Complex Interplay of Genes Underlies Invasiveness in Fibrosarcoma Progression Model

. 2021 May 25 ; 10 (11) : . [epub] 20210525

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34070472

Grantová podpora
PROGRESS Q39 Univerzita Karlova v Praze
PROGRESS Q40/01 Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_019/0000787 Ministry of Education, Youth and Science
17-17636S Grantová Agentura České Republiky
260 538/2020 Univerzita Karlova v Praze
260 539/2020 Univerzita Karlova v Praze
LM2018132 Ministry of Education, Youth and Science

Sarcomas are a heterogeneous group of mesenchymal tumours, with a great variability in their clinical behaviour. While our knowledge of sarcoma initiation has advanced rapidly in recent years, relatively little is known about mechanisms of sarcoma progression. JUN-murine fibrosarcoma progression series consists of four sarcoma cell lines, JUN-1, JUN-2, JUN-2fos-3, and JUN-3. JUN-1 and -2 were established from a single tumour initiated in a H2K/v-jun transgenic mouse, JUN-3 originates from a different tumour in the same animal, and JUN-2fos-3 results from a targeted in vitro transformation of the JUN-2 cell line. The JUN-1, -2, and -3 cell lines represent a linear progression from the least transformed JUN-2 to the most transformed JUN-3, with regard to all the transformation characteristics studied, while the JUN-2fos-3 cell line exhibits a unique transformation mode, with little deregulation of cell growth and proliferation, but pronounced motility and invasiveness. The invasive sarcoma sublines JUN-2fos-3 and JUN-3 show complex metabolic profiles, with activation of both mitochondrial oxidative phosphorylation and glycolysis and a significant increase in spared respiratory capacity. The specific transcriptomic profile of invasive sublines features very complex biological relationships across the identified genes and proteins, with accentuated autocrine control of motility and angiogenesis. Pharmacologic inhibition of one of the autocrine motility factors identified, Ccl8, significantly diminished both motility and invasiveness of the highly transformed fibrosarcoma cell. This progression series could be greatly valuable for deciphering crucial aspects of sarcoma progression and defining new prognostic markers and potential therapeutic targets.

Zobrazit více v PubMed

Oda Y., Yamamoto H., Kohashi K., Yamada Y., Iura K., Ishii T., Maekawa A., Bekki H. Soft Tissue Sarcomas: From a Morphological to a Molecular Biological Approach. Pathol. Internat. 2017;67:435–446. doi: 10.1111/pin.12565. PubMed DOI

Quesada J., Amato R. The Molecular Biology of Soft-Tissue Sarcomas and Current Trends in Therapy. Sarcoma. 2012;2012:849456. doi: 10.1155/2012/849456. PubMed DOI PMC

Sbaraglia M., Dei Tos A.P. The Pathology of Soft Tissue Sarcomas. Radiol. Med. 2019;124:266–281. doi: 10.1007/s11547-018-0882-7. PubMed DOI

Skubitz K.M., D’Adamo D.R. Sarcoma. Mayo Clin. Proc. 2007;82:1409–1432. doi: 10.4065/82.11.1409. PubMed DOI

Taylor B.S., Barretina J., Maki R.G., Antonescu C.R., Singer S., Ladanyi M. Advances in Sarcoma Genomics and New Therapeutic Targets. Nat. Rev. Cancer. 2011;11:541–557. doi: 10.1038/nrc3087. PubMed DOI PMC

Riedel R.F. Systemic Therapy for Advanced Soft Tissue Sarcomas. Cancer. 2012;118:1474–1485. doi: 10.1002/cncr.26415. PubMed DOI PMC

Mertens F., Antonescu C.R., Mitelman F. Gene Fusions in Soft Tissue Tumors: Recurrent and Overlapping Pathogenetic Themes. Genes Chromosomes Cancer. 2016;55:291–310. doi: 10.1002/gcc.22335. PubMed DOI PMC

Hatina J., Kripnerova M., Houfkova K., Pesta M., Kuncova J., Sana J., Slaby O., Rodríguez R. Sarcoma Stem Cell Heterogeneity. Adv. Exp. Med. Biol. 2019;1123:95–118. doi: 10.1007/978-3-030-11096-3_7. PubMed DOI

Pennacchioli E., Tosti G., Barberis M., De Pas T.M., Verrecchia F., Menicanti C., Testori A., Mazzarol G. Sarcoma Spreads Primarily through the Vascular System: Are There Biomarkers Associated with Vascular Spread? Clin. Exp. Metastasis. 2012;29:757–773. doi: 10.1007/s10585-012-9502-4. PubMed DOI

Tsukushi S., Nishida Y., Urakawa H., Kozawa E., Ishiguro N. Prognostic Significance of Histological Invasion in High Grade Soft Tissue Sarcomas. SpringerPlus. 2014;3:544. doi: 10.1186/2193-1801-3-544. PubMed DOI PMC

