutant mice. Brain Res. 2004;1003:108–112. doi: 10.1016/j.brainres.2004.01.008. PubMed DOI

Cendelin J, Tuma J, Korelusova I, Vozeh F. The effect of genetic background on behavioral manifestation of Grid2Lc mutation. Behav. Brain Res. 2014;271:218–227. doi: 10.1016/j.bbr.2014.06.023. PubMed DOI

Cendelin Jan, Tichanek Filip. Cerebellar degeneration averts blindness-induced despaired behavior during spatial task in mice. Neuroscience Letters. 2020;722:134854. doi: 10.1016/j.neulet.2020.134854. PubMed DOI

Yamamoto M, Kim M, Imai H, Itakura Y, Ohtsuki G. Microglia-Triggered Plasticity of Intrinsic Excitability Modulates Psychomotor Behaviors in Acute Cerebellar Inflammation. Cell Rep. 2019;28:2923–2938.e8. doi: 10.1016/j.celrep.2019.07.078. PubMed DOI

Krook-Magnuson E, Szabo GG, Armstrong C, Oijala M, Soltesz I. Cerebellar Directed Optogenetic Intervention Inhibits Spontaneous Hippocampal Seizures in a Mouse Model of Temporal Lobe Epilepsy. eNeuro. 2014;1:1–27. doi: 10.1523/ENEURO.0005-14.2014. PubMed DOI PMC

Yu W, Krook-Magnuson E. Cognitive Collaborations: Bidirectional Functional Connectivity Between the Cerebellum and the Hippocampus. Front. Syst. Neurosci. 2015;9:1–10. doi: 10.3389/fnsys.2015.00177. PubMed DOI PMC

Lefort JM, et al. Impaired cerebellar Purkinje cell potentiation generates unstable spatial map orientation and inaccurate navigation. Nat. Commun. 2019;10:2251. doi: 10.1038/s41467-019-09958-5. PubMed DOI PMC

Fernandez Alejandra, Meechan Daniel W., Karpinski Beverly A., Paronett Elizabeth M., Bryan Corey A., Rutz Hanna L., Radin Eric A., Lubin Noah, Bonner Erin R., Popratiloff Anastas, Rothblat Lawrence A., Maynard Thomas M., LaMantia Anthony-Samuel. Mitochondrial Dysfunction Leads to Cortical Under-Connectivity and Cognitive Impairment. Neuron. 2019;102(6):1127-1142.e3. doi: 10.1016/j.neuron.2019.04.013. PubMed DOI PMC

Arrázola Macarena S., Andraini Trinovita, Szelechowski Marion, Mouledous Lionel, Arnauné-Pelloquin Laetitia, Davezac Noélie, Belenguer Pascale, Rampon Claire, Miquel Marie-Christine. Mitochondria in Developmental and Adult Neurogenesis. Neurotoxicity Research. 2018;36(2):257–267. doi: 10.1007/s12640-018-9942-y. PubMed DOI

Oettinghaus B, et al. Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons. Cell Death Differ. 2016;23:18–28. doi: 10.1038/cdd.2015.39. PubMed DOI PMC

Bachmann RF, et al. Common effects of lithium and valproate on mitochondrial functions: Protection against methamphetamine-induced mitochondrial damage. Int. J. Neuropsychopharmacol. 2009;12:805–822. doi: 10.1017/S1461145708009802. PubMed DOI PMC

Peng M, et al. Inhibiting cytosolic translation and autophagy improves health in mitochondrial disease. Hum. Mol. Genet. 2015;24:4829–4847. doi: 10.1093/hmg/ddv207. PubMed DOI PMC

Tam ZY, Gruber J, Ng LF, Halliwell B, Gunawan R. Effects of lithium on age-related decline in mitochondrial turnover and function in caenorhabditis elegans. Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 2014;69:810–820. doi: 10.1093/gerona/glt210. PubMed DOI

Maurer IC, Schippel P, Volz HP. Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue. Bipolar Disord. 2009;11:515–522. doi: 10.1111/j.1399-5618.2009.00729.x. PubMed DOI

Bernardo TC, et al. Physical Exercise and Brain Mitochondrial Fitness: The Possible Role Against Alzheimer’s Disease. Brain Pathol. 2016;26:648–663. doi: 10.1111/bpa.12403. PubMed DOI PMC

Sarkar A, et al. Efficient Generation of CA3 Neurons from Human Pluripotent Stem Cells Enables Modeling of Hippocampal Connectivity In Vitro. Cell Stem Cell. 2018;22:684–697.e9. doi: 10.1016/j.stem.2018.04.009. PubMed DOI PMC

Hiragi T, et al. Differentiation of human induced pluripotent stem cell (hiPSC)-derived neurons in mouse hippocampal slice cultures. Front. Cell. Neurosci. 2017;11:1–10. doi: 10.3389/fncel.2017.00143. PubMed DOI PMC

Cendelin J, et al. Long-Term Development of Embryonic Cerebellar Grafts in Two Strains of Lurcher Mice. Cerebellum. 2018;17:1–10. doi: 10.1007/s12311-018-0928-3. PubMed DOI

Purkartova Z, Tichanek F, Kolinko Y, Cendelin J. Embryonic Cerebellar Graft Morphology Differs in Two Mouse Models of Cerebellar Degeneration. The Cerebellum. 2019;18:855–865. doi: 10.1007/s12311-019-01067-9. PubMed DOI

Salomova Martina, Tichanek Filip, Jelinkova Dana, Cendelin Jan. Abnormalities in the cerebellar levels of trophic factors BDNF and GDNF in pcd and lurcher cerebellar mutant mice. Neuroscience Letters. 2020;725:134870. doi: 10.1016/j.neulet.2020.134870. PubMed DOI

Komlódi Timea, Sobotka Ondrej, Krumschnabel Gerhard, Bezuidenhout Nicole, Hiller Elisabeth, Doerrier Carolina, Gnaiger Erich. Mitochondrial Bioenergetics. New York, NY: Springer New York; 2018. Comparison of Mitochondrial Incubation Media for Measurement of Respiration and Hydrogen Peroxide Production; pp. 137–155. PubMed

R Development Core Team. R: A Language and Environment for Statistical Computing. (2016).

Diciccio TJ, Efron B. Bootstrap Confidence Intervals. Stat. Sci. 1996;11:189–212. doi: 10.1214/ss/1032280214. DOI

Torchiano, M. Effsize - a package for efficient effect size computation., 10.5281/ZENODO.1480624 (2016).

Canty, A. & Ripley, B. D. boot: Bootstrap R (S-Plus) Functions. (2017).

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models (2018).

Luo, D., Ganesh, S. & Koolaard, J. predictmeans: Calculate Predicted Means for Linear Models (2018).

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300.

Oksanen, J. et al. Package ‘vegan’ Title Community Ecology Package (2019).

Robin X, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. doi: 10.1186/1471-2105-12-77. PubMed DOI PMC

Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B (Statistical Methodol. 2011;73:3–36. doi: 10.1111/j.1467-9868.2010.00749.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...