Lee A.T.J., Pollack S.M., Huang P., Jones R.L. Phase III Soft Tissue Sarcoma Trials: Success or Failure? Curr. Treat. Options Oncol. 2017;18:19. doi: 10.1007/s11864-017-0457-1. PubMed DOI PMC

Chibon F., Lagarde P., Salas S., Pérot G., Brouste V., Tirode F., Lucchesi C., de Reynies A., Kauffmann A., Bui B., et al. Validated Prediction of Clinical Outcome in Sarcomas and Multiple Types of Cancer on the Basis of a Gene Expression Signature Related to Genome Complexity. Nat. Med. 2010;16:781–787. doi: 10.1038/nm.2174. PubMed DOI

Jemaà M., Abdallah S., Lledo G., Perrot G., Lesluyes T., Teyssier C., Roux P., van Dijk J., Chibon F., Abrieu A., et al. Heterogeneity in Sarcoma Cell Lines Reveals Enhanced Motility of Tetraploid versus Diploid Cells. Oncotarget. 2016;8:16669–16689. doi: 10.18632/oncotarget.14291. PubMed DOI PMC

Chibon F., Lesluyes T., Valentin T., Guellec S.L. CINSARC Signature as a Prognostic Marker for Clinical Outcome in Sarcomas and Beyond. Genes Chromosomes Cancer. 2019;58:124–129. doi: 10.1002/gcc.22703. PubMed DOI

Cavanna T., Pokorna E., Vesely P., Gray C., Zicha D. Evidence for Protein 4.1B Acting as a Metastasis Suppressor. J. Cell Sci. 2007;120:606–616. doi: 10.1242/jcs.000273. PubMed DOI

Rosel D., Brabek J., Tolde O., Mierke C.T., Zitterbart D.P., Raupach C., Bicanova K., Kollmannsberger P., Pankova D., Vesely P., et al. Up-Regulation of Rho/ROCK Signaling in Sarcoma Cells Drives Invasion and Increased Generation of Protrusive Forces. Mol. Cancer Res. 2008;6:1410–1420. doi: 10.1158/1541-7786.MCR-07-2174. PubMed DOI

Kainov Y., Favorskaya I., Delektorskaya V., Chemeris G., Komelkov A., Zhuravskaya A., Trukhanova L., Zueva E., Tavitian B., Dyakova N., et al. CRABP1 Provides High Malignancy of Transformed Mesenchymal Cells and Contributes to the Pathogenesis of Mesenchymal and Neuroendocrine Tumors. Cell Cycle. 2014;13:1530–1539. doi: 10.4161/cc.28475. PubMed DOI PMC

Funes J.M., Quintero M., Henderson S., Martinez D., Qureshi U., Westwood C., Clements M.O., Bourboulia D., Pedley R.B., Moncada S., et al. Transformation of Human Mesenchymal Stem Cells Increases Their Dependency on Oxidative Phosphorylation for Energy Production. Proc. Natl. Acad. Sci. USA. 2007;104:6223–6228. doi: 10.1073/pnas.0700690104. PubMed DOI PMC

Ramanathan A., Wang C., Schreiber S.L. Perturbational Profiling of a Cell-Line Model of Tumorigenesis by Using Metabolic Measurements. Proc. Natl. Acad. Sci. USA. 2005;102:5992–5997. doi: 10.1073/pnas.0502267102. PubMed DOI PMC

Hatina J., Hajkova L., Peychl J., Rudolf E., Finek J., Cervinka M., Reischig J. Establishment and Characterization of Clonal Cell Lines Derived from a Fibrosarcoma of the H2-K/v-Jun Transgenic Mouse. Tumor Biol. 2003;24:176–184. doi: 10.1159/000074427. PubMed DOI

Schuh A.C., Keating S.J., Monteclaro F.S., Vogt P.K., Breitman M.L. Obligatory Wounding Requirement for Tumorigenesis in V- Jun Transgenic Mice. Nature. 1990;346:756–760. doi: 10.1038/346756a0. PubMed DOI

Katoh K., Takahashi Y., Hayashi S., Kondoh H. Improved Mammalian Vectors for High Expression of G418 Resistance. Cell Struct. Funct. 1987;12:575–580. doi: 10.1247/csf.12.575. PubMed DOI

Chomczynski P., Sacchi N. The Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction: Twenty-Something Years On. Nat. Protoc. 2006;1:581–585. doi: 10.1038/nprot.2006.83. PubMed DOI

Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. Current Protocols in Molecular Biology. John Wiley & Sons; Brooklyn, NY, USA: 1995.

Maki Y., Bos T.J., Davis C., Starbuck M., Vogt P.K. Avian Sarcoma Virus 17 Carries the Jun Oncogene. Proc. Natl. Acad. Sci. USA. 1987;84:2848–2852. doi: 10.1073/pnas.84.9.2848. PubMed DOI PMC

Holubova M., Leba M., Sedmikova M., Vannucci L., Horak V. Characterization of Three Newly Established Rat Sarcoma Cell Clones. In Vitro Cell Dev. Biol. Anim. 2012;48:610–618. doi: 10.1007/s11626-012-9563-3. PubMed DOI

Ke N., Wang X., Xu X., Abassi Y.A. The XCELLigence System for Real-Time and Label-Free Monitoring of Cell Viability. Methods Mol. Biol. 2011;740:33–43. doi: 10.1007/978-1-61779-108-6_6. PubMed DOI

Mori S., Chang J.T., Andrechek E.R., Matsumura N., Baba T., Yao G., Kim J.W., Gatza M., Murphy S., Nevins J.R. Anchorage-Independent Cell Growth Signature Identifies Tumors with Metastatic Potential. Oncogene. 2009;28:2796–2805. doi: 10.1038/onc.2009.139. PubMed DOI PMC

Fujii H., Honoki K., Tsujiuchi T., Kido A., Yoshitani K., Takakura Y. Sphere-Forming Stem-like Cell Populations with Drug Resistance in Human Sarcoma Cell Lines. Int. J. Oncol. 2009;34:1381–1386. PubMed

Liu W.-D., Zhang T., Wang C.-L., Meng H.-M., Song Y.-W., Zhao Z., Li Z.-M., Liu J.-K., Pan S.-H., Wang W.-B. Sphere-Forming Tumor Cells Possess Stem-like Properties in Human Fibrosarcoma Primary Tumors and Cell Lines. Oncol. Lett. 2012;4:1315–1320. doi: 10.3892/ol.2012.940. PubMed DOI PMC

Boesch M., Reimer D., Rumpold H., Zeimet A.G., Sopper S., Wolf D. DyeCycle Violet Used for Side Population Detection Is a Substrate of P-Glycoprotein. Cytometry A. 2012;81:517–522. doi: 10.1002/cyto.a.22038. PubMed DOI

Quail D.F., Maciel T.J., Rogers K., Postovit L.M. A Unique 3D in Vitro Cellular Invasion Assay. J. Biomol. Screen. 2012;17:1088–1095. doi: 10.1177/1087057112449863. PubMed DOI

Santini M.T., Rainaldi G., Indovina P.L. Multicellular Tumour Spheroids in Radiation Biology. Int. J. Radiat. Biol. 1999;75:787–799. doi: 10.1080/095530099139845. PubMed DOI

Pesta D., Gnaiger E. High-Resolution Respirometry: OXPHOS Protocols for Human Cells and Permeabilized Fibers from Small Biopsies of Human Muscle. Methods Mol. Biol. 2012;810:25–58. doi: 10.1007/978-1-61779-382-0_3. PubMed DOI

Kuznetsov A.V., Strobl D., Ruttmann E., Königsrainer A., Margreiter R., Gnaiger E. Evaluation of Mitochondrial Respiratory Function in Small Biopsies of Liver. Anal. Biochem. 2002;305:186–194. doi: 10.1006/abio.2002.5658. PubMed DOI

Larsen S., Nielsen J., Hansen C.N., Nielsen L.B., Wibrand F., Stride N., Schroder H.D., Boushel R., Helge J.W., Dela F., et al. Biomarkers of Mitochondrial Content in Skeletal Muscle of Healthy Young Human Subjects. J. Physiol. 2012;590:3349–3360. doi: 10.1113/jphysiol.2012.230185. PubMed DOI PMC

Chen J.-R., Lazarenko O.P., Blackburn M.L., Rose S., Frye R.E., Badger T.M., Andres A., Shankar K. Maternal Obesity Programs Senescence Signaling and Glucose Metabolism in Osteo-Progenitors From Rat and Human. Endocrinology. 2016;157:4172–4183. doi: 10.1210/en.2016-1408. PubMed DOI

Zhuang Y., Chan D.K., Haugrud A.B., Miskimins W.K. Mechanisms by Which Low Glucose Enhances the Cytotoxicity of Metformin to Cancer Cells Both in Vitro and in Vivo. PLoS ONE. 2014;9:e108444. doi: 10.1371/journal.pone.0108444. PubMed DOI PMC

Huber W., Carey V.J., Gentleman R., Anders S., Carlson M., Carvalho B.S., Bravo H.C., Davis S., Gatto L., Girke T., et al. Orchestrating High-Throughput Genomic Analysis with Bioconductor. Nat. Methods. 2015;12:115–121. doi: 10.1038/nmeth.3252. PubMed DOI PMC

Mirolo M., Fabbri M., Sironi M., Vecchi A., Guglielmotti A., Mangano G., Biondi G., Locati M., Mantovani A. Impact of the Anti-Inflammatory Agent Bindarit on the Chemokinome: Selective Inhibition of the Monocyte Chemotactic Proteins. Eur. Cytokine Netw. 2008;19:119–122. doi: 10.1684/ecn.2008.0133. PubMed DOI

Paccosi S., Giachi M., Di Gennaro P., Guglielmotti A., Parenti A. The Chemokine (C-C Motif) Ligand Protein Synthesis Inhibitor Bindarit Prevents Cytoskeletal Rearrangement and Contraction of Human Mesangial Cells. Cytokine. 2016;85:92–100. doi: 10.1016/j.cyto.2016.06.012. PubMed DOI

Halvorsen E.C., Hamilton M.J., Young A., Wadsworth B.J., LePard N.E., Lee H.N., Firmino N., Collier J.L., Bennewith K.L. Maraviroc Decreases CCL8-Mediated Migration of CCR5 + Regulatory T Cells and Reduces Metastatic Tumor Growth in the Lungs. OncoImmunology. 2016;5:e1150398. doi: 10.1080/2162402X.2016.1150398. PubMed DOI PMC

Sicoli D., Jiao X., Ju X., Velasco-Velazquez M., Ertel A., Addya S., Li Z., Ando S., Fatatis A., Paudyal B., et al. CCR5 Receptor Antagonists Block Metastasis to Bone of V-Src Oncogene-Transformed Metastatic Prostate Cancer Cell Lines. Cancer Res. 2014;74:7103–7114. doi: 10.1158/0008-5472.CAN-14-0612. PubMed DOI PMC

Scrace S., O’Neill E., Hammond E.M., Pires I.M. Use of the xCELLigence System for Real-Time Analysis of Changes in Cellular Motility and Adhesion in Physiological Conditions. In: Coutts A.S., editor. Adhesion Protein Protocols. Methods in Molecular Biology; Humana Press; Totowa, NJ, USA: 2013. pp. 295–306. PubMed

R Core Team (2020)—European Environment Agency. [(accessed on 9 November 2020)]; Available online: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006.

DiCiccio T.J., Efron B. Bootstrap Confidence Intervals. Statist. Sci. 1996;11:189–228. doi: 10.1214/ss/1032280214. DOI

Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Series B Stat. Methodol. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Luo D., Koolaard S.G.J. Predictmeans: Calculate Predicted Means for Linear Models. [(accessed on 20 November 2020)]; Available online: https://cran.r-project.org/web/packages/predictmeans/predictmeans.pdf.

Tichanek F., Salomova M., Jedlicka J., Kuncova J., Pitule P., Macanova T., Petrankova Z., Tuma Z., Cendelin J. Hippocampal Mitochondrial Dysfunction and Psychiatric-Relevant Behavioral Deficits in Spinocerebellar Ataxia 1 Mouse Model. Sci. Rep. 2020;10:5418. doi: 10.1038/s41598-020-62308-0. PubMed DOI PMC

Cendelin J., Tichanek F. Cerebellar Degeneration Averts Blindness-Induced Despaired Behavior during Spatial Task in Mice. Neurosci. Lett. 2020;722:134854. doi: 10.1016/j.neulet.2020.134854. PubMed DOI

Eklund A. Beeswarm: The Bee Swarm Plot, an Alternative to Stripchart. [(accessed on 25 November 2020)]; Available online: https://rdrr.io/cran/beeswarm/

Kelly T. TomKellyGenetics/Vioplot. [(accessed on 11 November 2020)]; Available online: https://cran.r-project.org/web/packages/vioplot/vioplot.pdf.

Hatina J., Fernandes M.I., Hoffmann M.J., Zeimet A.G. eLS. John Wiley & Sons; Chichester, UK: 2013. Cancer Stem Cells—Basic Biological Properties and Experimental Approaches. DOI

Trucco M., Loeb D. Sarcoma Stem Cells: Do We Know What We Are Looking For? Sarcoma. 2012:291702. doi: 10.1155/2012/291705. PubMed DOI PMC

Colombo A., Basavarajaiah S., Limbruno U., Picchi A., Lettieri Valgimigli M., Sciahbasi A., Prati F., Calabresi M., Pierucci D., Guglielmotti A. A Double-Blind Randomised Study to Evaluate the Efficacy and Safety of Bindarit in Preventing Coronary Stent Restenosis. EuroIntervention. 2015;11:20140918-01. doi: 10.4244/EIJY15M12_03. PubMed DOI

Parra J., Portilla J., Pulido F., Sánchez-de la Rosa R., Alonso-Villaverde C., Berenguer J., Blanco J.L., Domingo P., Dronda F., Galera C., et al. Clinical Utility of Maraviroc. Clin. Drug Investig. 2011;31:527–542. doi: 10.2165/11590700-000000000-00000. PubMed DOI

Ozanne B.W., McGarry L., Spence H.J., Johnston I., Winnie J., Meagher L., Stapleton G. Transcriptional Regulation of Cell Invasion: AP-1 Regulation of a Multigenic Invasion Programme. Eur. J. Cancer. 2000;36:1640–1648. doi: 10.1016/S0959-8049(00)00175-1. PubMed DOI

Ozanne B.W., Spence H.J., McGarry L.C., Hennigan R.F. Transcription Factors Control Invasion: AP-1 the First among Equals. Oncogene. 2007;26:1–10. doi: 10.1038/sj.onc.1209759. PubMed DOI

Wang Z.-Q., Liang J., Schellander K., Wagner E.F., Grigoriadis A.E. C-Fos-Induced Osteosarcoma Formation in Transgenic Mice: Cooperativity with c-Jun and the Role of Endogenous c-Fos. Cancer Res. 1995;55:6244–6251. PubMed

Mariani O., Brennetot C., Coindre J.-M., Gruel N., Ganem C., Delattre O., Stern M.-H., Aurias A. JUN Oncogene Amplification and Overexpression Block Adipocytic Differentiation in Highly Aggressive Sarcomas. Cancer Cell. 2007;11:361–374. doi: 10.1016/j.ccr.2007.02.007. PubMed DOI

Snyder E.L., Sandstrom D.J., Law K., Fiore C., Sicinska E., Brito J., Bailey D., Fletcher J.A., Loda M., Rodig S.J., et al. C-Jun Amplification and Overexpression Are Oncogenic in Liposarcoma but Not Always Sufficient to Inhibit the Adipocytic Differentiation Programme. J. Pathol. 2009;218:292–300. doi: 10.1002/path.2564. PubMed DOI

Ivorra C., Kubicek M., González J.M., Sanz-González S.M., Alvarez-Barrientos A., O’Connor J.-E., Burke B., Andrés V. A Mechanism of AP-1 Suppression through Interaction of c-Fos with Lamin A/C. Genes Dev. 2006;20:307–320. doi: 10.1101/gad.349506. PubMed DOI PMC

Mohamood A.S., Gyles P., Balan K.V., Hollis V.W., Eckberg W.R., Asseffa A., Han Z., Wyche J.H., Anderson W.A. Estrogen Receptor, Growth Factor Receptor and Protooncogene Protein Activities and Possible Signal Transduction Crosstalk in Estrogen Dependent and Independent Breast Cancer Cell Lines. J. Submicrosc. Cytol. Pathol. 1997;29:1–17. PubMed

La Vecchia S., Sebastián C. Metabolic Pathways Regulating Colorectal Cancer Initiation and Progression. Semin. Cell Dev. Biol. 2020;98:63–70. doi: 10.1016/j.semcdb.2019.05.018. PubMed DOI

Caneba C.A., Bellance N., Yang L., Pabst L., Nagrath D. Pyruvate Uptake Is Increased in Highly Invasive Ovarian Cancer Cells under Anoikis Conditions for Anaplerosis, Mitochondrial Function, and Migration. Am. J. Physiol. Endocrinol. Metab. 2012;303:E1036–E1052. doi: 10.1152/ajpendo.00151.2012. PubMed DOI

Wan J., Su Y., Song Q., Tung B., Oyinlade O., Liu S., Ying M., Ming G., Song H., Qian J., et al. Methylated Cis-Regulatory Elements Mediate KLF4-Dependent Gene Transactivation and Cell Migration. eLife. 2017;6:e20068. doi: 10.7554/eLife.20068. PubMed DOI PMC

Wang S., Shi X., Wei S., Ma D., Oyinlade O., Lv S.-Q., Ying M., Zhang Y.A., Claypool S.M., Watkins P., et al. Krüppel-like Factor 4 (KLF4) Induces Mitochondrial Fusion and Increases Spare Respiratory Capacity of Human Glioblastoma Cells. J. Biol. Chem. 2018;293:6544–6555. doi: 10.1074/jbc.RA117.001323. PubMed DOI PMC

Marchetti P., Fovez Q., Germain N., Khamari R., Kluza J. Mitochondrial Spare Respiratory Capacity: Mechanisms, Regulation, and Significance in Non-Transformed and Cancer Cells. FASEB J. 2020 doi: 10.1096/fj.202000767R. PubMed DOI

Lee Y.-K., Jee B.A., Kwon S.M., Yoon Y.-S., Xu W.G., Wang H.-J., Wang X.W., Thorgeirsson S.S., Lee J.-S., Woo H.G., et al. Identification of a Mitochondrial Defect Gene Signature Reveals NUPR1 as a Key Regulator of Liver Cancer Progression. Hepatology. 2015;62:1174–1189. doi: 10.1002/hep.27976. PubMed DOI PMC

Machida K. Pluripotency Transcription Factors and Metabolic Reprogramming of Mitochondria in Tumor-Initiating Stem-like Cells. Antioxid. Redox Signal. 2018;28:1080–1089. doi: 10.1089/ars.2017.7241. PubMed DOI PMC

Basu-Roy U., Bayin N.S., Rattanakorn K., Han E., Placantonakis D.G., Mansukhani A., Basilico C. Sox2 Antagonizes the Hippo Pathway to Maintain Stemness in Cancer Cells. Nat. Commun. 2015;6:6411. doi: 10.1038/ncomms7411. PubMed DOI PMC

Maurizi G., Verma N., Gadi A., Mansukhani A., Basilico C. Sox2 Is Required for Tumor Development and Cancer Cell Proliferation in Osteosarcoma. Oncogene. 2018;37:4626–4632. doi: 10.1038/s41388-018-0292-2. PubMed DOI PMC

Yamaguchi H., Taouk G.M. A Potential Role of YAP/TAZ in the Interplay Between Metastasis and Metabolic Alterations. Front. Oncol. 2020;10 doi: 10.3389/fonc.2020.00928. PubMed DOI PMC

Würl P., Kappler M., Meye A., Bartel F., Köhler T., Lautenschläger C., Bache M., Schmidt H., Taubert H. Co-Expression of Survivin and TERT and Risk of Tumour-Related Death in Patients with Soft-Tissue Sarcoma. Lancet. 2002;359:943–945. doi: 10.1016/S0140-6736(02)07990-4. PubMed DOI

Nikitovic D., Kouvidi K., Karamanos N.K., Tzanakakis G.N. The Roles of Hyaluronan/RHAMM/CD44 and Their Respective Interactions along the Insidious Pathways of Fibrosarcoma Progression. BioMed Res. Int. 2013;2013:929531. doi: 10.1155/2013/929531. PubMed DOI PMC

Farmaki E., Chatzistamou I., Kaza V., Kiaris H. A CCL8 Gradient Drives Breast Cancer Cell Dissemination. Oncogene. 2016;35:6309–6318. doi: 10.1038/onc.2016.161. PubMed DOI PMC

Barbai T., Fejős Z., Puskas L.G., Tímár J., Rásó E. The Importance of Microenvironment: The Role of CCL8 in Metastasis Formation of Melanoma. Oncotarget. 2015;6:29111–29128. doi: 10.18632/oncotarget.5059. PubMed DOI PMC

Otsubo C., Otomo R., Miyazaki M., Matsushima-Hibiya Y., Kohno T., Iwakawa R., Takeshita F., Okayama H., Ichikawa H., Saya H., et al. TSPAN2 Is Involved in Cell Invasion and Motility during Lung Cancer Progression. Cell Rep. 2014;7:527–538. doi: 10.1016/j.celrep.2014.03.027. PubMed DOI

Fils-Aimé N., Dai M., Guo J., El-Mousawi M., Kahramangil B., Neel J.-C., Lebrun J.-J. MicroRNA-584 and the Protein Phosphatase and Actin Regulator 1 (PHACTR1), a New Signaling Route through Which Transforming Growth Factor-β Mediates the Migration and Actin Dynamics of Breast Cancer Cells. J. Biol. Chem. 2013;288:11807–11823. doi: 10.1074/jbc.M112.430934. PubMed DOI PMC

Bagci T., Wu J.K., Pfannl R., Ilag L.L., Jay D.G. Autocrine Semaphorin 3A Signaling Promotes Glioblastoma Dispersal. Oncogene. 2009;28:3537–3550. doi: 10.1038/onc.2009.204. PubMed DOI

Tao J., Cong H., Wang H., Zhang D., Liu C., Chu H., Qing Q., Wang K. MiR-30a-5p Inhibits Osteosarcoma Cell Proliferation and Migration by Targeting FOXD1. Biochem. Biophys. Res. Commun. 2018;503:1092–1097. doi: 10.1016/j.bbrc.2018.06.121. PubMed DOI

Li D., Fan S., Yu F., Zhu X., Song Y., Ye M., Fan L., Lv Z. FOXD1 Promotes Cell Growth and Metastasis by Activation of Vimentin in NSCLC. Cell Physiol. Biochem. 2018;51:2716–2731. doi: 10.1159/000495962. PubMed DOI

Wu H., Larribère L., Sun Q., Novak D., Sachindra S., Granados K., Umansky V., Utikal J. Loss of Neural Crest-Associated Gene FOXD1 Impairs Melanoma Invasion and Migration via RAC1B Downregulation. Int. J. Cancer. 2018;143:2962–2972. doi: 10.1002/ijc.31799. PubMed DOI

Ondondo B., Colbeck E., Jones E., Smart K., Lauder S.N., Hindley J., Godkin A., Moser B., Ager A., Gallimore A. A Distinct Chemokine Axis Does Not Account for Enrichment of Foxp3(+) CD4(+) T Cells in Carcinogen-Induced Fibrosarcomas. Immunology. 2015;145:94–104. doi: 10.1111/imm.12430. PubMed DOI PMC

Gazzaniga S., Bravo A.I., Guglielmotti A., van Rooijen N., Maschi F., Vecchi A., Mantovani A., Mordoh J., Wainstok R. Targeting Tumor-Associated Macrophages and Inhibition of MCP-1 Reduce Angiogenesis and Tumor Growth in a Human Melanoma Xenograft. J. Investig. Dermatol. 2007;127:2031–2041. doi: 10.1038/sj.jid.5700827. PubMed DOI

Liu S., Gao H., Gao C., Liu W., Xing D. Bindarit Attenuates Pain and Cancer-Related Inflammation by Influencing Myeloid Cells in a Model of Bone Cancer. Arch. Immunol. Ther. Exp. 2018;66:221–229. doi: 10.1007/s00005-017-0497-z. PubMed DOI

Ward S.T., Li K.K., Hepburn E., Weston C.J., Curbishley S.M., Reynolds G.M., Hejmadi R.K., Bicknell R., Eksteen B., Ismail T., et al. The Effects of CCR5 Inhibition on Regulatory T-Cell Recruitment to Colorectal Cancer. Br. J. Cancer. 2015;112:319–328. doi: 10.1038/bjc.2014.572. PubMed DOI PMC

Tanabe Y., Sasaki S., Mukaida N., Baba T. Blockade of the Chemokine Receptor, CCR5, Reduces the Growth of Orthotopically Injected Colon Cancer Cells via Limiting Cancer-Associated Fibroblast Accumulation. Oncotarget. 2016;7:48335–48345. doi: 10.18632/oncotarget.10227. PubMed DOI PMC

Zollo M., Di Dato V., Spano D., De Martino D., Liguori L., Marino N., Vastolo V., Navas L., Garrone B., Mangano G., et al. Targeting Monocyte Chemotactic Protein-1 Synthesis with Bindarit Induces Tumor Regression in Prostate and Breast Cancer Animal Models. Clin. Exp. Metastasis. 2012;29:585–601. doi: 10.1007/s10585-012-9473-5. PubMed DOI

Singh S.K., Mishra M.K., Eltoum I.-E.A., Bae S., Lillard J.W., Singh R. CCR5/CCL5 Axis Interaction Promotes Migratory and Invasiveness of Pancreatic Cancer Cells. Sci. Rep. 2018;8:1323. doi: 10.1038/s41598-018-19643-0. PubMed DOI PMC

Pervaiz A., Zepp M., Mahmood S., Ali D.M., Berger M.R., Adwan H. CCR5 Blockage by Maraviroc: A Potential Therapeutic Option for Metastatic Breast Cancer. Cell. Oncol. 2019;42:93–106. doi: 10.1007/s13402-018-0415-3. PubMed DOI

Yang J., Sontag D., Gong Y., Minuk G.Y. Alterations in Chemokine Receptor CCR5 Activity Influence Tumor Cell Biology in Human Cholangiocarcinoma Cell Lines. Ann. Hepatol. 2021;21:100265. doi: 10.1016/j.aohep.2020.09.009. PubMed DOI

Maione F., Molla F., Meda C., Latini R., Zentilin L., Giacca M., Seano G., Serini G., Bussolino F., Giraudo E. Semaphorin 3A Is an Endogenous Angiogenesis Inhibitor That Blocks Tumor Growth and Normalizes Tumor Vasculature in Transgenic Mouse Models. J. Clin. Investig. 2009;119:3356–3372. doi: 10.1172/JCI36308. PubMed DOI PMC

Hu B., Cheng S.-Y. Angiopoietin-2: Development of Inhibitors for Cancer Therapy. Curr. Oncol. Rep. 2009;11:111–116. doi: 10.1007/s11912-009-0017-3. PubMed DOI PMC

Marconcini L., Marchio S., Morbidelli L., Cartocci E., Albini A., Ziche M., Bussolino F., Oliviero S. C-Fos-Induced Growth Factor/Vascular Endothelial Growth Factor D Induces Angiogenesis in Vivo and in Vitro. Proc. Natl. Acad. Sci. USA. 1999;96:9671–9676. doi: 10.1073/pnas.96.17.9671. PubMed DOI PMC

Yanagawa T., Shinozaki T., Watanabe H., Saito K., Raz A., Takagishi K. Vascular Endothelial Growth Factor-D Is a Key Molecule That Enhances Lymphatic Metastasis of Soft Tissue Sarcomas. Exp. Cell Res. 2012;318:800–808. doi: 10.1016/j.yexcr.2012.01.024. PubMed DOI PMC

Kilvaer T.K., Valkov A., Sorbye S., Smeland E., Bremnes R.M., Busund L.-T., Donnem T. Profiling of VEGFs and VEGFRs as Prognostic Factors in Soft Tissue Sarcoma: VEGFR-3 Is an Independent Predictor of Poor Prognosis. PLoS ONE. 2010;5:e15368. doi: 10.1371/journal.pone.0015368. PubMed DOI PMC

Zhao T., Zhao W., Meng W., Liu C., Chen Y., Bhattacharya S.K., Sun Y. Vascular Endothelial Growth Factor-D Mediates Fibrogenic Response in Myofibroblasts. Mol. Cell Biochem. 2016;413:127–135. doi: 10.1007/s11010-015-2646-1. PubMed DOI

Wang P., Chen S.-H., Hung W.-C., Paul C., Zhu F., Guan P.-P., Huso D.L., Kontrogianni-Konstantopoulos A., Konstantopoulos K. Fluid Shear Promotes Chondrosarcoma Cell Invasion by Activating Matrix Metalloproteinase 12 via IGF-2 and VEGF Signaling Pathways. Oncogene. 2015;34:4558–4569. doi: 10.1038/onc.2014.397. PubMed DOI PMC

Siemann N.M., Siemann D.W. Angiopoietin-2 Axis Inhibitors: Current Status and Future Considerations for Cancer Therapy. [(accessed on 2 November 2020)]; Available online: https://www.eurekaselect.com/115040/article.

Bezuidenhout L., Zilla P., Davies N. Association of Ang-2 with Integrin Beta 2 Controls Ang-2/PDGF-BB-Dependent Upregulation of Human Peripheral Blood Monocyte Fibrinolysis. Inflammation. 2009;32:393–401. doi: 10.1007/s10753-009-9148-9. PubMed DOI

Hu B., Jarzynka M.J., Guo P., Imanishi Y., Schlaepfer D.D., Cheng S.-Y. Angiopoietin 2 Induces Glioma Cell Invasion by Stimulating Matrix Metalloprotease 2 Expression through the Alphavbeta1 Integrin and Focal Adhesion Kinase Signaling Pathway. Cancer Res. 2006;66:775–783. doi: 10.1158/0008-5472.CAN-05-1149. PubMed DOI PMC

Morii T., Mochizuki K., Tajima T., Ichimura S., Satomi K. D-Dimer Levels as a Prognostic Factor for Determining Oncological Outcomes in Musculoskeletal Sarcoma. BMC Musculoskelet. Disord. 2011;12:250. doi: 10.1186/1471-2474-12-250. PubMed DOI PMC

Raj S.D., Zhou X., Bueso-Ramos C.E., Ravi V., Patel S., Benjamin R.S., Vadhan-Raj S. Prognostic Significance of Elevated D-Dimer for Survival in Patients with Sarcoma. Am. J. Clin. Oncol. 2012;35:462–467. doi: 10.1097/COC.0b013e31821d4529. PubMed DOI

Bure I.V., Kuznetsova E.B., Zaletaev D.V. Long Noncoding RNAs and Their Role in Oncogenesis. Mol. Biol. 2018;52:907–920. doi: 10.1134/S0026893318060031. PubMed DOI

Zhang R., Xia T. Long Non-Coding RNA XIST Regulates PDCD4 Expression by Interacting with MiR-21-5p and Inhibits Osteosarcoma Cell Growth and Metastasis. Int. J. Oncol. 2017;51:1460–1470. doi: 10.3892/ijo.2017.4127. PubMed DOI PMC

Lv G.-Y., Miao J., Zhang X.-L. Long Noncoding RNA XIST Promotes Osteosarcoma Progression by Targeting Ras-Related Protein RAP2B via MiR-320b. Oncol. Res. 2018;26:837–846. doi: 10.3727/096504017X14920318811721. PubMed DOI PMC

Yildirim E., Kirby J.E., Brown D.E., Mercier F.E., Sadreyev R.I., Scadden D.T., Lee J.T. Xist RNA Is a Potent Suppressor of Hematologic Cancer in Mice. Cell. 2013;152:727–742. doi: 10.1016/j.cell.2013.01.034. PubMed DOI PMC

Navarro P., Chambers I., Karwacki-Neisius V., Chureau C., Morey C., Rougeulle C., Avner P. Molecular Coupling of Xist Regulation and Pluripotency. Science. 2008;321:1693–1695. doi: 10.1126/science.1160952. PubMed DOI

Koga M., Matsuda M., Kawamura T., Sogo T., Shigeno A., Nishida E., Ebisuya M. Foxd1 Is a Mediator and Indicator of the Cell Reprogramming Process. Nat. Commun. 2014;5:3197. doi: 10.1038/ncomms4197. PubMed DOI

Gandalovičová A., Rosel D., Fernandes M., Veselý P., Heneberg P., Čermák V., Petruželka L., Kumar S., Sanz-Moreno V., Brábek J. Migrastatics-Anti-Metastatic and Anti-Invasion Drugs: Promises and Challenges. Trends Cancer. 2017;3:391–406. doi: 10.1016/j.trecan.2017.04.008. PubMed DOI PMC

Rosel D., Fernandes M., Sanz-Moreno V., Brábek J. Migrastatics: Redirecting R&D in Solid Cancer Towards Metastasis? Trends Cancer. 2019;5:755–756. doi: 10.1016/j.trecan.2019.10.011. PubMed DOI

Kikuchi K., Kishino A., Konishi O., Kumagai K., Hosotani N., Saji I., Nakayama C., Kimura T. In Vitro and in Vivo Characterization of a Novel Semaphorin 3A Inhibitor, SM-216289 or Xanthofulvin. J. Biol. Chem. 2003;278:42985–42991. doi: 10.1074/jbc.M302395200. PubMed DOI

Martínez-García D., Manero-Rupérez N., Quesada R., Korrodi-Gregório L., Soto-Cerrato V. Therapeutic Strategies Involving Survivin Inhibition in Cancer. Med. Res. Rev. 2019;39:887–909. doi: 10.1002/med.21547. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...